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Abstract

Databases contain an enormous amount of structured data. While the use of forensic analysis on the file system level
for creating (partial) timelines, recovering deleted data and revealing concealed activities is very popular and multiple
forensic toolsets exist, the systematic analysis of database management systems has only recently begun. Databases
contain a large amount of temporary data files and metadata which are used by internal mechanisms. These data
structures are maintained in order to ensure transaction authenticity, to perform rollbacks, or to set back the database
to a predefined earlier state in case of e.g. an inconsistent state or a hardware failure. However, these data structures
are intended to be used by the internal system methods only and are in general not human-readable.

In this work we present a novel approach for a forensic-aware database management system using transaction-
and replication sources. We use these internal data structures as a vital baseline to reconstruct evidence during a
forensic investigation. The overall benefit of our method is that no additional logs (such as administrator logs) are
needed. Furthermore, our approach is invariant to retroactive malicious modifications by an attacker. This assures
the authenticity of the evidence and strengthens the chain of custody. To evaluate our approach, we present a formal
description, a prototype implementation in MySQL alongside and a comprehensive security evaluation with respect to
the most relevant attack scenarios.
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1. Introduction

Common ACID-compliant Database Management Sys-
tems (DBMS) provide mechanisms to ensure system in-
tegrity and to recover the database from inconsistent states
or failures. Therefore they contain a large amount of in-
ternal data structures and protocols. Their main purpose
is to provide basic functionality like rollbacks, crash recov-
ery and transaction management, as well as more advanced
techniques like replication or supporting cluster architec-
tures. They are solely intended to be used by internal
methods of the system to ensure the integrity of the sys-
tem.

Since databases are typically used to store structured
data, most complex systems make use of at least basic
database techniques for forensic analysis. Thus, when
investigating an arbitrary system, standardized forensic
techniques targeting the underlying database allow an in-
vestigator to retrieve fundamental information without hav-
ing to analyze the (probably proprietary) application layer.
Database forensics support efficient forensic investigations
in order to e.g. detect acts of fraud or data manipulation.
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However, little attention has been paid on the enormous
value of internal data structures to reconstruct evidence
during a forensic investigation.

To illustrate the need for guaranteeing that a database
is unaltered, the following questions may be useful in the
course of some digital investigations:

• Was a data record changed in a certain period of
time and at what exact moment?

• Was data manipulated in the underlying file system
by bypassing the SQL-interface?

• What statements were issued against the database
in a given time frame?

• How have manipulated data records been changed
with respect to the time line?

• What transactions have been rolled back in the past?

In this paper, we propose a novel forensic-aware database
solution. Our approach is based on internal data struc-
tures for replication and transaction that are used by the
database for crash recovery. They are in general not human-
readable and intended to be read and used only by inter-
nal methods of the system. The overall benefit of our
method is that no log files such as administrator logs are
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needed in order to create an entire audit trail as a pre-
incident security mechanism. Furthermore it can be used
as a post-incident method to locate unauthorized modifi-
cations. Our approach is feasible for all ACID-compliant
DBMSs, because it solely relies on the standard replica-
tion and transaction mechanisms. In addition to that, our
approach aims at securing these data structures against
retroactive malicious modifications in case of an attack
scenario to guarantee the authenticity and integrity of the
reconstructed forensic evidence. To demonstrate the fea-
sibility of our approach we provide a formal description
and present a prototype implementation in MySQL. Fur-
thermore, we provide a comprehensive security evaluation
to demonstrate the benefits for system security and the
integrity of the forensic evidence.

The remainder of this paper is structured as follows:
Section 2 discusses related work. Section 3 provides a de-
scription of our approach. In Section 4 we present a show-
case implementation of our approach based on MySQL. In
Section 5 we evaluate our solution with respect to security
and applicability. Finally, Section 6 concludes our work.

2. Related Work

Due to the ever rising importance of incorporating com-
puter systems and equipment in investigations, computer
forensics is an emerging field in IT-Security [1]. In this
section, we present related scientific work with respect to
database forensics and secure logging.

2.1. Database Forensics

In digital forensics, log files on the operation system
level have been used as a vital source to collect evidence in
the last decades. Still, as several authors demonstrated in
the past, the database layer is unpopular when it comes to
forensic exploitation, even though it constitutes an integral
part of enterprise assets.

In 2009 Martin Olivier provided a thorough review on
the then current state of the art in research on database
forensics [2] and compared it to the then state of the art
of file forensics. Five years later the situation has not
changed much.

However, the amount of literature in the area has in-
creased in recent years compared to what was available
back then. The topic has been featured at the IFIP WG
11.9 meetings in recent years. The papers featured cov-
ered a range of topics relating to database forensics. Bey-
ers et al. discussed the creation of a method to sepa-
rate the different layers of data and metadata to prepare
a database management system for forensic examination
[3]. In a similar vein, Fasan et al. demonstrated how a
database reconstruction algorithm can be utilized to re-
construct a database allowing an examination to be per-
formed [4]. Pieterse et al. discussed the various techniques
that can be used to hide data within a database caused by
the complexity of databases and the lack of forensic tools

with which to examine databases [5]. Lalla et al. described
a model for investigating computer networks through net-
work log files and how the examination of said files could
reveal concealed activity [6].

The Digital Investigation Journal has published two
papers on database forensics in the last five years: Mar-
tin Olivier describes the pertinent differences between file
systems and databases and how file system Forensic tech-
niques could possibly be applied to database forensics. The
paper also attempts to highlight potential areas of research
within database forensics [2]. In 2012 Fasan et al. pub-
lished an extended version of the respective IFIP publica-
tion [7].

Additionally, in [8] the authors discussed research chal-
lenges in database forensics and regret the lack of attention
to this field until now. Their main concern lied in the ab-
sence of practical tools available for forensic analysts. In
a very recent work [9], the authors aimed at developing
practical techniques to exploit the database layer. One of
their techniques aims at providing a better reconstruction
method for changed data, another method focuses on pro-
viding confirmative evidence on data stored in a database.
Furthermore, the authors emphasized the absence of in-
depth research regarding database forensics.

2.2. Using Database Internals for Forensic Investigations

In a student work in 2005 [10] it was shown that data
stays persistent in the files system layer when using MySQL
or PostgreSQL. This work was extended in two subse-
quent papers [11, 12], both focussing on privacy aspects
in database systems. In these papers they pointed out
where data is preserved inside the internal structure of
the DBMS: Table storage, the transaction log, indexes and
other system components.

In a series of practical resources [13, 14, 15, 16, 17, 18,
19, 20], Litchfield demonstrated the possibilities of recov-
ering data from the redo log, dropped objects and other
sources for Oracle 10g, release 2 running on a Windows
server.

In [21] an analogy to file carving targeting MySQL
databases based on internal data files was presented, i.e.
recovering stored data, even if it is not available anymore
via the SQL-interface.

Recently, new techniques to exploit internal log files for
forensic purposes were developed: In [22] the authors de-
veloped a forensic approach based on data stored in the
internal redo logs used for rollbacks and undos. They
demonstrated an efficient way to extract simple INSERT,
DELETE and UPDATE statements, including eventually
deleted information. Furthermore, they analyzed the over-
all structure of these redo logs. An enhanced reconstruc-
tion of data manipulation queries is presented in [23].

On related terms, in [24] the authors outlined the need
to develop forensic-aware databases that allow an efficient
and provable extraction of forensic information during in-
vestigations in order to develop SOX-conforming database
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applications. Furthermore, the authors developed a new
logging strategy based on the underlying data structure of
database indexes in [25] as a first step towards a forensic-
aware database.

2.3. Versioning and Archiving Mechanisms for Databases

Versioning and Archiving is often associated with the
generation of backups, still there is a major difference be-
tween these concepts. Backups are usually not designed
for efficient retrieval of past states of single records, since
their main purpose lies in providing an exact copy of a
former overall snapshot that can be played back efficiently
as a whole. This especially holds true for real-life imple-
mentations using incremental backups.

Researchers have devised a large range of tools for the
versioning of data that preserve complete histories with
query capacities [26, 27, 28], but archives and temporal
databases are rarely used in practice. The versioning is
usually implemented directly in the application layer or in
the middleware. The approach outlined in this paper is
fundamentally different to the problem of Versioning and
Archiving, since the main purpose of our approach lies
in the verification of the actual data in the database and
not in the restoration of former states. This is especially
important, since in this approach not all data required for
restoration needs to be stored for providing a verified snap-
shot. Furthermore, Versioning and Archiving do not pro-
vide means against data tampering per se, they only allow
simple fallback to a previous state that may, depending on
the assumptions of the data owner, be untainted.

2.4. Log File Integrity and Secure Logging

In [29] Schneier et. al. describe a method to provide
forward secrecy to log entries, making it impossible for the
attacker to read any log entry generated before the ma-
chine was compromised. Furthermore, this approach de-
tects modifications and removal of log entries. The main
idea behind this approach lies in making each log entry
depending on the previous ones by applying a hash chain.
Contrary to our approach, the one proposed here addi-
tionally encrypts the logged data. Further approaches can
be found in [30] and [31]. This is not feasible for our ap-
proach, since the internal data structures that are utilized
in this paper are not designed for logging, but need to
stay readable to the DBMS in order to serve their main
purposes.

Regarding log file integrity, Marson et. al. developed
an approach for practical secure logging in [32]. Outlin-
ing the importance of log files for forensic investigations,
the authors discuss the problem of log authentication of lo-
cally recorded logs: In case of an intrusion, mechanisms are
needed to protect the collected log messages against a ma-
nipulation by an intruder. The authors propose two main
requirements: (i) These mechanisms need to be forward-
secure and (ii) they need to be traceable in order to enable
the auditor to verify the integrity and especially the order

of the log entries. The authors proposed the seekable se-
quential key generator that fulfills both requirements and
can be applied directly in logging.

3. Chained Witnesses Approach

In this section we outline the fundamentals of our chained
witnesses approach followed by a brief discussion of the se-
curity requirements.

Basically, every ACID-compliant DBMS needs to fulfill
requirements like transaction safety, replication and roll-
backs in order to ensure atomicity and consistency. There-
fore, the relevant data is stored in internal data structures.
If these data structures could be changed in a way to pro-
tect their authenticity, this would constitute a vital source
for forensic investigations. To this end, we provide an ap-
proach that prevents undetected manipulations of these
internal mechanisms. Therefore, it assures the authentic-
ity of these information vaults as witnesses in course of
forensic investigations.

3.1. Functional Prerequisites

In this section, we present the requirements on which
our approach is based.

3.1.1. Internal Data Structures

Nowadays all major database management systems pro-
vide mechanisms to recover from inconsistent states or in-
ternal failures, rollbacks, or to provide distributed states
within a short period through replication.

Their generic implementation can further be used to
implement internally signed log files. Every large database
management system utilizes internal log files for crash re-
covery, e.g. Oracle [33] or Microsoft SQL-Server [34], that
can be used to implement signed log files to verify the
integrity and authenticity of stored data. Also the repli-
cation protocol can be used for our purpose.

MySQL transaction logs[35] in general consist of redo-
and undo logs. The purpose of redo logs in general is to
apply changes that were made in the memory, but where
not flushed to the permanent table records. They are used
in order to recover the database from an inconsistent state
provoked by a crash. Undo logs are used in case a user does
not complete a transaction with a commit or rollback to
undo the previously executed actions. Most database man-
agement systems use different internal data structures to
ensure the authenticity of the written data. MySQL repli-
cation basically relies on binary logging. The updates and
changes are treated as events and applied to the slaves
based on the assumption that the master is ”dumb”. In
Oracle[33], crash recovery is performed by means of redo
log files. Oracle applies redos automatically without user
intervention. After the crash of a single instance or the en-
tire database cluster, these redo logs are applied to restore
the database. Other ACID-compliant DBMS solutions,
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such as MSSQL[34], IBM DB2[36] and Teradata[37] pro-
vide similar mechanisms. In the following, we outline the
most significant differences between the transaction mech-
anism data and the data replication protocol.

Transaction mechanism. The transaction mechanism is mainly
used to facilitate rollbacks and undos to guarantee atom-
icity. Therefore, it contains all the required information to
restore former versions of the data, but it does not store
information on events that cannot be undone by a roll-
back, such as changes to table structures, general Data
Definition Language(DDL) commands or changes to large
objects (cf. 5.4).

Data Replication protocol. The data replication mecha-
nism stores data in order to mirror the whole database
from a master instance to so-called slave or replication
instances, usually in order to implement a redundant stor-
age. Hence, the information stored in this data structure
is complete in the sense that the logical structure and the
content of the databases is completely identical, also in-
cluding more sophisticated information objects like large
objects and metadata (e.g. session information, times-
tamps, etc.).

Our Chained Witnesses approach is based on the trans-
action and replication logs discussed in this section. The
aim of our approach is to implement an audit trail of these
internal mechanisms against external modification, even
by the database administrator. Our approach works with
both mechanisms, in Section 4 we present a prototype im-
plementation based on MySQL.

3.1.2. Authenticity

Since the database replication and transaction mecha-
nisms contain data that is relevant for forensic investiga-
tions, it is of the utmost importance to assure the authen-
ticity and integrity of this data. Furthermore, tampering
with the database replication may not only thwart foren-
sic investigations, but will also provoke inconsistencies be-
tween the master database and the slaves.
To enable for timeline analysis, a timestamp is added to
each information fragment (e.g. an executed query). This
timestamp enables the reconstruction of the sequence of
changes. In addition to that, it yields a method to align
the order via timelines derived from logging mechanisms
or events on the (file) system.

For a forensic analysis and to assure consistency of
transmitted data between the master and the slaves, data
integrity and authenticity must be assured. In order to
achieve this, we adapt an approach involving chained hashes
based on secure logging (see 3.4).

3.2. Formal Description

Our formal framework works independently from the
actual source of the forensic information, i.e. regarding
the data sources outlined in Section 3.1.1, the approach
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Figure 1: Hash chain on information fragments

can be applied to any arbitrary internal mechanism and
log.

We assume that our DBMS is running on an untrusted
system S. Let n be the number of data fragments from our
source and Di denote the ith data fragment (i ≤ n) stored
by the respective internal mechanism at time ti on S.

Let R be a cryptographically secure pseudo-random
number generator (CSPRNG) that was originally initial-
ized with a secret seed s that is known by a trusted third
party T and that is not known to S. Thus R has to gener-
ate random values that pass statistical randomness tests,
satisfy the next-bit test and has to withstand state com-
promise extensions, so that an attacker is not able to recon-
struct previous results based on a known value, especially
not the secret seed s. Following, ri denotes the value of
the ith iteration of R.

Furthermore, let H denote a cryptographic one-way
hash function. In our approach we assume that the hash
function H and the pseudo-random number generator R

are secure.
In order to guarantee the authenticity of the informa-

tion stored in our internal mechanism, each data fragment
is appended with time information and a witness wi con-
taining the hash of it’s data Di, together with the cur-
rent iteration of the pseudo-random number generator ri,
a timestamp holding ti and the witness of the previous
data fragment wi−1 (see Figure 1). More precisely, this
can be expressed as:

wi = H(wi−1||Di||ti||ri)

where || denotes string concatenation. We call the tuple
(ti, wi) the signature of Di and the tuple (Di, ti, wi) the
verifiable data set of the ith data fragment. The set of all
n such tuples we call the verifiable data log.

In the initialization phase, e.g. during installation, a
trusted third party T selects the random seed s and subse-
quently generates the first output r0 of the random number
generator, the first witness w0 is defined as w0 = H(r0).

3.3. Verification

In this section, we propose a workflow for the verifi-
cation of the authenticity of the stored data as shown in
Figure 2. Each file change is on the one hand written to
the data storage and on the other hand to the internal data
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structures used for transaction management and/or repli-
cation. Therefore all changes are documented and can be
used to calculate the current state starting from an older
one (e.g. a backup) - a common practice during crash
recovery.

untrusted 
environment

signed
binary logDatacurrent

Data backup

Data current

reverse
execute

verify 
integrity

Figure 2: Verification of the authenticity of data

The verification system reads the verifiable data log in
reverse order and verifies the witness of the data set using
the secret initial vector of the random generator. If the
witness is not valid, the verifiable data set was manipu-
lated. After executing all data sets to the old state of the
database, it is possible to compare the current state with
the calculated state byte-wise. This uncovers all changes
that were made directly in the file system. Irreproducible
hash values show manipulations of the internal data stor-
age mechanisms and can thus be used for detection.

This workflow verifies the authenticity of the database
management system and automatically shows unautho-
rized changes that can be used for further investigations.
Furthermore, besides revealing tamperings with the log, it
also shows the exact position of the manipulation in the
file system, as well as the changes introduced by the ma-
nipulation.

3.4. Security Requirements

Forward Secrecy. A key-agreement protocol is based on a
set of long-term keys to derive session keys. The protocol
possesses the property of forward secrecy, if it is not possi-
ble to deduce past session keys in case one of the long-term
keys is compromised. Forward secrecy is often targeted in
cryptographic applications, e.g. [38] and [39]. This fea-
ture is required so that a successful attacker cannot alter
evidence of events from before the system was corrupted.

Secure Logging. Logging information must be secured in
order to be suitable for forensic analysis, especially if the
results of the investigation are used in court [40, 41]. Dur-
ing the last decades, several mechanisms for achieving un-
tampered log files were proposed. The work by Schneier [29]
relies on a chaining mechanism (see 2.4). Due to the con-
struction of the verifiable data log, the use-case for secure
logging is similar to our approach.

Cryptographically Secure PRNG. Our approach heavily de-
pends on CSPRNG and has to fulfill the following proper-
ties:

• The output of the CSPRNG has to be reasonablly
long enough and has to pass statistical randomness
tests.

• The CSPRNG has to satisfy the next-bit test, which
means that the first k bits of a random sequence
given, there is no polynomial-time algorithm that
can predict the next bit ((k+1)th) with a probability
of success better than 50% [42].

• The CSPRNG has to withstand state compromise
extensions. Therefore it is impossible to reconstruct
a sequence of random numbers prior to the revelation
of a part or all of its states of the CSPRNG.

Hash Function. In order to provide witnesses that cannot
be constructed by an adversary, the hash function used
to construct them needs to be a cryptographic hash func-
tion. This includes resistance against preimage and second
preimage attacks, as well as collision resistance.

Further details on these requirements can be found in
Section 5.1.1.

3.5. Handling closed source DBMSs

Many relevant state of the art database management
systems do not publish the source code. Thus, in order to
apply our approach as outlined in Section 3, the vendors of
these database management systems would need to extend
their existing code bases. While this is highly desirable,
it may collide with other interests of the vendor. Thus,
we present a modification for our approach that does not
rely on code changes. Nevertheless, this modification is
currently limited to using data derived by the data repli-
cation protocol. Figure 3 provides an overview on this
closed source modification.

The main difference is that signing the data replication
entries and generating the respective witnesses is not done
on the master node. The data replication traffic is cap-
tured when it is dumped to the slave nodes and the signing
procedure is applied on the transport or session layer: The
data stream is simply chopped into chunks of a fixed length
appended by the signature. For verification, the witnesses
of the signed traffic are checked and the traffic is replayed
to a slave in a trusted environment. This slave is in the
original state of the time when the traffic was collected.
The slave applies the changes derived from the traffic and
compares the resulting state with the state of an arbitrary
slave node from the untrusted environment. We consider
deviations from this state as evidence for modifications.

Our modification is largely depended on the particular
DBMS and the underlying infrastructure. This covers the
simulation during replay to the slave in a trusted environ-
ment, such as hand-shakes, synchronization or encryption,
and other implementation-depending characteristics. Fur-
thermore it has to be discussed how attacks on the network
level can influence this modification.
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Figure 3: Handling closed source DBMSs using a replication protocol

3.6. Comparing Internal Data Structures

As discussed in Section 3.1.1, there are mainly two
mechanisms in most database management systems that
can be used to implement our approach: The transaction
management system and the replication protocol. In this
section we provide a more detailed discussion on the dif-
ferences between the data collected by the rollback mech-
anism and the features provided by the data replication
protocol, since both mechanisms collect different data and
therefore have different advantages during the verification
process.

Support of all data manipulation queries. Per definition,
the replication mechanism collects all data that is required
to generate duplicates of the master database on the slaves.
Thus, it is not possible to omit any data objects, since
they would be missing. In contrast, the transaction man-
agement mechanisms only store data manipulation queries
that support rollbacks. On many modern database man-
agement systems exist data types that do not support this
feature, e.g. BLOBs (binary large objects) in ORACLE
and MySQL. Inserting such an object automatically re-
sults in a commit-statement, making an entry by the trans-
action mechanism superfluous.

Query Context. Many database manipulation queries rely
on the context the query was executed in, e.g. consider-
ing timestamp-sensitive queries, updates that use random
numbers, query properties (e.g. auto-increment) or unique
checks. The replication mechanism stores all this informa-
tion in order to push it to the slaves; still, most of this
context is not needed for rollbacks, thus it is not stored by
the transaction management.

Metadata. Even if the same data is stored in different
databases, there are notable differences in meta-information [24].
For example, the insert order or the application of perfor-
mance enhancing methods like indexing can produce dif-
ferent data structures on the storage side of the DBMS.
This is completely transparent to the user and even the
database itself, since it yields no changes in the content,
nor the context; still, when trying to apply more advanced
techniques for database forensics like [25], this can yield
differences. Since the main goal of the replication mecha-
nism is to provide slave nodes with the same content, this

metadata is not transmitted and therefore not stored by
the replication. The transaction mechanism on the other
hand stores enough information for crash recovery or com-
plete rollbacks, thus contains significantly more metadata
like creation of index pages and record markups.

Interfaces. In order to apply the approach as presented in
this paper, the data store of the internal mechanisms needs
to be altered. Hence, the question of finding an interface to
the respective internal data is of utmost importance. For
the replication protocol, interfacing is rather straightfor-
ward: Since the changes are pushed to the slave nodes, it is
mandatory for every DBMS to provide interfaces to collect
the data. Closed source solutions provide possibilities to
mirror the data to a slave node and store it together with
its witness. The transaction management on the other
hand is a purely internal mechanism that needs no con-
nection to the outside world, thus, in common database
management systems, no interfaces exist and/or alter the
data structure on file level. In order to implement our ap-
proach, the developer needs access to the source code of
the DBMS, which is a problem in the case of closed source
products. Nevertheless, as outlined in Section 4, for open
source the utilization of these sources remains perfectly
feasible.

Reliability after crashes. While the needed information is
stored by the transaction management as soon as possible
in order to provide mechanisms for crash recovery, the data
collected by the replication protocol is not time critical,
thus gets pushed to the slave nodes in batches as well as
in reasonable time frames. Therefore, the data derived by
the transaction management is more reliable in the case of
a crash.

4. Implementation

In this section we present a feasible implementation so-
lution of our approach as an extension of the open source
database management system MySQL. As precondition we
presume that MySQL implemented a correct and complete
replication- and transaction system. To avoid unwanted
side effects of our modifications, we minimized the needed
source changes and at the same time made changes, e.g.
added a signature to a created slack space, which are ig-
nored by the database during daily tasks.

4.1. MySQL Replication

MySQL implements an asynchronous master-slave repli-
cation [43] which is shown in figure 4. One server acts as
a master and maintains a log of changes that updates the
database in one way or another (e.g. updates of data-rows)
and events, such as the creation of pages. This log is called
binary log. In addition it is often necessary to store some
metadata (e.g. transaction ID) to reconstruct the context
of an update.
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Figure 4: How MySQL replication works

A slave connects to the master, reads the binary log and
starts to execute updates according to the binary log. The
replication is processed on the client by two threads: The
I/O thread and the SQL thread. The I/O thread down-
loads the binary log from the master and writes all log en-
tries to temporary files called relay logs which are stored
locally on the slave. These relay log files are processed by
the SQL thread. This thread reconstructs the context of
every transaction and executes the updates.

The slave keeps track of the replication process by using
two parameters: the current log name and the current log
position [44]. If a slave disconnects from the master it will
request all log entries starting from the current position.
During initial phase the slave requests the first log known
to the master.

As mentioned above, the replication of MySQL is asyn-
chronous. In practice, a slave will at some point in the fu-
ture catch up to the current state of the master, however
the master will not wait for the slaves.

MySQL supports two kinds of replication: statement-
based replication and row-based replication. The statement-
based approach locks every SQL statement that modifies
the data. The slave re-executes the logged SQL statements
against the same initial data set in the same context. In
contrast, the row-based approach logs every row modifica-
tion which will be later applied to the slaves.

4.2. Binary Log Format

The code that deals with the binary log format can be
found in sql/log event.cc and sql/log event.h. Every binary
log file starts with the magic number sequence \xfe\x62\x69\x6e,
which is used to identify the file and to quickly check for
completeness. This 4-byte block is followed by the se-
quence of log entries. Each log entry consists of a header
with a fixed amount of fields listed in Table 1, which is
written in Log event::write header() in sql/log event.cc.

The header is followed by the body of the log entry
which varies generally according to each type. The body is
written by Log event::write data header() for a fixed length,
event-specific information block followed by a method call
of Log event::write data body() which writes the actual pay-
load of the event. Each type of log event has it’s own im-
plementation of these two virtual methods and therefore

Offset Length Interpretation
0x00 4 Timestamp of the event
0x04 1 ID of the event (e.g. Write Rows,

Start, Create File, etc.)
0x05 4 Server ID which uniquely identi-

fies the server to avoid infinite up-
date loops

0x09 4 Length of the event including
header (in bytes)

0x0D 4 Offset of the event in the log (in
bytes)

0x11 2 Event flags

Table 1: Binary log entry header

its own way to handle these event-type data storage.

MySQL supplies a tool called mysqlbinlog that is able
to read binary log files and dumps its content in SQL for-
mat with some comments concerning replication. We’ve
developed a prototype based on the implementation of this
tool in order to evaluate our approach.

4.3. Transaction Logs

Beside replication there exist other log files which con-
tain a range of context and data of a database management
system. Because of the architecture of MySQL it is pos-
sible to switch storage engines depending on the desired
use case [35]. For example, one storage engine is InnoDB
which provides the standard ACID-compliant transaction
features, along with foreign key support [45].

InnoDB uses an internal log format to ensure transac-
tions and crash recovery [46]. Every change in the file sys-
tem will cause at least one log entry that basically consists
of a header with a dedicated type, transactionID, position
in the modified file and a body which contains a dump of
the original file part that was modified [22, 23].

Other (commercial) database management systems like
SQL Server [47] are using similar log files to reverse trans-
actions and to recover the database.

“Although you might assume that reading the
transaction log directly would be interesting or
even useful, it’s usually just too much information.”[48]

However, this information contained in the transaction log
file - even if it is too much information for manual inves-
tigations - can be utilized through our approach in order
to enhance the integrity and authenticity of the log infor-
mation.

4.4. Showcase Implementation

A fundamental feature of our prototype implementa-
tion is to minimize the changes in the core of the database
management system to ensure maintainability over time

7



(e.g. releases of software and security updates). Further-
more, the introduced changes must not influence the func-
tionality of the DBMS.

MySQL is using pointers for navigation through the log
files. Our approach manipulates these navigation pointers
to generate slack space between two log entries by chang-
ing the length/offset field value of an entry that is used
to calculate the pointer to the next entry. Therefore the
generated slack space is ignored by the DBMS and does
not influence the functionality (see Figure 6 and Figure 7).
Thus, we can still guarantee the full functionality of the
database while introducing only a small number of code
changes, which enhances the probability that the function-
ality is stable with respect to version changes and updates.
In case of InnoDB, the original redo log format was in-
troduced in MySQL 5.0.3 (2005) and not changed until
MySQL 5.6.2 (2013), which is the current implementation
of the redo logs. However, the code changes (e.g. improved
compression) introduced in later versions do not affect our
implementation approach. All implementation proposals
are based on MySQL 5.6.17 (Community Edition).

InnoDB Transaction Log. InnoDB creates at least one log
entry per file change. Every log entry contains a generic
header, the location of the origin in the file system and a
copy of the overwritten data. The method log/log0log.cc
log write low() is responsible for the creation of the log
entry. It receives a byte string which basically contains
the dump of the overwritten data and the log header as
well as its length. InnoDB creates a container for each
log entry with a fixed size of 512 bytes. If a new log en-
try exceeds the size of the log block, it gets split into two
chunks allocated to two log blocks. In our approach we ex-
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Figure 5: Log Signatures

tended this data with our log signature and modified the
length of the written log block. The signature is added
to the end of each log entry as trailer (Figure 5). Each
log block contains a length definition of itself, therefore
InnoDB ignores all added signature data. In addition,
these length definitions are used to calculate the offsets
which lead to the next log entry. The method log/log0log.cc
recv parse or apply log rec body() parses the log entry data
and returns a pointer to the next log entry. We modified
this pointer and added the length of the signature to it.

Thus we created on the one hand some kind of slack space
that is skipped by InnoDB and does not disturb the func-
tionality of the transaction system (Figure 6), and on the
other hand gained the ability to store arbitrary signature
data that is used in the verification process.

1st Entry

S

2nd EntryHeader

length

Header

offset

1st Entry 2nd EntryHeader

length

Header

offset+length(S)

Before

After

signature
slack space

Figure 6: Signature extension of InnoDB transaction logs

MySQL binary log. Similar to the implementation of the
signature of the transaction log, it is possible to add our
approach to the binary log of MySQL which is used for
replication. As mentioned in section 4.2, every log en-
try needs a log header. This header contains information
about the length of the log record and an offset to the next
log entry.

1st Entry

S

2nd EntryHeader

length

Header

offset

1st Entry 2nd EntryHeader

length

Header

offset + length(S)

Before

After

signature
slack space

Figure 7: Signature extension of the MySQL binary log

Figure 7 shows how we modified the implementation
to add our signature. Similar to our previous modification
of the InnoDB transaction log, we generated some slack
space for the signature by modifying the pointers. How-
ever, in this case it is easier, because only a simple change
of the offset enables the opportunity to add a signature
to each log entry. This signature is used in combination
with a modified version of the mysqlbinlog-tool to verify
the integrity of the written data records.

5. Evaluation

In this section we evaluate our approach with respect
to attack scenarios, general security requirements and per-
formance.
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5.1. Attack Scenarios

We identified the following attacker models and assets
which are related to specific aspects of our approach.

5.1.1. Attacker Models

In this section we describe the potential attacker in de-
tail. Both attacker models are common in big database ap-
plications like modern data warehouse environments that
guarantee 24/7 support [49, 50]. Furthermore, the target
of this analysis lies in large scale implementations, e.g. in
the telecommunication industry [51].

Malicious File System Administrator. This attacker pos-
sesses read- and write access to the file system of the data
warehouse, especially the data files of the database man-
agement system. Thus he is able to change data without
invoking any DBMS interface at all. More precisely he has
the following abilities:

• modification of arbitrary files belonging to the DBMS,
especially those containing all tables and internal
data structures (e.g. log files) directly into the file
system; result: modifications that are not monitored
by any part of the DBMS.

• modification of the OS log system

• no access to the database query interface, especially
no administrator rights

• no root on the server on which the actual database
instance is running. More precisely, the attacker
has no means of directly accessing the RAM of the
database server.

Malicious Database Administrator. The database admin-
istrator’s role lies in managing and supporting the installed
database. More precisely, we assume the following rights
and limitations:

• administrator rights on the database itself

• only read access to the file system

• able to change logging routines and user rights with
respect to the standard methods deployed by the
DBMS

5.1.2. Assets

Here we provide a comprehensive description of the
identified security assets. In this security evaluation we
consider only assets that are interconnected to the funda-
mental characteristics of our approach. Other aspects are
out of the scope of this work and therefore not discussed
within this analysis.

DBMS Instance:. This asset covers the actual running in-
stance of the DBMS, including the ability to shut down
and restart it.

Configuration:. The ability to read and even change the
configuration during runtime or in the file system is re-
ferred to as configuration asset. The fundamental con-
figuration changes within this asset are, amongst others,
changes of the size of internal data structures and config-
uration of replication- and logging strategies.

Slaves and Network Connection:. Since this asset is not
unique to our approach and heavily depends on the ac-
tual implementation of the associated techniques as well
as the general server and network architecture, it is not
considered within this evaluation. However, in case of ac-
tual implementations, it must be assured that these attack
vectors are mitigated using state of the art techniques.

SQL Interface:. The SQL interface allows the execution of
all legal DBMS-commands, despite the name not limited
to SQL, but including stored procedures, internal com-
mands and DDL.

Data Files:. Databases store their content in so-called data
files in the file system. Direct access to these files could be
used in order to change data without invoking the DBMS,
thus circumventing all logging- and monitoring mecha-
nisms.

Internal Data Structures:. This asset refers to the tem-
porary internal information that is used by the DBMS to
guarantee its functionality, e.g. the replication protocols
and the transaction management system.

Random Number Generator:. The random number gener-
ator is a critical asset concerning our approach, since it
gets in place with the unknown component to thwart forg-
ing and to establish forward secrecy.

Source Code:. This asset refers to the actual source code
of the DBMS, including the possibility to patch and re-
compile it in order to remove or add functionality.

5.2. Security Evaluation

In this section we compare the assets defined in Sec-
tion 5.1.2 and the attacker models outlined in Section 5.1.1
and discuss why our approach is secure with respect to
the models (as shown in Table 2). The security of the un-
trusted machine relies on the fact that the database system
creates internal log files with an initially shared secret on
a trusted verification machine. This secret is used as seed
for the cryptographically secure pseudo-random number
generator that is utilized to create the signatures for the
data particles.

The authenticity and security of the witnesses is based
on three fundamental facts:

• The data (i.e. the random number of the nth it-
eration and the hash value of the previous record)
which is a witness for the authenticity is hashed us-
ing a one-way hash function.
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• Each witness is secured by an individual key gener-
ated by a cryptographically secure pseudo-random
generator that is derived using a one-way process,
which is initialized by a secured and trusted envi-
ronment (e.g. during installation by a trusted per-
son). Due to the one-way process the shared secret
is not derivable. Without the individual key it is not
possible to alter the signature.

• Each witness contains the previous entries in form of
a hash chain that is secured by the authenticity of
all previous witnesses. Therefore if an attacker alters
a verifiable data set, all future witnesses have to be
altered and recalculated too. This is not possible if
the attacker doesn’t know each individual key gener-
ated by the cryptographically secure random number
generator.

5.2.1. Modification of Configuration

In case the attacker has access to change the configura-
tion, he could disturb the logging mechanisms extended by
our approach. Thus, he could make changes without wit-
nesses. Still, these changes would be detectable by our ver-
ification process (see Section 3.3), since the changes would
not be present in the verifiable data log.

5.2.2. Deployment of New Code

The attacker could use his privileges to revert the im-
plemented security features, especially considering our ap-
proach. Without root access this would require at least a
restart of the whole DBMS, which should trigger alarms
(cf. 5.4). Furthermore, these changes would again be vis-
ible in the verifiable data log. Still, the attacker could
patch the code in order to record the randomly generated
sequence numbers. We outlined possible solutions for this
scenario in Section 5.4.2.

5.2.3. Denial of Service

Since all internal logging mechanisms have a predefined
size and/or lifetime, a vast amount of queries could be used
in order to overwrite interesting parts. This can either be
solved in our approach by regularly saving the log files to
the verification machine (in our closed source approach this
happens automatically), or by writing a second log without
log rotation and size limitations (see Section 5.4.4).

5.2.4. Execution of Queries

The database administrator is able to execute any kind
of legal query, even those which may be considered mali-
cious. Still, in our approach he is not able to deny the
execution - as it would be possible without this mecha-
nism, in which case he could e.g. simply delete the query
from the execution log. Thus, our approach delivers a new
forensic-aware database solution.

5.2.5. Unmonitored Modifications

An attacker possessing write access to the data files
of the DBMS could insert or modify data bypassing the
DBMS and its logging and security mechanisms (e.g. user
permissions). With our approach, these changes remain
easily detectable, since they are not included in the ver-
ifiable data log. Still, in case of temporary changes, an
attacker could insert new data and delete it again between
two verification iterations. As a countermeasure against
this attack, the verification should be done at a random
interval, making it reasonably harder for the attacker to
hide such changes.

5.2.6. Modification of the Verifiable Data Log

An attacker (as depicted in the model of the malicious
file system administrator) could tamper with the internal
data structures that represent the verifiable data log. Still
the attacker would not be able to manipulate the entries,
since he is not able to generate the required secret random
numbers to generate the required witnesses. Furthermore,
it is not possible to add a new entry between two existing
ones, or delete an existing entry, since the witness of an
entry relies on the previous witnesses due to the chained
hashing (see Section 3.1.2). In case he is able to brute-
force a single random number for one chosen entry, he
would need to brute-force all subsequent entries in order to
manipulate the chosen one. On the other hand it’s possible
to find a proper replacement that yields the same signature
due to collision attacks. In either case, it is important to
choose a cryptographically strong hash function to protect
the hash chains.

5.2.7. Deletion of Traces

An attack vector represents the deletion of the veri-
fiable data log. While being possible, it is highly con-
spicuous and would trigger an alarm in the verification
procedure. Additionally, the verifiable data log could be
protected by saving it to write-once data storage.

5.2.8. Attacks to Obtain the Random Generator

The security relies on the random generator. If an at-
tacker can obtain a complete state of the random genera-
tor, he can calculate the next random numbers and there-
fore adulterate the log file by calculating the signed hash
values. Nevertheless, old log entries can’t be modified and
stay secure, because a CSPRNG withstands state compro-
mise extensions. There are many real-world physical at-
tacks on memory that enable an attacker to gain access to
the random number generator by memory leakage or side
channels [52, 53]. To avoid this problem, a random gener-
ator implemented in hardware can be used. Chong et al.
[54] implemented secure audit logs proposed by Schneier
et al. [29] in tamper-resistant hardware. An attacker can’t
access the implementation of the cryptographically secure
pseudo-random generator without physical access to the
machine and reverse engineering the random number chip,
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File System
Administrator

Database
Administrator

Assets Threats

3 (Services) 3 DBMS Instance Restart to change config (5.2.1); Deployment of new
code (5.2.2)

3 (file sys-
tem; requires
restart)

3 (runtime) Configuration Modification of current config (5.2.1); Deactivation of
security mechanisms (5.2.1, 5.2.3); Denial of Service
(5.2.3)

7 3 SQL Interface Execution of Queries for altering database objects
(5.2.4)

3 7 (read only) Data Files Unmonitored modification (5.2.5); Deletion of data
(5.2.5, 5.2.7)

3 7 (read only) Internal data structures Unmonitored modification (5.2.5, 5.2.6); Deletion of
data (5.2.7)

7 7 Random number generator Breaking forward secrecy (5.2.8)
3 7 Source code Unpatching security functionality (5.2.2)

Table 2: Assets, attacker models and threats

which will be noticed due to the caused downtimes of the
DBMS.

5.3. Performance Evaluation

Since databases are often used in performance critical
environments and a lot of database research is targeted at
making them faster and more efficient, performance is a
critical factor in the evaluation.
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Figure 8: Performance evaluation (sb OLTP RW )

Runtime overhead. We evaluated the performance of our
prototype on a typical DBMS in a large infrastructure (2x
Intel Xeon E5-2470 @ 2.30GHz (32 Threads), 128 GB
RAM, Oracle Linux 6.2, XFS mounted with ”noatime,
nodiratime, nobarrier, logbufs=8”) obtained on Sysbench1

workloads. We have simulated heavy RW-workload using
OLTP RW in order to simulate a realistic testing envi-
ronment. Figure 8 shows the result of the performance
evaluation of our prototype implementation. It demon-
strates that no relevant performance loss caused by our
approach is measurable. We have calculated an average

1http://dev.mysql.com/downloads/benchmarks.html

performance loss of about 0,3% throughput. To ensure
reproducibility a detailed description of our showcase im-
plementation is presented in Section 4. We will publish
the working prototype under an open source license2.

Disk space overhead. The disk space overhead introduced
by our approach mostly relies on the selected cryptographic
hash function (see Section 3), currently typically 256 bit
with an additional three bytes for the timestamp, thus re-
sulting at 280 bit per entry. Compared to the data sizes
stored by the transaction management or data replication
mechanisms in database management systems, e.g. in the
telecommunication industries, this is also neglectable.

5.4. Limitations and Countermeasures

In the current form our approach does face some limi-
tations which we will outline below. Furthermore, we will
indicate what kind of countermeasures can be applied in
order to mitigate the resulting negative effects.

5.4.1. Availability and Changes in the Code Base

Since our approach relies on the extension of the stor-
age mechanisms for internal data, it is limited to database
management systems that provide the source code. Fur-
thermore, the logging methods have to be rewritten with
every deployed release of the DBMS. Fortunately our ap-
proach solely depends upon the rewriting of a small num-
ber of methods and doesn’t require a large amount of work
for modification. Additionally, in Section 3.5 we provide
an alternative approach using the data replication proto-
col that does not depend on any modification of the source
code, thus can be used in closed source systems.

2Note: After publication of this article
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5.4.2. Malicious Changes in the Code Base

Since our approach is implemented by applying changes
to the source code of the DBMS (which thus has to be
available), an attacker could try to patch the method in
order to log all generated random numbers. In order to
mitigate this risk, secure software development life cycles
including signed code bases have to be in place in order
to guarantee the execution of an untampered version of
the database. Furthermore, a recompilation would lead
to a restart of the database management system, which
requires a new seed of the trusted party. This again should
result in a verification of the signed code caused by an
organizational policy.

5.4.3. Root Access

In principle, an attacker with root access is able to di-
rectly read the location in the RAM, where the random
number generator stores the current value, and misuse it
for e.g. manipulating transactions. Furthermore, in case
of a continuous monitoring of the random numbers, the
attacker is able to change the log file subsequently, at the
cost of having to change all subsequent log entries due to
the influences of the changes on the chaining mechanism.
However, it is not possible to modify log events that were
logged before the attacker compromised the system, since
our approach provides forward secrecy. Finally no crypto-
graphic mechanism can be used to prevent the deletion of
the internal log files, which still would be detected by our
approach, but could result in non-restorable damage.

“A few moments’ reflection will reveal that no
security measure can protect the audit log en-
tries written after an attacker has gained con-
trol of U (untrusted machine).” [29]

5.4.4. Lifetime of Internal Data Structures

Lifetime is currently a limiting factor and determined
by the configuration. One possible solution for this dilemma
lies in the duplication of the method that writes the tem-
porary internal data structures without limitations of the
lifetime. This verifiable data log will then be truncated
after verification procedures validated its authenticity to
avoid disproportional growth. Furthermore, the sizes of
the internal data structures are usually configurable and
can be extended in order to provide a larger time frame
than in the standard configuration.

6. Conclusion

In this paper, we proposed a novel, forensic-aware database
management system based on transaction and replication
mechanisms, which are mainly used for crash recovery and
to assure transaction authenticity. In general, these tem-
porary data structures are not human-readable and in-
tended for internal system methods only. In this work, we
showed that this internal information is a vital source to
reconstruct evidence during a forensic investigation. Thus,

we added forensic non-deniability of transactions to com-
mon database solutions by only applying minimal changes
to the code base, hence our approach does not rely on
additional logging. Moreover, we provided a concept for
closed source database management systems. The overall
goal of this work was to provide a formal description of
our concept and a prototype implementation in MySQL.
To demonstrate the benefits for system security, we also
provided a comprehensive security evaluation with respect
to the most relevant attacker models and assets.

As future work, we plan to extend the approach regard-
ing closed source database management systems as out-
lined in Section 3.5, especially regarding synchronization
amongst others. Furthermore, we plan to build a foren-
sic aware database management system based on the re-
sults presented in this paper using an open source database
management system as technological basis.
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