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ABSTRACT
Local-area networks comprising the Internet of Things (IoT) consist
mainly of devices that have limited processing capabilities and face
energy constraints. This has an implication on developing security
mechanisms, as they require significant computing resources. In this
paper, we design a trust-based routing solution with IoT devices in
mind. Specifically, we propose a trust-based approach for managing
the reputation of every node of an IoT network. The approach is
based on the emerging Routing Protocol for Low power and Lossy
networks (RPL). The proposed solution is simulated for its routing
resilience and compared with two other variants of RPL.
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1 INTRODUCTION AND RELATEDWORK
Gartner predicts that in 2020 more than 25 billion devices will be
connected to the Internet [21]. Many of these new devices are small
and can be used to realize multiple applications. All combined, they
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realize the concept named the Internet of Things (IoT) that will
revolutionize our life.

IoT devices and applications, however, have many vulnerabilities
and are threatened to be attacked by malicious nodes (intruders).
In fact, attackers already managed to infect IoT devices that acted
as the nodes of the Mirai botnet that launched in 2016 the largest
Distributed Denial of Service (DDoS) attack seen on the Internet
until now [4]. Despite the limited capabilities of the devices, the
attack achieved an aggregate traffic volume of more than 1 Tbps.

The rapidly growing use of potentially connected devices like
digital video recorders (DVRs), IP cameras, or smart thermostats
offers intruders newways to carry out successful assaults. Moreover,
the ubiquitous use of IoT systems in our natural surroundings
may lead to more serious effects of the attacks, e.g., by voluntarily
depleting the battery of a node making it unserviceable. Hence,
appropriate countermeasures and protections are necessary when
designing an IoT network. Such defenses need to consider the
processing capabilities and constraints of the IoT devices [17]. For
instance, they need to conserve the limited energy resources of the
devices.

A promising approach towards network-level defenses is in-
trusion detection of malicious nodes based on trust development
among the IoT network nodes [13, 19]. However, trust development
is susceptible to malicious nodes that falsify the ratings of their
neighbors, either by reporting a legitimate one as misbehaving or
boosting the rating of a malicious one [5]. Such kind of network-
level attacks reduce the effectiveness of trust-based solutions and
lead to the disruption of communications across the network [3].

To the best of our knowledge, only a handful of approaches
discuss trust management systems tailored for IoT networks and
propose lightweight security solutions. An intrusion detection sys-
tem for IoT is proposed in [18]. The proposal is a centralized system
that requires a lot of message exchanges to reach a decision. It
also exhibits a high percentage of false positives due to time incon-
sistencies, as discussed in [15]. A distributed intrusion detection
mechanism targeting primarily mobile nodes is proposed in [2].
This is further adapted for IoT-based systems, see [13].

In this paper, we propose a novel network-level framework that
aims to support trust development in an IoT network. Our approach
is based on the evaluation of the interactions between network
nodes. The nodes can have positive and negative experiences with
other nodes, as network packets are routed across the IoT network.

https://doi.org/10.1145/3098954.3098963
https://doi.org/10.1145/3098954.3098963


ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy Z.A. Khan, J. Ullrich, A.G. Voyiatzis, and P. Herrmann

Figure 1: An example of a DODAG network connected to an
external server

This computation defines the direct trust of a node on its neighbor,
see [1]. Based on these information, a central node creates a rating
for each and every node of the network by combining the collected
trust values for each node using Jøsang’s Subjective Logic [11]. This
contributes in detecting node ratings that fall below a predefined
threshold and, thus, detect nodes with suspicious behavior. We
assess the routing resiliency of our proposal in the presence of
network-level trust attacks.

The remainder of this paper is organized as follows. Section 2
discusses resilient routing with emphasis on RPL-based IoT net-
works. Section 3 presents our proposal for a trust-based RPL and
Section 4 evaluates its performance under different metrics. Finally,
Section 5 concludes our paper and describes future directions of
work.

2 RESILIENT ROUTING IN AN IOTWORLD
2.1 Network resilience
Malicious attacks on the network level are one of the most critical
assault types for the IoT. In this respect, resilience refers to the
ability of a network to defend itself against such attacks and to
maintain an acceptable level of service in the presence of challenges,
includingmalicious actions [20]. A large body of research is devoted
to devising appropriate resilience metrics that are systematically
surveyed in [20].

2.2 RPL protocol
Many IoT networks employ a distance vector routing algorithm to
transport packets across the network. A quite common choice for
routing is the Routing Protocol for Low power and Lossy networks
(RPL) [10]. RPL uses a hierarchical topology called Destination
Oriented Directed Acyclic Graph (DODAG) [16].

Each network node has a specific rank that indicates the number
of hops towards the root or the Border Router of the DODAG. Based
on the application requirement, each node can choose an Objective
Function (OF) to select a particular path towards the Border Router.
In particular, the OF defines the mapping of the data properties
and predefined goals such as hop-count, link quality, or energy
consumption to a ranking value that approximates the distance of
the node to the root of the DODAG. An example of a DODAG for
an RPL-based IoT network is depicted in Figure 1.

There can be multiple active DODAGs in an RPL network. How-
ever, a node can only join a single DODAG at a time. The node
sends a broadcast message if it wants to join the DODAG. Once it

receives a reply from its neighbors, it can select a parent based on
the chosen OF.

The messages are forwarded from each node to its parent only
(i.e., nodes with lower rank). Thus, routing loops are avoided. Nodes
can, however, disappear at any time due to energy exhaustion or
technical issues. In this case, a repair operation is required that
can be either global or local. A global repair covers the complete
network while a local one affects only a small portion. The local
repair is mostly a relatively cheap operation while the global one is
often a costly remedy [14].

2.3 Resilience of RPL routing
Since RPL is a relatively new protocol, it has not been fully and
deeply studied and assessed, yet. A first attempt to study the re-
silience characteristics of RPL is provided in [9]. There, classical
RPL performance is assessed in the presence of malicious insiders
that selectively drop packets. In that context, resilience is defined
as the “capacity to deal with node and link unreliability and node
compromise due to an insider attacks” and as “the ability of a network
to absorb the performance degradation under some failure pattern
(random or intentional) and to continue delivering messages with an
increasing number of k compromised nodes” [6].

The resilience of RPL is enhanced by introducing random-path
routing and data duplication [9]. The key concept here is that each
packet is not forwarded to the best next (lower-ranked) hop as
originally defined for DODAGs. Instead, the transmitter selects
randomly one of all possible lower-ranked neighbors to forward
the packet. This way, a malicious node can, probabilistically, be
avoided; when enhanced with data duplication, the approach ex-
hibits improved delivery rates. The proposed algorithm does not
induce significant performance and energy penalties and can cope
quite well (in simulation) with up to 30% malicious nodes.

Nevertheless, this method does not contain means to eliminate
the malicious nodes actively such that those can continue to make
trouble. To avoid that, we explore a new RPL routing scheme in
the next section that can discard malicious nodes and therefore
perform better than the random selection of the next DODAG hop.

3 TRUST-BASED RPL ROUTING
We propose a new RPL routing scheme based on lightweight trust
computations as an OF. These computations can execute at a lo-
cal, cluster, or global scale. Such an approach is already shown
to be effective for realizing intrusion detection in RPL-based net-
works [13]. We extend the approach to a trust-based RPL routing
mechanism that not only detects but also eliminates misbehaving
nodes altogether.

There are three main kinds of trust-based attacks that can be
carried out against the routing functionality of RPL [3]:

• Self-promoting attacks: In a trust management system, an
attacker can promote itself by providing good recommenda-
tions for itself. That is how it can attract more traffic that
can used to carry out selective forwarding attacks.

• Bad-mouthing attacks: An attacker can try to ruin the repu-
tation of non-malicious nodes by providing unjustified bad
recommendations for them. Thus, it can reduce the traffic
passing through these good nodes.
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Figure 2: Opinion Triangle (taken from [11])

• Ballot-stuffing attacks: To realize such an attack, an attacker
can increase the reputation of other malicious nodes by in-
creasing their recommendation values. Promoting bad nodes
will eventually lead to selective forwarding or sink hole at-
tacks.

In the next paragraphs, we explain how the scheme builds the
trust relations in an IoT network, thereafter how the mechanism
can be used by the nodes for managing network trust, and finally
how the trust information can be combined in an efficient way.

3.1 Trust evaluator
Trust between entities can be expressed by discrete values in the
case of communicating objects. One technique for expressing trust
is the Subjective Logic [11]. There, trust values are represented
by opinion triangles that refer to trust, distrust, and uncertainty
about a trustee, see Fig. 2. Hence, trust is represented by three
variables: belief (b), disbelief (d), and uncertainty (u). The value of
these variables vary between 0 and 1, and their sum must be equal
to 1, i.e., b,d,u ∈ [0, 1] : b + d + u = 1.

The trust values are based on the positive and negative interac-
tions with a trustee [12]. They are computed as:

b =
p

p + n + k
(1)

d =
n

p + n + k
(2)

u =
k

p + n + k
(3)

The number of positive interactions is denoted with p, while n
denotes the negative interactions. A constant value k is used to
simplify computations; often it is set k = 1 or k = 2. A forgetting
factor can be used so that more recent interactions get preference
(i.e., higher weight) over the older ones [8].

For the case of an RPL-based IoT network, we assume that the
network nodes support listening in idle mode for their neighbor’s
traffic activity. In particular, a node s that has sent a packet to a
neighbor t , checks if t , indeed, forwards this packet correctly and
timely towards the intended receiver. If that is the case, s increments
the p value for t leading to a better trust value. Likewise, if t fails
to forward a packet correctly, s increments the n value for t .

Algorithm 1 Reputation computation

if Periodic Trust packets are received from network nodes then
Combine trust values for every node to its reputation value
for All Nodes do

if Disbelie f > bad_threshold then
Block the node as a bad node
Notify the operator and network nodes

end if
end for

end if

Algorithm 2 DODAG Update Process

if My parent is a Bad Node then
Wait for periodic DIO messages
Select a new parent that is not a Bad Node

end if

3.2 Trust value combination
In intervals, the nodes send the trust value for their neighbors to a
central entity (e.g., the RPL Border Router or the Clusterhead). This
entity can then combine all collected evaluations for a specific node
to derive its overall reputation. If the reputation value falls below a
certain level, the DODAG is updated and the misbehaving node is
removed from the graph and, in effect, from the IoT network, as it
will not be able to route information to the Border Router.

The Subjective Logic defines a consensus operator ⊕ that is used
for aggregating the various trust values about a node. Assume that
vxy = (bxy ,dxy ,uxy ) is the trust values vector of node x in node y
and vzy = (bzy ,dzy ,uzy ) is the trust values vector of another node
z in the same node y. The combined trust values vector of the x and
z in y is vy = vxy ⊕ vzy and is computed as shown in Equation 4
where κ is equal to uxy + uzy − uxyuzy :(

bxyuzy + bzyuxy

κ
,
dxyuzy + dzyuxy

κ
,
uxyuzy

κ

)
(4)

This operator can be used to combine all trust values since it
is commutative and associative [11]. So, the trust value resulting
from the aggregation of all trust values about a node y is a good
means to reflect its overall reputation. If the aggregated trust value
shows distrust above a certain threshold in y by its neighbors and,
therefore, a bad reputation, the network can assume that y is mis-
behaving. The reason for that can be that the node is compromised
and used for a malicious attack. Therefore, in this case a rebuild of
the DODAG is re-initiated as described in Algorithm 1. Moreover,
the neighboring nodes avoid the badly rated node by executing
Algorithm 2.

4 EVALUATION RESULTS
We evaluated the performance of our trust-based RPL (tRPL) with
the help of simulations in MATLAB. The proposed scheme is com-
pared against the classical RPL (cRPL) and the resilient RPL (rRPL)
proposed in [9]. In particular, we evaluated the performance of our
proposal according to the following metrics:

• Number of bad paths: The number of paths which include a
bad node, after each RPL tree update round.
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Table 1: Simulation parameters

Parameter Value
Network size 500-1500 nodes

Area 100m x 100m
Number of Bad Nodes 20-200

Routing Protocol RPL
MAC Protocol Ideal

Figure 3: Number of bad paths versus network size (the less
the better)

• Path length: The length of each node towards the border
router.

• Number of bad nodes: The number of misbehaving nodes that
are identified in the network after every RPL round.

• False positives: The number of good nodes that are rated as
bad nodes by the network.

• Average delivery ratio: The ratio between the total number of
packets received by the border router and the total number
of packets sent by the IoT nodes.

The setup of the experiment consists of up to 1,500 nodes that are
randomly deployed in a 100m x 100m grid. Two sets of simulations
were carried out to compare the three RPL versions (tRPL, cRPL,
and rRPL). In the first set, we vary the number of nodes in the
network. In the second set, we vary the number of malicious nodes
in the network.

The simulation parameters are summarized in Table 1.We discuss
in the following the results of our evaluation.

4.1 Network size
The number of nodes varied between 500, 1,000, and 1,500. We
observed the effect of the different numbers on the network param-
eters. When the network size increases, the number of bad paths
is reduced in the case of tRPL. However, the number of bad path
increases for both cRPL and rRPL, as depicted in Figure 3.

This can be explained by the fact that tRPL has an inherent
mechanism to detect bad (malicious) nodes in the network and
that it tries to avoid paths including these bad nodes. Some false

Figure 4: Average path length versus network size (the less
the better)

positives are still possible; this is discussed in Section 4.3. Both
cRPL and rRPL exhibit a similar (and greater than tRPL) number of
bad paths. This, despite rRPL trying to avoid bad paths by selecting
randomly one of the available parent nodes.

When the network size increases, the average path length slightly
decreases for all the three RPL versions, as depicted in Figure 4. It
decreases from 5.3 to 4.6 hops, if the network size increases from 500
to 1,500. This is to be expected due to the random node placement;
on average the nodes will be well-connected to the Border Router
the more nodes are available. It is interesting to note that in the
case of tRPL, the average path length does not differ significantly
compared to cRPL and rRPL, despite using a completely different
OF.

The average delivery ratio in relation to network size for the
three RPL versions is depicted in Figure 5. Our trust-based RPL
achieves a better packet delivery ratio in all cases. This can be
accredited to the availability of additional paths for packet delivery
as the network size increases and to the exclusion of misbehaving
nodes that drop packets.

4.2 Bad nodes
In the second set of simulations, we varied the number of bad nodes
between 0 and 200 while keeping the network size fixed at 1,000
nodes. The effect on network parameters is that when the number
of bad nodes increases, the number of bad paths also increases
for all the three RPL versions, as depicted in Figure 6. This is due
to the fact that bad nodes drop out all incoming traffic instead of
forwarding it to the next hop. Increasing the ratio of bad nodes has
a negative effect on the number of available (legitimate) paths. Still,
the number of bad paths in the case of tRPL is lower than those of
cRPL and rRPL. This is accredited to the detection mechanism used
by tRPL. The performance of rRPL is slightly better than that of
cRPL. The former avoids bad nodes sometimes due to the random
selection of the parent among all the available ones.

The average path length is more-or-less independent of the RPL
version used when the ratio of bad nodes is increased, as depicted
in Figure 7. This can be explained by the fact that the network size
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Figure 5: Average delivery ratio versus network size (the
more the better)

Figure 6: Number of bad paths versus number of bad nodes
(the less the better)

is always the same (1,000 nodes). However, the average path length
increases as the ratio of bad nodes decreases. This is due to the
fact that the number of long paths that contribute to an increased
average path length is actually reduced.

The average delivery ratio for all the three RPL versions as a
function of the number of bad ones is depicted in Figure 8. The tRPL
exhibits a better packet delivery ratio compared to cRPL and rRPL.
Again, this can be accredited to the wider availability of network
paths for packet transmission. The delivery ratio decreases when
the ratio of bad nodes increases; again due to the reduced availability
of paths for packet transmission.

4.3 Detection and error rates for tRPL
The tRPL is the only of the three studied RPL versions that can
detect and isolate the presence of bad nodes in the network. The
rRPL utilizes random path selection to probabilistically avoid bad

Figure 7: Average path length versus number of bad nodes
(the less the better)

Figure 8: Average delivery ratio versus number of bad nodes
(the more the better)

nodes on a per-packet basis. The classical RPL does not consider
the presence of malicious or misbehaving nodes at all.

Our simulation results are summarized in Table 2. The tRPL can
detect the presence of nearly 80% of the bad nodes after just five
simulated rounds. However, tRPL marks some good nodes as bad,
i.e., it suffers from false positives. Still, the rate is fairly low, as
depicted in Table 2. Hence, we argue that tRPL can be deployed
for effective detection and isolation of misbehaving nodes in an
RPL-based network.

4.4 Discussion of the three RPL versions
The performance of cRPL and rRPL is quite similar in terms of
numbers of bad paths and average path lengths. The additional
complexity introduced by rRPL does not bring a significant benefit
in the presence of bad nodes (intruders). In contrast, tRPL provides
better results than the two other schemes with respect to the num-
ber of bad paths, the number of bad nodes, and the average delivery
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Table 2: Detection and error rates for tRPL

Number of Number of Number of Good
Bad Nodes Bad Nodes Nodes Identified

Detected as Bad Ones
20 20 1
80 75 2
140 127 15
200 175 36

ratio. The average path length is not affected by the selection of
the RPL version. Moreover, the computations required for tRPL are
lightweight and be realized from the local up to the global level.
Thus, we do not expect a significant penalty on resource utilization
for real-world implementations of tRPL.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we studied the case of network-level attacks on RPL-
based IoT networks. We are the first to introduce a trust-based
RPL routing mechanism for such networks, building atop existing
proposals for intrusion detection.

We evaluated the performance of our proposal against both the
classical and the resilient variants of RPL. Our trust-based RPL
exhibits better performance characteristics. This is since tRPL inte-
grates a lightweight mechanism to detect and also isolate the bad
nodes from the network, resulting in better network resilience.

In the next step, we will implement tRPL, cRPL, and rRPL on
emulated and real-world IoT systems. Currently, we build a test-
bed consisting of up to 20 Z1 devices that run on the operating
system Contiki. In addition, we will be able to add an emulator for
an arbitrary number of further devices of all kinds which will allow
us to repeat our evaluations for tRPL and the two other schemes for
varying topologies. Moreover, we plan to experiment with different
trust metrics and thresholds in order to reduce the number of false
positives.

Currently, our mechanism is not actively protected against the
trust-based attacks listed in Sect. 3. Therefore, we plan to extend it
by not only considering direct trust but also trust in recommenda-
tions, see [7]. The nodes will not only build trust values about the
effective behavior of their neighbors but also about the correctness
of the neighbors’ recommendations of third parties. Then, we can
devaluate the direct trust values of nodes with a bad recommen-
dation trust value in the computation of aggregated trust values.
The Subjective Logic offers a discounting operator making it easy
to use recommendation trust in a resource-preserving way [11].
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