
Using machine learning techniques for traffic classification and preliminary

surveying of an attacker’s profile

P. Frühwirt1, S. Schrittwieser2, E. R. Weippl1
1 SBA Research, Vienna

2 St. Pölten University of Applied Sciences
pfruehwirt@sba-research, sebastian.schrittwieser@fhstp.ac.at, eweippl@sba-research.org

Abstract

The increasing complexity of systems brings up new attack
vectors and it is therefore easier to compromise systems. A
defender of a system is often forced to quickly assess the
situation and develop an appropriate defense strategy. The
most common way to protect their own networks are In-
trusion Detection Systems (IDS). IDS detect attacks either
using predefined, static signatures, or based on the behavior
of users. Existing systems are inflexible due to static and
often stale signatures and thus can be easily bypassed by
attackers.

This paper on the one hand presents the theoretical con-
cepts of detection of attackers and extends existing attack
mitigation approaches by machine learning mechanisms,
which can be used during security exercise/challenges like
the UCSB International Capture The Flag (iCTF). By
improving and combining static signatures with machine
learning approaches, a new technique of attack detection
called “Classification Voting” was developed, which reduces
the number of false positive alerts in an production en-
vironment. Our approach allows the generation of signa-
tures without dedicated domain knowledge by guided man-
ual classification of detected network packets. Based on
machine learning, new packets can be further classified us-
ing the generated model. At the same time the existing
models of other signatures can be improved by adding new
packets.

1 Introduction

Due to the growing complexity of systems in use, the num-
ber of attack vectors and backdoors raises. As a defender
it is often necessary to assess the state of the system as fast
as possible to prevent further damage [15]. An attacker on
the other side has much more time for preparation. Hence
the defender is in the weaker position concerning time. Due
to the growing amount of traffic and data, good automated
or at least semi-automated tool support is essential.

Existing solutions like intrusion detection systems only
gather information about the defender and the attacked
system itself. However, it gets more and more important
to gather knowledge about the attacker: Hence, the reac-
tion towards a more professional hacker differs from a script
kiddie, uses ready-made exploits from the internet.

Intrusion detection systems follow in most cases two dif-

ferent approaches how to detect an intruder: signature-
based or behaviour-based detection. On the one hand
behaviour-driven detection uses a profile of unsuspicious
activity and compares new traffic to this profile and has
therefore a good detection rate for external attacks, but it
is really hard to define a regular network activity, because
systems are getting more and more complex and flexible.
On the other hand there are signature-based detection sys-
tems that are easy to implement, however a set of signatures
has to be created (or bought). If these signatures are under
sampled an attacker can easily bypass the definition just by
modification of the attack signature. On the other hand if
the signature is over sampled you may block regular traffic.
Nevertheless a security professional with lots of expertise
has to define appropriate signatures.

Our approach uses a combination of these two techniques.
It enables the user to create signatures just by selecting sam-
ple traffic and deciding whether a request is unobtrusive or
suspicious. In the evaluation part is covered by a machine-
learning algorithm to create a definition of the pattern. The
challenge of this approach is to make the machine learning
process as transparent as possible and in spite of obtaining
satisfying results. To avoid aberration we introduce a new
technique called Classification voting that is described in
Section 4.6.

Based on state of the art of network-based defence
mechanism (Section 2) and existing machine learning ap-
proaches we developed theoretical concepts to improve ma-
chine learning techniques used in intrusion detection sys-
tems. We have evaluated existing concepts and assessed
the differences between these concepts differs from our ap-
proach.

In order to evaluate our theoretical concepts we devel-
oped a prototype. We used the official traffic dumps of
the international Capture the Flag (iCTF) contest [24] of
2011 [25]. Our prototype is used to automatically process
network packets in order to create machine-learning models
to classify the traffic. We trained our prototype to detect
penetration-testing tools, which have a relatively static sig-
nature in general. Furthermore we trained our system to
detect the scorebot, which is designed to be obfuscated be-
cause teams should not detected it, in order to filter all non-
scorebot traffic during contest e.g. attacks of other teams.
After creating the models we measured the classification er-
ror rate by counting wrong classified traffic (false positives).

During development and evaluation of the prototype we

gained first results and improved the classification error rate
by using state of the art machine learning methods and
applying these concepts to our theoretical models. Further
we tried to use our concept on other research fields in which
we investigate more effort in future research.

The remainder of this paper is structured as follows: In
Section 2 we take a look of state of the art network-based
defence mechanism. Based on these concepts we introduce
in Section 3 theoretical concepts for improving intrusion
detection systems and offer system design suggestions. Fur-
ther we developed a prototype to evaluate our theoretical
concepts and present our evaluation results in Section 5. Fi-
nally, we outline our results and provide an outlook of our
future research in Section 6.

2 Network-Based Defence Mecha-
nisms

Most security experts would agree on the statement that it
is impossible to build a completely secure system. There-
fore it is important to have good defence mechanisms to stay
alert for attacks. In this section we discuss state-of-the-art
approaches and give an overview of possibilities to defend a
network. Network-based defence mechanisms are an impor-
tant countermeasure, because they add an additional layer
of security to the network and therefore can minimize the
risk of attacks.

Intrusion detection systems are considered as an appro-
priate solution for network protection. These systems are
designed to actively detect and possibly prevent intrusions
by monitoring different sources like especially the network
traffic. There are different approaches how intrusions are
detected. Some systems use more or less static signatures,
others detect deviations from normal traffic (abnormality
detection). Over the past years many new detection tech-
niques have been developed. One of these new approaches
is the use of machine learning algorithms and statistical
modeling to detection intrusions.

2.1 Intrusion Detection Systems

Intrusion Detection Systems (IDS) are devices or software
components which monitor computer systems or network
traffic and look for malicious activities. In case of a policy
violation they generate reports for the management. Intru-
sion detection systems are primarily monitoring systems.
Therefore it is not necessarily guaranteed that these sys-
tems stop or prevent intrusions [11].

Intrusion detection is based on the assumption that an
intruder behaves differently compared to an unsuspicious
user in a way that can be qualified. One cannot assume
these two behaviours do not overlap. The main challenge for
an intrusion detection system is to differ between these two
types of behaviour. If the system uses a loose interpretation
(under sampling) of the intruder’s behaviour it may increase
in false positives and the intrusion isn’t detected any more.
If the system is too strict (over sampling) it may identifies
normal user traffic as intrusion and produces false negatives.

2.2 Classification

Intrusion Detection Systems can be classified as Host-Based,
Network-Based and Hybrid Intrusion Detection System.
Host-Based Intrusion Detection Systems monitors the lo-
cal activity of a computer system such as processes and log
files and therefore have deeper information about the sys-
tem itself. On the other hand the Network-Based Intrusion
Detection Systems have only access to the network. Hybrid
Intrusion Detection Systems are a combination of both ap-
proaches, which can achieve higher detection rates because
of more and more detailed information about the network
and the individual components.

2.3 Machine Learning approaches

Machine learning offers flexibility to react to new situations
and retrain to battle new attacks or intrusions. In classic
implementations of intrusion detection systems static rules
and signatures are used [21, 22]. However this approach
often fails and can easily be tricked. Therefore often ma-
chine learning approaches are used to gain better results
and more flexibility [1, 13, 17, 18, 26, 28]. Machine learning
has a high potential and in theory it could solve many prob-
lems of Internet Service Providers if they can classify traffic
in real-time. Thuy T.T. Nguyen et al. made a survey [19]
where they evaluated 18 significant works from 2004 until
early 2007 which tries to uses machine learning techniques
for real-time classification. It showed that classifiers like
decision trees or NaiveBayes can achieve high accuracy for
different types of network application traffic. The survey
demonstrated that most approaches build their classifica-
tion models on sample data during setup. However it is still
an open question how choose an appropriate test set. They
suggested a combination of classification models to avoid
false positives. In our approach we are improving this sug-
gestion by using a new technique called classification voting
(Section 4.6).

Many concepts use different protocol independent fea-
tures like packet length statistics, flow size and duration,
inter-arrival time statistics [27, 6, 10]. These techniques
have the advantage of being independent of the used appli-
cation, therefore can react to unknown protocols and not for
each application an individual model and feature set have
to be developed. However it is not possible to train for ap-
plication specific weaknesses and therefore a general feature
set is maybe to fuzzy.

David Endler is using machine learning to process events
of the basic security module auditing tool of Sun’s Solaris
operating system [7]. He showed that intrusion detection
systems can be improved by using machine learning on the
generated events of a IDS and therefore reduce false posi-
tives. This approach is limited to the functionality of the
intrusion detection system.

Chris Sinclair et al. presented an approach of using ma-
chine learning in context of network intrusion detection [23].
His approach is using decision trees and genetic algorithms
to generate rules for an intrusion detection system. This
technique generates a model without verification against an-
other data set, therefore it is hard evaluate the generated
rules. Further, this approach is very susceptible to wrong

classified instances, because the decision is limited to a sin-
gle classifier, as argued in the survey of Thuy T.T. Nguyen
et al. before.

Casey Cipriano et al. use the developed prototype Nexat
a different type of machine learning for intrusion detection
[5]. They make use of the sequence of triggered alerts of
existing IDSes for training. Nexat splits up the different
alerts and into single events and connects the alerts into
attack sessions. Basically they try to connect these alerts
using the source and destination address and a time window
to put together an attack session. After session collecting
the system learns what attacks follow after a sequence of
alerts. After training they use these models to predict the
next actions of an attacker.

Marco Barreno et al. [2] developed a framework for evalu-
ating the security of machine learning based intrusion detec-
tion systems and asked the question “Can Machine Learn-
ing be Secure?”. They claimed that an attacker may misuse
machine learning approaches to “mis-train” the system and
in that way confuse the IDS.

3 System Design and Implementa-
tion

As we have seen in Section 2, different techniques and solu-
tions of network-based defence mechanisms exist. In many
cases these systems are very complex and needs deeper
knowledge and understanding, e.g. an administrator has to
know how to create rules within an IDS. Therefore system
administrators are required to understand how to create
rules for detection of intrusions. However using signature-
based detection techniques for the system is very static and
may not be flexible enough to react to new intrusions.

Where there exists machine-learning processes, which
try to simplify this static process by using anomaly-based
detection. In our approach we try to create a new tech-
nique to generate some kind of dynamic rules by using
machine learning. The user should not notice that he
uses machine-learning, because it is quite a complicated
process, and therefore we make the selection of the machine
learning algorithm, data harvesting, learning and other
important factors of the machine learning process to
the user transparent. As mentioned in Section 2.3 there
already exist some machine learning approaches for traffic
classification. We go a step further and optimize existing
algorithms with a new technique called classification voting
(Section 4.6).

In order to evaluate our research (Section 5) we developed
a prototype, which implements the new designed workflow.
Figure 1 illustrate a schematic overview of our workflow in
IDF0 notation. As input we use network traffic, which we
want to classify. They input maybe a live traffic stream or
a stored network dump.

To gain a defined context of the network data we parse
the network stream with Wireshark in order to gather ag-
gregated data stored in XML files. Our framework uses
different parsing scripts for different kinds of network pro-
tocols and applications e.g. HTTP. Every network parsing

WEKA
(Machine Learning)

4

Wireshark

1

Application Framework

2

PostgreSQL
(Persistence)

3

Apache Wicket
(Application UI)

5

parser scripts

XML

traffic data
instances

classifier

classified instances

models

Configuration

() Website

requests

database
objects

network traffic

Figure 1: System overview

script is implemented as Lua-script, which can add listener
to tshark, a console base implementation of Wireshark. We
can automate and manipulate Wireshark processes in order
to generate this kind of XML output [12]. The application
framework validates and parses the network traffic XML in-
put and stores all network packages in the database. Each
network traffic is connected to its input package therefore if
something went wrong the framework restores the original
state and marks the input file as damaged. This mechanism
ensures integrity of the data. After successful procedure of
new instances, the framework will start a data harvesting
process. We will describe this process in detail in Section 4.

After these steps we have a set of instances, which will be
processed by the machine learning unit. In our implemen-
tation we used WEKA [20]. WEKA loads all available in-
stances with its own JDBC -Database connection and starts
the classification procedure. We will describe this process
in detail in Section 4.3.

The flow of the workflow is controlled by the framework
and in especial by the user input over the Application User
Interface. The WebUI triggers activities of the framework
and request data from it. The framework will, after suc-
cessful execution, send the data to the WebUI component.

4 Data harvesting

The data harvesting process is quite complex and involves
many different components. Figure 2 shows a schematic
overview of the harvesting process. Due to the fact that
every network connection is different we have to transform
into a common data model. Therefore we parse the net-
work traffic with wireshark and some parsing scripts writ-
ten in Lua. Wireshark offers a console-based version named
tshark which offers the possibility to add own code to ma-
nipulate the processing of the traffic. We created a lua

Wireshark Process

1

parser scripts

network traffic

XML files
Folder Parser

P1

Stream Parser

P2

working directory

single XML file

XSD definitions

available parser

Traffic Filter

P3

Persistence

3

input
package

parser
history

entities

Persistence Controller

P4

filtered entities

entities

Post Processor

P5

entities

additional entity data

entities

entities

filter set

processing
instructions

Figure 2: Data harvesting process

script, which listens to specific TCP packages, e.g. for
HTTP traffic we used the pattern tcp && http.request &&
!tcp.analysis.retransmission for HTTP requests and tcp &&
http.response &&
!tcp.analysis.retransmission for HTTP responses. The lua
scripts produces a XML file for each protocol and traffic
package. It stores all generated files in a directory.

The folder parser scans the working directory for XML
files of tshark and forwards all valid files to the concrete
stream parser. Each of the following steps is encapsulated
within a transaction. If there is an uncovered state, the
framework will automatically restore every action of the
package and will mark it as damaged. This action guar-
anties the integrity of the imported data. The stream parser
stores all important information in the database and will use
these data in further runs, e.g. if the script runs again it
will skip already successfully imported packages.

In the first step the steam parser validates the input XML
file with a XSD definition file to avoid errors caused by
tshark and the Lua parsing script. The stream parse cre-
ates for each XML entity an entity object that is analysed
by some traffic filters. Depending on the configuration the
traffic filter will drop some packages like network noise. The
persistence controller will further process the filtered enti-
ties.

The persistence controller is an abstraction of the
underlying database management system. It stores the
entities to the concrete SQL tables. Further it will do some
post processing, for example each HTTP conversation
contains one HTTP request and one HTTP response.
Each part (request and response) is stored as a single
XML entity due the fact that is not possible to create

a container with both parts in lua. The post processor
connects these two entities by finding the correct HTTP
request for a certain HTTP response with the help of the
database management system by using the TCP Session ID.

During the data-harvesting phase we try to collect as
many attributes as possible by different techniques: Col-
lection, Abstraction and Extraction.

Collection The collection method is one of the simplest
methods to gain attributes: It simply gathers different prop-
erties of a connection and uses these properties as attribute.
For example it is very easy to gain the source IP address of
a connection and use this property as attribute for further
operations.

Abstraction In many cases a simple collection of prop-
erties is to precise for machine learning (e.g. the concrete
user agent string) therefore it is important to use an ab-
stract model of the raw attribute data. In case of the user
agent string it is e.g. in most cases it is sufficient to create
an attribute “firefox” with the nominal values “yes” and
“no” instead of the concrete user agent string with OS and
browser version information.

Extraction In some cases you can gain further informa-
tion out of the combination of attributes. The extraction
technique uses some attributes as input and generates fur-
ther properties. For example we use the URI, user agent
string, connection protocol and destination port attributes
to gain a new attribute “tool usage” by mapping these prop-
erties to a list of known penetration testing tools. Further
we use this technique to gain the predecessor of an http re-
quest with the source IP, destination IP, destination port
and connection protocol.

4.1 Attributes

General Connection attributes We used the following
general attributes for every type of connection, regardless
from the used protocol: Source IP, Source Port, Destina-
tion IP, Destination Port, Connection Type (TCP, UDP or
ICMP), Connection Time, Connection close Time, Frame
ID

HTTP specific In addition to the general connection at-
tributes, it is possible to extract more attributes based on
the http protocol. We only used attributes that improve
the training result: URI and Full URI, HTTP Host, HTTP
Method, HTTP Version, User Agent String, User Agent
Abstraction (e.g. “uses firefox”:yes/no), HTTP Cookie
and HTTP Cookie abstraction (“uses cookie”:yes/no), Is
known Browser (Abstraction of user agent string; yes/no),
Is known Tool (e.g. automatic security testing tool; yes/no),
Uses path Traversal (yes/no), Uses special Characters
(yes/no), Normalized URI (URI without parameter values,
e.g.
news.php?id=20 → news.php?id=[?]), HTTP Predecessor,
Levenshtein distance of URI and predecessor URI

We use the predecessor of each HTTP request as addi-
tional attributes. This attribute helps the machine learning
process to generate knowledge about historical requests, e.g.
a tool that iterates over a web site will have a similar pre-
decessor request and a low levenshtein distance [14]. Based
on these attributes it is possible to generate better models,
i.e. request history based decisions.

4.2 Attribute Storage

Due to the fact that we don’t know which protocol we are
using and which attributes are needed, we implemented a
dynamic database schema. Basically every type of connec-
tion creates an entry in the table Connection. However in
most cases it is more efficient if we create a base table for
each protocol that inherits each column of the table Connec-
tion. We implemented a table HttpRequest for the HTTP
protocol with all basic attributes gained with the harvest-
ing method Collection (e.g. HTTP method, host, HTTP
version, etc.).

In order to add dynamically new attributes that we gain
from Abstraction and Extraction, we created a helping ta-
ble ConnectionAttributeObject that contains all available
attributes and their properties.

We define a default value for each attribute, e.g. “no”. If
we collect a different attribute value then the default value
we create a new entry in the ConnectionAttribute table.
During the creation of the SQL view with all available at-
tributes we use LEFT JOINs and replace all null -values
with the default value. Therefore there is no need to have
to save all attributes of an entity in the database.

4.3 WEKA Integration and Data Classifi-
cation

After the data harvesting process, all raw data is processed
and stored in a database management system. Each in-
stance with its attributes is stored in the database, there-
fore they can be used for learning and classification. Figure
3 shows an overview of the machine-learning process.

Before we can classify new traffic, we have to use the exist-
ing data to learn the different attacks and signatures. Dur-
ing the learning phase the classification component loads all
available instances. The user can create signatures by classi-
fying existing instances with the UI of the prototype. These
instances will be used for training and evaluation. Every
classified instance will be used as a training set. However
the user has to classify some instances to gain good results.

After manual classification by the user the framework
uses this training set to build the models. The framework
uses all available classifiers offered by the machine learning
framework WEKA [20] to create the models. Afterwards
each model is evaluated by 10-fold cross-validation. During
the optimization phase these evaluation results and their
performance are used to calculate a set of good choices for
classifier. These sets of classifiers will be used for classifi-
cation as models for the classification voting, which we will
describe later in Section 4.6.

We gained different models during the training phase.
These models are used to classify new traffic. In produc-

WEKA
(Machine Learning)

4

Classification
(Learning phase)

C1

Peristence

3

instances

entities

classification

Optimization

C2

instructions

evaluation

optimum classifier

Classification
(Processing)

C3

() Report

classifier set

optimum

user input

instance
classification

qualifier

Figure 3: Data Classification process

tive environments the framework will generate reports of
the network activity. These reports contain all positive in-
stances. For the further classification process the user can
validate the correctness of these instances. Our framework
can therefore adapt its models and create better results.

4.4 Learning and adaption

Learning and adapting behaviour is a very important char-
acteristic and ability of machine learning. Our framework
supports learning of behaviour during its training phase.
However these instances have to be classified by hand and
therefore in most cases a small feature set is used as train-
ing set which triggers more classification errors and a worse
data quality.

Data Harvesting

C0

Training

C1

instances

Optimization

C2

evaluation

model

Classification

C3

optimised/adapted modelnew
data

data

quality criteria

() Report

Figure 4: Learning and adaption process

To reduce false positives we used a new method called
classification voting. To reduce even more classification er-
rors we try to adapt the used training models by new traf-
fic. Figure 4 shows the process of learning and adopting be-
haviour. After the data harvesting procedure the framework
is trained based on some quality criteria like performance
and efficiency. Each classifier offered by WEKA has a cer-

tain time frame to compute a result. If the classifier can’t
finish within this time frame, the framework will drop this
classifier. In our implementation we used the time frame of
five seconds.

4.5 Optimization

Each classifier will validate its model with 10-fold cross-
validation and measure its performance p and classification
error rate e. These attributes are used for the optimization
phase to find a set of classifier to gain good results. The
framework determines the best n classifiers by calculating
an internal ranking value r(c) of each classifier c by the
following method:

r(c) =
ln(p ∗ 100)

(1− e)10

This rating function will penalize algorithms with bad
performance or a high error rate. Therefore it is possible
that algorithms with a bad result and good performance
will be chosen instead of a slow, good classifier. However
due to the high exponent, classifier with higher error rate
will be dropped even if they are very fast.

We use a new method called classification voting to avoid
false positives therefore it is better if we have more classifier
with a good performance instead of one optimal model with
a bad performance.

4.6 Classification Voting

In our first evaluation we used only one optimized classi-
fier for classification similar to the implementation by Wei
Li in 2007 [16], that we gained through optimization (see
Section 4.5, Optimization). We noticed that we have either
to choose between a fast algorithm with a high error rate
or a slow classifier with good results. During our optimiza-
tion phase we used a classifiers with moderate error rates
and a good performance. However it is better to use many
bad and fast classifiers instead of one good and slow one,
like the Random Forest algorithm [4, 8, 9] in most cases.
Figure 5 illustrates the voting process. Due to performance
reasons we execute all classifier evaluations asynchronous
and synchronize them after all classifier are executed.

Synchronisation

Classification

J48

VFI

OneR

IBk

LWLNBTree

DTNB

IB1

KStar

ZeroR

JRib

prediction, probability

prediction, probability

AODE

prediction, probability

Available Classifiers

......

...

Voting

asynchronous
execution

Figure 5: Classification voting process

In the first step our algorithm classifies a new instance
with all classifiers, which are used for this decision, and

calculates their probability. The user can decide, based on
the primary 10-folds Cross-validation evaluation results of
the training set, which classifiers are used. Each probabil-
ity and prediction results of the chosen classifier are used
by the voting system to gain a cumulative prediction. The
voting system is a mathematical algorithm. in the first im-
plementation iteration we used the majority prediction as a
result. In case of a draw we used the class with the higher
mean probability. However further tests showed that this
naive method sometimes produces wrong voting results. For
example we have 5 classifier with following predictions for
a new instance: yes: 51%, no: 90%, yes: 53%, no: 95%,
yes: 55%. We see that the majority decides for “yes” but
the minority is quite sure that the classification correct is
“no”. Therefore we made further improvements of the vot-
ing function.

Let xn,c denote the probability of classification of class
c ∈ C of classifier n ∈ N . A ⊆ M denotes the subset of
classifier M which classifies an instance I with class c. We
calculate the probability p(c) of class c of instance I by the
following algorithm:

p(c) =

∑
a∈A xa,c +

∑
b 6∈A(1−

∑
c′∈C∧c′ 6=c xb,c′)

|N |

The function p(c) calculates a cumulative probability for
class c taking the averages of the probability of c into ac-
count. However it uses the counter probability for all not
matching classifier. If you have only two classes like “yes”
and “no” you can use this simplified function p(c).

p(c) =

∑
a∈A xa,c +

∑
b6∈A∧c′ 6=c(1− xb,c′)

|N |

If we use this improved voting function to calculate the
predictions of the example above we can calculate the prob-
ability for “yes” by

p(yes) =
0, 51 + (1− 0, 9) + 0, 53 + (1− 0, 95) + 0, 55

5
= 0, 348

and accordantly

p(no) =
(1− 0, 51) + 0, 9 + (1− 0, 53) + 0, 95 + (1− 0, 55)

5
= 0, 652

We see that our improved voting system now decides for
“no“ against the majority result with a probability of 65,2%.

If you use only one classifier you gain performance, on the
other hand you might have problems with false positives
especially if you use fast classifier with a high error rate.
These false positives will cause wrong reports e.g. single
network packages can cause alarms. During our evaluation
we eliminated all false positives by using multiple classi-
fiers and a voting function. Note that critical decisions will
most likely have different predictions of the classifiers and
therefore will have a relatively low probability especially in
context of other observations.

5 Evaluation

For evaluation purposes we used the network dumps [25]
of the UCSB iCTF provided by the UCSB iCTF commit-

tee. The UCSB International Capture The Flag is a dis-
tributed security challenge, which goal it is to test the se-
curity skills of the participants [24]. Every team controls
their own server with different services. Each game round
(approximately every two minutes) the scorebot distributes
a fixed length string (called flag) to each service of every
team by using the service. Later the scorebot tries to collect
the distributed flags. During this period of time, the other
teams try to steal these flags by abusing and hacking the
services of the opponent teams. The UCSB International
Capture The Flag network dumps provide a good sample
for testing data because they contain a great amount of dif-
ferent types of attacks mixed with regular traffic, e.g. the
scorebot. Furthermore, the system has a limited range of
well-defined services an it is therefore easier to determine
the system status. By searching the traffic for flags, it is
possible to determine the success rate of an attack; An at-
tack is considered as successful if it contains a flag of the
opponent team.

Figure 6: HTTP Network activity during iCTF 2011

Out of the 241 GB traffic dumps we collected information
of over 6,000,000 TCP connections that we used to evaluate
our approach. Figure 6 shows the network activity based on
the HTTP protocol over the time. After parsing, validating
and harvesting the data, we received a database of about
15 GB of data sets. Due to compression, abstraction and
data deduplication of the raw data, the size of the database
used in further steps was reduced to approximately 90%.

5.1 Prediction performance

In case of intrusion detection systems, a system classifies
the traffic based on static rules and the number of detected
events. However these systems are very limited in flexibility
and as many attack patterns or methods are hard to model
by/with static rules.

Based on our system design from Section 3 we developed
a prototype for evaluation purpose. Our goal was to develop
an (semi-)automatic mechanism to create models of attack
patterns to detect those in the future. As mentioned in
the previous sections, we use machine-learning techniques
to create models and classify traffic.

We measure the prediction performance by counting all
wrong classifications and classifications that produced an
error during the prediction phase. To gain comparable re-
sults, we normalize all results by dividing the classification
error count with the amount of all instances.

For evaluation, we looked for a sample, which is non-
trivial and cannot be implemented with a static rule set:
the scorebot. The scorebot is an automated script that dis-

tributes the flags during the contest. To avoid cheating by
only allowing traffic of the scorebot and blocking all other
teams, the scorebot changes its IP-address about every 100
requests. It uses an arbitrary IP-address of a randomly
chosen team subnet-space. Further, it tries to obfuscate
properties like the user agent string. However, it is an au-
tomatic procedure, which has the same behaviour in every
round. Due to the properties of the scorebot it is hard to
define a static rule:

• The Source IP-address may change during a session

• The User Agent String is non static

– Mozilla/4.0 (compatible; MSIE 6.0; MSIE 5.5;
Windows NT 5.1) Opera 7.02 [en]

– Mozilla/5.0 (X11; U; Linux i686; en-US;
rv:1.9.0.1) Gecko/2008071615 Fedora/3.0.1-1.fc9
Firefox/3.0.1

– curl/7.8 (i686-pc-linux-gnu) libcurl 7.8 (OpenSSL
0.9.6)

– Mozilla/5.0 (Windows; U; Windows NT 5.1; en-
US) AppleWebKit/525.13 (KHTML, like Gecko)
Chrome/0.A.B.C Safari/525.13

– Mozilla/5.0 (Windows; U; Windows NT 5.1; en-
GB; rv:1.8.1.6) Gecko/20070725 Firefox/2.0.0.6

– Links (0.9x; Linux 2.4.7-10 i686)

– random character string: [a-zA-Z]10,20

• Recurring requests to the same services (maybe with
different parameters)

5.1.1 Size of the training-set

One of the important measures to evaluate machine learning
algorithms is the size of the training set. If the training set
is too small, one may receive many false positives and an
inappropriate model. On the other hand, if the training
model is too large it may take a while to generate a model
and one has o manually classify many instances for training.

Our experiments show that the training size depends on
the complexity of the signature of the model. Figure 7 shows
the classification error rate depending on the training set.
We use 2000 HTTP requests two hours after the start of
the iCTF contest. We classified the traffic to determine if
scoring bot generated the traffic.

We used a wide spread range of classifiers. We observed
a drastic improvement of performance over time. We ob-
served that the classifiers greatly differ regarding their error
rate. Therefore our classification voting method gains a bet-
ter prediction performance due to the usage of the majority
of the classification. This reduces the rate of aberrations.
As shown in Figure 8, our classification voting method will
have at least the performance as the best classification al-
gorithm.

Figure 7 showed how classification voting can improve
the classification performance by using the strength of clas-
sification algorithms and compensate their weaknesses with
the help of other classification algorithms. In some cases
it is not possible to create such a classification diversity.

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

20	 40	 60	 80	 100	 120	 140	 160	 180	 200	 220	 240	 260	 280	 300	

Cl
as
si
fic
a(

on
	 e
rr
or
s	

Training	 size	

VFI	 (misc)	 WAODE	 (bayes)	 DTNB	 (rules)	 NaiveBayes	 (bayes)	 J48	 (trees)	 ClassificaFon	 VoFng	

Figure 7: Classification errors depending on the size of the
training sets

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

16000	

200	 400	 600	 800	 1000	 1200	 1400	 1600	 1800	 2000	 2200	 2400	 2600	 2800	 3000	 3200	 3400	 3600	 3800	 4000	

Cl
as
si
fic
a(

on
	 e
rr
or
s	

Training	 size	

VFI	 (misc)	 DTNB	 (rules)	 NaiveBayes	 (bayes)	 Classifica@on	 Vo@ng	

Figure 8: Classification voting with similar classifier de-
pending on the size of the training sets

Figure 8 demonstrates such a case. We tried to identify
the traffic of the penetration testing tool DirBuster. Dir-
Buster is a tool that brute forces directories of web servers
to find hidden applications or insecure configurations, which
provide another attack vector. DirBuster is very simple to
detect, because it uses the same URI pattern every time and
generates many “404 Page not Found” responses. Due to
the relatively low complexity of the signature of DirBuster,
most machine learning classification methods will generate
similar results. Our results suggest, the improvements of
the classification voting mechanism are very limited, since
the different classification algorithms may generate similar
models. However, our experiments showed that classifica-
tion voting is at least as good as the best of the used algo-
rithms, by exploiting the advantages of several classification
results combined into one model as described in Section 4.6.

5.1.2 Classification algorithms

According to our system design in Section 4.5 we evaluate
all available classifiers. Therefore, we generate a model for
each classifier and evaluate it with a 10-fold cross-validation
and measure its performance. If a classifier does not deliver
a result within a time frame of five seconds, it is ignored.
As in the example described above, we try to detect the
scorebot with the help of machine learning. We have used

all available classifiers offered by WEKA with a training set
of 2000 instances containing over 1500 positive instances of
the scorebot. Figure 9 shows the distribution of the different
classifiers.

60,00%	

65,00%	

70,00%	

75,00%	

80,00%	

85,00%	

90,00%	

95,00%	

100,00%	

0	 0,5	 1	 1,5	 2	 2,5	 3	 3,5	 4	

Cl
as
si
fic
a(

on
	 p
er
fo
rm

an
ce
	

Performance	 (in	 seconds)	

Figure 9: Performance and evaluation of different classifi-
cation algorithms

We observed that many classifiers built a good model with
a classification performance of 95% and above. However, we
use only five or less algorithms for classification voting. In
our example, we marked the chosen algorithms in red.

The results showed that many classification algorithms
learn very quickly and gain good results by evaluation with
the training set. However, it is important that these classi-
fiers produce good and reliable results during classification
of new traffic. Therefore, it is better not to use the best
classifier, but to choose faster algorithms. Instead we have
chosen faster algorithms with good results and reduce aber-
rations by voting.

5.1.3 Detection of penetration testing tools

To simulate real-life scenarios, we train our prototype to de-
tect the most popular automated penetration testing tools.
We choose a mix of general web scanner like Nikto and tools
that are specialized to certain vulnerabilities (e.g. sqlmap).
Table 1 shows a list of the tested tools, their classification
results and the needed size of the training set to guarantee
an adequate classification performance.

OWASP DirBuster Project DirBuster is a Java appli-
cation which is designed to brute force directories and
unsecurd files (e.g. configuration files) on web servers.
It tries to guess the URIs of files or directories by us-
ing common file names. The detection of this tool is
quite simple, because it uses a static user agent string
containing the version of the tool (DirBuster-1.0-RC1
[...]).

Burp Suite Burp is a penetration tool for testing of web
applications. Burp offers different components like a
proxy, spider, scanner, intruder tool, repeater tool and
sequencers. The user has full control over the soft-
ware and can define its own test cases and parameter.
Burp uses plain TCP streams without any unnecessary
headers or information (basic configuration), because
it tries to be as stealthy as possible. Due to this fact,
it is very hard to generate a classification model to de-
tect this tool, because you do not have a defined set of

test cases and no additional identifier like a user agent
string.

Nessus Nessus is a commercial vulnerability scanner. It
can monitor different hosts and scan them for security
flaws e.g. malware and outdated software. It further
can scan a web server for security flaws like Cross-Site
Scripting or SQL Injections. The detection of this tool
is very complex, because it used not a static signature
like other tools. However one can identify Nessus by
its payload, because every test contains somewhere the
keyword nessus. If the test set is large enough, it is
still possible to train the algorithms to detect this tool
by learning all its test cases.

sqlmap sqlmap is an open source penetration testing
framework that scans a web site automatically for dif-
ferent database vulnerabilities e.g. SQL injection flaws.
It uses a wide range of patterns and techniques to de-
tect security flaws. It supports all popular database
management systems. The detection of this framework
is quite simple, because it uses a static user agent string
(sqlmap/1.0-dev (http://sqlmap.org)).

Nikto Web Scanner Nikto is an Open Source web scan-
ner that tests a web server for multiple items, like out-
dated version or common configuration flaws. This tool
was not designed to be stealthy, therefore it is quite
simple to identify the requests by the user agent string
(Mozilla/5.00 (Nikto/2.1.5) (Evasions:None)
(Test:XXXXXX)). However Nikto adds the number of
the test to the user agent string, therefore the classi-
fier have to learn each test or use an abstract model of
the user agent string which does not contain the test
number.

Tool Complexity (Signature) Training size Success rate
DirBuster low 10-50 high (99%)
Burp Suite none (plain TCP) 5000+ low (40%)
Nessus complex 5000+ medium (85%)
sqlmap low 10-50 high (99%)
Nikto low/medium 10-50 high (95%)

Table 1: Detection of different penetration testing tools

The quality of the generated model strongly depends on
the attribute selection and the provided information. The
Burp Suite doesn’t offer any additional information like
HTTP Header, because it is using plain TCP connection,
therefore it is very hard to generate an adequate model. In
contrast Nessus uses different predefined test cases, which
can be used to create some kind of a behavior model. If
one run the tool on a testing system to capture the traffic,
it is possible to create a model of all included test cases.
This model can detect all used test cases in a production
environment therefore the results are quite good even if the
signature is not trivial. This example demonstrates the ad-
vantages of our approach, because it is very hard to create
a signature for Nessus without a simple characteristic like
the user agent string (e.g. like DirBuster).

Figure 10 visualizes the classification performance of the
different classifier during training phase. Penetration tools

60%	

65%	

70%	

75%	

80%	

85%	

90%	

95%	

100%	

0	 0,5	 1	 1,5	 2	 2,5	 3	 3,5	 4	 4,5	 5	

Cl
as
si
fic
a(

on
	 p
er
fo
rm

an
ce
	

Performance	 (in	 seconds)	

Nessus	 Nikto	 Burp	 Suite	 DirBuster	 sqlmap	

Figure 10: Classification performance on different penetra-
tion testing tools

with a simple signature e.g. a fixed user agent string are
easy to learn, therefore fast and good classifiers are easy to
find. Nevertheless there are tools like Burp that obfuscate
their traffic. Due to their obfuscation, it is very hard to cre-
ate an adequate model during the training phase. Therefore
the models are fuzzy and can be improved with classification
voting to avoid false positives.

5.2 Prototype performance

Performance is an important factor of implementing intru-
sion detection systems. If the system is too slow it may
cause connection drops or bad latency. Therefore, it is im-
portant that such a system makes quick decisions. In our
test setup, we used 10.000 new connections. As before, we
tried to detect the scorebot with five different classifiers
using classification voting. After optimization, the system
automatically picked five algorithms (see Section 4.5): VFI,
HyperPipes, NaiveBayesUpdateable, OneR and J48.

0	

0,1	

0,2	

0,3	

0,4	

0,5	

0,6	

0,7	

0,8	

0,9	

1	

1	 2	 3	 4	 5	

pe
rf
or
m
an

ce
	 (i
n	
se
co
nd

s)
	

first	 run	

second	 run	

Figure 11: Classification performance of the framework

Figure 11 shows the performance of this set of classifiers.
Our result suggest that the slowest part of classification is
the creation of the model, which has to be done for all five
classifiers. The system has to learn from the training set in
order to classify the new traffic. This step has to be done
once and can be reused later. Therefore, our prototype
stores the generated model in a cache in the file system.
Once the system learned the behaviour of the scorebot, the
classification is very fast, even if we apply five different clas-
sifiers instead of a single one. Note that the performance of
the learning phase strongly depends on the certain classi-
fier. Therefore it is very important to pick faster classifiers
in order to guarantee a good performance.

5.2.1 Configuration Set

In our evaluation section we have evaluated the traffic
dumps of the iCTF contest of 2011 with a total size of
241 GB traffic with over 6,000,000 TCP connections dur-
ing a time span of 9 hours. The traffic was captured by the
game organizers using the eth interface. During the contest
there were different peaks with about 18k HTTP request
per minute that have been analyzed.

These traffic data was analysed by a MacBook Pro ”Core
i7” 2.2 15” Early 2011 with 8 GB RAM. After generating
the test set the traffic was evaluated in real-time with an
average delay of about 15ms. The main bottle neck was
the generation of the test set that may take a long time
depending on the size of the test set.

5.3 Limitations

Machine Learning is quite depending on the training set
and the chosen algorithm. We propose a new approach
that is independent of the knowledge of the system and
the concrete machine learning algorithms. This enables a
fast classification without expert knowledge. However it is
a quite limited factor to generation of the test set. The
trained model is evaluated against the a test set, but if the
system changes over the time the rate of false positives may
increase and the system has be trained again. The proposed
method is quite useful in a static environment like a capture
the flag contest where the system is limited and static. In
these environments it is often important to have some kind
of heuristics that overs a fast was way of create a preliminary
profile of an attacker’s profile and use this survey in a later
step for suitable defence strategy.

Moreover with a small training set the generated model
is often not suitable to the real system. Therefore a larger
training set is mandatory for a reasonable result. While it
is quite obvious that a larger training set may generate a
better model, however you have to classify the traffic by
hand which take a while in larger environments and slows
down the initial results.

6 Conclusion and Perspectives

This paper provides an overview of existing network-based
defence mechanisms and explains how machine learning can
be used to improve existing techniques to achieve better de-
tection rate. This paper explains the importance of machine
learning in the area of intrusion detection systems and sums
up the current research in this field.

6.1 Contributions

The purpose of this study is to evaluate the applicability
of machine learning in network traffic classification. We in-
troduced a new approach for signature-based detection in
combination with behaviour-based detection. However our
implementation reduces the complexity and the required
knowledge to generate new signatures based on decisions on

sample traffic. We used state of the art machine learning al-
gorithms for packet classification. This process is transpar-
ent to the user, therefore no special knowledge about data
mining is needed. To reduce false positives we introduced
a new technique called classification voting. By using dif-
ferent classifiers and a solid majority voting mechanism we
gain significant better results than using just one classifier.
We use an automatic learning and optimization process in
order to generate models for classifications of new network
packets. The results of this evaluation show that it is feasi-
ble to learn patterns and use these patterns for classification
of new traffic.

6.2 Future Research

We have shown that it is possible to classify new traffic by
using machine learning techniques. In many cases it is often
very helpful as defender to know what an attacker will do
in his next steps. Machine learning approaches offers many
meta information which can be used for predictions of the
next steps of an attacker.

Other research by Steven M. Bellovin showed that is pos-
sible to count the NATed-Hosts [3]. Our approach doesn’t
necessarily use IP addresses in order to determine a host.
We want to extend our existing approach to cluster traffic
to split up traffic based on different attributes. Due to the
fact that we are using different attributes than the IP ad-
dress it would be possible to count the hosts behind a NAT
with machine learning.

By using existing information gained by machine learning
we want to create attack profiles based on traffic packets of
one host. These profiles can be used to support the ad-
ministrator with his decision about the next defence steps
against intruders.

References

[1] I. Androutsopoulos, J. Koutsias, K. V. Chandrinos,
G. Paliouras, and C. D. Spyropoulos. An evaluation
of naive bayesian anti-spam filtering. arXiv preprint
cs/0006013, 2000.

[2] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and
J. Tygar. Can machine learning be secure? In Pro-
ceedings of the 2006 ACM Symposium on Information,
computer and communications security, pages 16–25.
ACM, 2006.

[3] S. M. Bellovin. A technique for counting natted hosts.
In Proceedings of the 2nd ACM SIGCOMM Workshop
on Internet measurment, pages 267 – 272. ACM, 2002.

[4] L. Breiman. Random forests. Machine Learning,
45(1):5–32, October 2001.

[5] C. Cipriano, A. Zand, A. Houmansadr, C. Kruegel,
and G. Vigna. Nexat: a history-based approach to
predict attacker actions. In Proceedings of the 27th
Annual Computer Security Applications Conference,
pages 383–392. ACM, 2011.

[6] D. Endler. Intrusion detection. applying machine learn-
ing to solaris audit data. In Computer Security Ap-
plications Conference, 1998. Proceedings. 14th Annual,
pages 268–279. IEEE, 1998.

[7] J. Erman, A. Mahanti, M. Arlitt, I. Cohen, and
C. Williamson. Offline/realtime traffic classification us-
ing semi-supervised learning. Performance Evaluation,
64(9–12):1194–1213, October 2007.

[8] T. K. Ho. Random decision forests. In Proceedings of
the Third International Conference on Document Anal-
ysis and Recognition, volume 1, pages 278–282, August
1995.

[9] T. K. Ho. The random subspace method for construct-
ing decision forests. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(8):832–844, Au-
gust 1998.

[10] M.-Y. Huang, R. J. Jasper, and T. M. Wicks. Large-
scale intrusion detection framework based on attack
strategy analysis. In Computer Networks: The Inter-
national Journal of Computer and Telecommunications
Networking, pages 2465–2475, December 1999.

[11] R. A. Kemmerer and G. Vigna. Intrusion detection:
a brief history and overview. Computer, 35(4):27–30,
2002.

[12] U. Lamping, R. Sharpe, and E. Warnicke. Wireshark
User’s Guide for Wireshark 1.9, 2004–2012.

[13] A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and J. Sri-
vastava. A comparative study of anomaly detection
schemes in network intrusion detection. In Proceed-
ings of the third SIAM international conference on data
mining, volume 3, pages 25–36. Siam, 2003.

[14] V. I. Levenshtein. Binary codes capable of correcting
deletions, insertions and reversals. In Soviet physics
doklady, volume 10, page 707, 1966.

[15] G. Levitin. Optimal defense strategy against inten-
tional attacks. Transactions on Reliability, IEEE,
56:148–157, March 2007.

[16] W. Li and A. W. Moore. A machine learning approach
for efficient traffic classification. In Proceedings of the
15th International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication
Systems, pages 310–317, 2007.

[17] Y. Liao and V. R. Vemuri. Using text categorization
techniques for intrusion detection. In Proceedings of
the 11th USENIX Security Symposium, pages 51–59.
USENIX Association, 2002.

[18] S. Mukkamala, G. Janoski, and A. Sung. Intrusion
detection using neural networks and support vector
machines. In Neural Networks, 2002. IJCNN’02. Pro-
ceedings of the 2002 International Joint Conference on,
volume 2, pages 1702–1707. IEEE, 2002.

[19] T. Nguyen and G. J. Armitage. A survey of techniques
for internet traffic classification using machine learning.
Communications Surveys & Tutorials, IEEE, 10(4):56–
76, 2008.

[20] U. of Waikato. Weka 3: Data Mining Software in Java,
Sept. 2012.

[21] V. Paxson. Bro: a system for detecting network intrud-
ers in real-time. Computer Networks, 31(23-24):2435 –
2463, 1999.

[22] S. D. Shanklin, T. E. Bernhard, and G. S. Lathem. In-
trusion detection signature analysis using regular ex-
pressions and logical operators, Nov. 26 2002. US
Patent 6,487,666.

[23] C. Sinclair, L. Pierce, and S. Matzner. An application
of machine learning to network intrusion detection. In
15th Annual Proceedings Computer Security Applica-
tions Conference, pages 371–377. IEEE, 1999.

[24] G. Vigna. The 2010 international capture the flag com-
petition. Security & Privacy, IEEE, 9(1):12–14, Jan.-
Feb. 2011.

[25] G. Vigna. ictf 2011 traffic capture.
http://ictf.cs.ucsb.edu/data/ictf2011/pcaps/, Septem-
ber 2011. [Online; accessed 05.04.2013].

[26] L. Wehenkel. Machine learning approaches to power-
system security assessment. IEEE Expert, 12(5):60–72,
1997.

[27] N. Williams, S. Zander, and G. Armitage. A prelim-
inary performance comparison of five machine learn-
ing algorithms for practical ip traffic flow classification.
ACM SIGCOMM Computer Communication Review,
36(5):5–16, Oktober 2006.

[28] D.-Y. Yeung and C. Chow. Parzen-window network
intrusion detectors. In Pattern Recognition, 2002. Pro-
ceedings. 16th International Conference on, volume 4,
pages 385–388. IEEE, 2002.

