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Abstract—Session hijacking has become a major problem
in today’s Web services, especially with the availability of free
off-the-shelf tools. As major websites like Facebook, Youtube
and Yahoo still do not use HTTPS for all users by default,
new methods are needed to protect the users’ sessions if
session tokens are transmitted in the clear.
In this paper we propose the use of browser fingerprinting for
enhancing current state-of-the-art HTTP(S) session manage-
ment. Monitoring a wide set of features of the user’s current
browser makes session hijacking detectable at the server
and raises the bar for attackers considerably. This paper
furthermore identifies HTML5 and CSS features that can be
used for browser fingerprinting and to identify or verify a
browser without the need to rely on the UserAgent string. We
implemented our approach in a framework that is highly con-
figurable and can be added to existing Web applications and
server-side session management with ease. To enhance Web
session security, we use baseline monitoring of basic HTTP
primitives such as the IP address and UserAgent string, as
well as complex fingerprinting methods like CSS or HTML5
fingerprinting. Our framework can be used with HTTP and
HTTPS alike, with low configurational and computational
overhead. In addition to our contributions regarding browser
fingerprinting, we extended and implemented previous work
regarding session-based shared secrets between client and
server in our framework.

Keywords-Session Hijacking, Browser Fingerprinting, Se-
curity

I. INTRODUCTION

Social networks and personalized online services have
an enormous daily user base. However, Internet users
are constantly at risk. Popular websites like Facebook
or Yahoo, along with many others, use HTTPS-secured
communication only for user authentication, while the
rest of the session is usually transmitted in the clear.
This allows an attacker to steal or copy the session
cookies, identifiers or tokens, and to take over the
session of the victim. Unencrypted Wi-Fi and nation-wide
interceptors have used this as an attack vector multiple
times recently, proving that session hijacking is indeed a
problem for today’s Internet security. A recent prominent
example includes the hacked Twitter account of Ashton
Kutcher [20], who used an unencrypted Wi-Fi and got
hacked— at that time, he had more than six million
followers. Tunisia on the other hand was accused of
malicious JavaScript injection on websites like Facebook,
Gmail and Yahoo, to harvest login credentials and
sabotage dissidents online activities [11].

To protect the session of a user, we implemented a
framework that ties the session to the current browser by
fingerprinting and monitoring the underlying browser, its
capabilities, and detecting browser changes at the server
side. Our framework, the Session Hijacking Prevention
Framework (SHPF), offers a set of multiple detection
mechanisms which can be used independently of each
other. SHPF protects especially against session hijacking
of local adversaries, as well as against cross-site scripting
(XSS). The underlying idea of our novel framework: If
the user’s browser suddenly changes from, e.g., Firefox
on Windows 7 64 bit to an Android 4-based Webkit
browser in a totally different IP range, we assume that
some form of mischief is happening.

Our framework uses a diverse set of inputs and allows
the website administrator to add SHPF with just a few
additional lines of code in existing applications. There is
no need to change the underlying Web application, and
we can use the initial authentication process which is
already part of many applications to build further security
measurements on top. As part of the authentication
process at the beginning of a session, the server asks the
browser for an exact set of features and then monitors
constantly whether the browser still behaves as expected
over the entire session. While an attacker can easily steal
unencrypted session information, e.g., on unencrypted
Wi-Fi, it is hard to identify the exact responses needed
to satisfy the server without access to the same exact
browser version. Furthermore, we use a shared secret that
is negotiated during the authentication, which is used to
sign requests with an HMAC and a timestamp, building
and improving on previous work in this direction. Recent
attacks against HTTPS in general and the certificate
authorities Diginotar and Comodo [22] in particular have
shown that even the widespread use of SSL and HTTPS
are not sufficient to protect against active adversaries
and session hijacking. Previous work in the area of
server-side session hijacking prevention relied, e.g.,
on a shared secret that is only known to the client’s
browser [1] and never transmitted in the clear. While this
is a feasible approach and can protect a session even for
unencrypted connections, our system extends this method
by employing browser fingerprinting for session security,
thus allowing us to incorporate and build upon existing
security mechanisms like HTTPS. Furthermore, it offers



protection against both passive and active adversaries.

Our contributions in this paper are the following:
• We present a framework to enhance HTTP(S) session

management, based on browser fingerprinting.
• We propose new browser fingerprinting methods for

reliable browser identification based on CSS3 and
HTML5.

• We extend and improve upon existing work on using
a shared secret between client and server per session.

• We have implemented the framework and will release
the code and our test data under an open source
license1.

The rest of the paper is organized as follows: Section II
gives a brief technical background. The new browser
fingerprinting methods are presented in Section III. Our
SHPF framework and its general architecture is described
in Section IV. We evaluate our framework in Section V.
The results of our evaluation are discussed in Section VI,
before we conclude in Section VII.

II. BACKGROUND

Web browsers are very complex software systems
requiring multiple person-years of development time.
Different international standards like HTML, JavaScript,
DOM, XML or CSS specified by the W3C2 try to make
the browsing experience across different browsers as
uniform as possible, but browsers still have their own
”touch“ in interpreting these standards - a problem
Web developers have been struggling with since the
infancy of the Web. Due to the complexity of the
many standards involved, there are differences in the
implementations across browsers. New and upcoming
standards further complicate the landscape - HTML5 and
CSS3 for example, which are not yet fully standardized
but already partly implemented in browsers. These
imperfect implementations of standards with different
depth are perfectly suited for fingerprinting. Nmap [24],
for example, uses this exact methodology to identify the
operating system used on a remote host based on TCP/IP
stack fingerprinting.

Authentication on websites works as follows: A HTML
form is presented to the user, allowing them to enter
username and password, which are then transmitted to
the server. If the login succeeds, the server typically
returns a token (often referred to as a session ID), which
is subsequently sent along with further client requests to
identify the user due to the stateless internals of the HTTP
protocol. In an unencrypted HTTP environment, this
presents multiple challenges to the user’s confidentiality:
If login credentials are transmitted in an unencrypted
state, an eavesdropping attacker can learn them without
any further effort. Even if the document containing the
login form as well as the subsequent request containing

1Note to the reviewer: we will include the link here once the paper is
accepted for publication

2http://www.w3.org/TR/

the credentials are transmitted over HTTPS, attackers
may later learn the session ID from unencrypted requests
to the server or by using client-side attacks such as XSS.
Thus, it is imperative to enforce SSL throughout the
entire site (or at least on those domains that are privileged
to receive the session token).

Many administrators regard introducing SSL by default
as too cost-intensive. Anecdotal evidence suggests that
naively enabling SSL without further configuration may
incur significant performance degradation up to an order
of magnitude. Gmail, however, switched to HTTPS by
default in January 2010 [21]. Remarkably, Google reported
that they did not deploy any additional machines and no
special hardware (such as hardware SSL accelerators), but
employed a number of SSL optimization methods. Only
about 10 kB memory per connection, 1% of the CPU
load and less than 2% network overhead were incurred
for SSL in this configuration. Many other problems with
HTTPS have been discussed in the literature, ranging
from problems with the CA system [36], [8] to the fact
that a large number of keys have been created with
weak overall security [12], [23], [44]. While HTTPS
can be found on a large number of popular websites
that require some form of authentication [13], only a
minority of these binds the sessions to a user’s device or
IP address to protect the user against session hijacking [3].

Multiple tools have been released that allow automated
session hijacking: FaceNiff [34], DroidSheep3, Firesheep,
cookiemonster [32] and sslstrip, just to name a few.
Firesheep was among the first to received widespread
public attention when it was released as open source
in 2010 [4]. Firesheep works as follows: Upon startup,
Firesheep tries to start sniffing on an IEEE 802.11 or
Ethernet device. Whenever HTTP packets are captured and
can be parsed as such, they are matched against domain-
specific handlers (as of writing, the current git repository
includes handlers for sites such as Facebook, Google, and
LinkedIn). These handlers store a list of cookie values
that comprise a valid session. When a match is found,
these values are extracted and an entry for this hijackable
session is added to the attacker’s sidebar in Firefox. When
the attacker selects one of these entries, Firesheep writes
the stored cookie values into Firefox’ cookie manager and
opens the site in a new tab, thereby presenting the attacker
with a hijacked and fully operational session of the victim.

III. BROWSER FINGERPRINTING

This section introduces our new browser fingerprinting
methods, namely CSS and HTML5 fingerprinting. While
browser fingerprinting has ambiguous meanings in the
literature i.e., identifying the web browser down to the
browser family and version number [7] vs. (re-)identifing
a given user [26], we use the former. Our framework relies
on fingerprinting to reliably identify a given browser, and
CSS fingerprinting is one of the fingerprinting techniques

3http://droidsheep.de/
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Browser Layout Engine Prefix
Firefox Gecko -moz-
Konqueror KHTML -khtml-
Opera Presto -o-
Internet Explorer Trident -ms-
Safari Webkit -webkit-
Chrome Webkit -webkit-

Table I
BROWSER LAYOUT ENGINES AND CSS PREFIXES

implemented in our framework. Furthermore, we present
details on how we monitor HTTP headers in SHPF,
which allows website administrators to configure advanced
policies such as preventing an HTTP session from roaming
between a tightly secured internal network and a public
network beyond the control of the administrators.

A. CSS Fingerprinting

CSS as a standard is under ongoing development
and standardization. CSS 2.1 was published as a W3C
Recommendation in June 2011, while the upcoming
CSS3 is not yet finished. The CSS3 modules vary in
stability and status and while some of them already
have recommendation status, others are still candidate
recommendations or working drafts. Browser vendors
usually start implementing properties early, even long
before they become recommendations. We identify three
CSS-based methods of browser fingerprinting: CSS
properties, CSS selectors and CSS filters.

Depending on the layout engine, progress in
implementation varies for new and upcoming CSS
properties, which allows us to identify a given browser
by the CSS properties it supports. Table I shows which
browser uses which layout engine. When properties
are not yet on ”Recommendation“ or ”Candidate
Recommendation“ status, browsers prepend a vendor-
specific prefix indicating that the property is supported
for this browser type only. Table I also shows the vendor
prefixes for the most popular browsers. Once a property
moves to Recommendation status, prefixes are dropped by
browser vendors and only the property name remains. For
example, in Firefox 3.6 the property border-radius had a
Firefox prefix resulting in -moz-border-radius, while in
Chrome 4.0 and Safari 4.0 it was -webkit-border-radius
(as they both use the Webkit layout engine). Since Firefox
4 as well as Safari 5.0 and Chrome 5.0 this feature is
uniformly implemented as border-radius. The website
https://www.caniuse.com shows a very good overview
on how CSS properties are supported in the different
browsers and their layout engine.

Apart from CSS properties, browsers may differ in
supported CSS selectors as well. Selectors are a way of
selecting specific elements in an HTML tree. For example,
CSS3 introduced new selectors for old properties, and
they too are not yet uniformly implemented and can be
used for browser fingerprinting.

The third method of distinguishing browsers by their
behavior is based on CSS filters. CSS filters are used
to modify the rendering of e.g., a basic DOM element,
image, or video by exploiting bugs or quirks in CSS
handling for specific browsers, which again is very
suitable for browser fingerprinting. Centricle 4 provides a
good comparison of CSS filters across different browsers.

How to test: As CSS is used for styling websites it
is difficult to compare rendered websites at the server
side. Instead of conducting image comparison (as used
recently by Mowery et al. [29] to fingerprint browsers
based on WebGL-rendering), we use JavaScript in our
implementation to test for CSS properties in style objects:
in DOM, each element can have a style child object
that contains properties for each possible CSS property
and its value (if defined). These properties in the style
object have the same name as the CSS property, with
a few differences, for example dashes (-) are removed,
the following letter becomes upper case. Vendor-specific
prefixes however are preserved if the CSS property has a
vendor prefix. An Example: -moz-border-radius becomes
MozBorderRadius.

There are now two ways to test CSS support of a
property in the style object: the first way is to simply
test whether the browser supports a specific property
by using the in keyword on an arbitrary style object.
The returning Boolean value indicates whether the
property is supported. Browser-specific prefixes need to
be considered when testing properties with this method.
An example: ’borderRadius’ in document.body.style. The
second way to test whether a given CSS property is
supported is to look at the value of a property once it
has been set. We can set an arbitrary CSS property on an
element and query the JavaScript style object afterwards.
Interpreting the return values shows whether the CSS
property is supported by the browser: undefined (null) as
return value indicates that the property is not supported.
If a not-null value is returned this means the property
is supported and has been parsed successfully by the
browser.

Care has to be taken when interpreting the return values
for fingerprinting: A returning value may deviate from
the CSS definition if some parts were not understood
by the browser. This can happen, e.g., with compos-
ite properties, which allow several sub-properties to be
defined in just one long definition. For example, the
background definition can be used to define background-
color, background-repeat, background-image, background-
position and background-attachment all at once. Interest-
ingly, the value string returned upon querying the style
object also differs between browsers, and can be used as
yet another test for fingerprinting based on CSS properties.
For example, consider the following CSS3 background

4http://centricle.com/ref/css/filters/
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definition:

background:hsla(56, 100%, 50%, 0.3)

Upon testing the background property on the style
object as described above, Firefox returns the following:

none repeat scroll 0% 0% rgba(255, 238, 0, 0.3)

Internet Explorer, on the other hand, returns this:

hsla(56, 100%, 50%, 0.3)

As this shows, Firefox returns all possible values of the
composite background property explained above (repeat,
color, image, position) and additionally converts the hsla
definition to rgba values. In contrast, Internet Explorer
only returns exactly what was stated in the CSS definition,
no more and no less, and does not convert the values into
another format. The order of elements within the return
string for composite values may also deviate between
browsers, for example with the box-shadow property with
distance values as well as color definitions.

B. HTML5 Fingerprinting
HTML5, like CSS3, is still under development, but

there are already working drafts which have been
implemented to a large extend by different browsers.
This new standard introduces some new tags, but also
a wide range of new attributes. Furthermore HTML5
specifies new APIs (application programming interfaces),
enabling the Web designer to use functionalities like
drag and drop within websites. Since browser vendors
have differing implementation states of the new HTML5
features, support for the various improvements can be
tested and used for fingerprinting purposes as well. For
identifying the new features and to what extent they are
supported by modern browsers, we used the methodology
described in [33]. The W3C furthermore has a working
draft on differences between HTML5 and HTML4 that
was used as input [38].

In total we identified a set of 242 new tags, attributes
and features in HTML5 that were suitable for browser
identification. While 30 of these are attributed to new
HTML tags that are introduced with HTML5 [41], the
rest of the new features consist of new attributes for
existing tags as well as new features. We then created
a website using the Modernizr [2] library to test for
each of these tags and attributes and whether they are
supported by a given browser. We collected the output
from close to 60 different browser versions on different
operating systems. An excerpt of the data and how the
tags and attributes are supported by different browsers
can be seen in Table II. One of our findings from the
fingerprint collection was that the operating system
apparently has no influence on HTML5 support. We were
unable to find any differences between operating systems
while using the same browser version, even with different
architectures. An example: Firefox 11 on Windows XP (32
bit) and on Windows 7 (64 bit) share the same fingerprint.

C. Basic HTTP Header Monitoring
For each HTTP request, a number of HTTP headers is

included and transmitted to the Web server. RFC 2616
defines the HTTP protocol [10] and specifies several
HTTP headers that can or should be sent as part of each
HTTP request. The number of headers, the contents and
especially the order of the header fields, however, are
chosen by the browser and are sufficient for identifying
a browser. Using this method for browser identification
has already been discussed in previous work [7], [43] and
is already used to some extend by major websites [3],
we will thus only briefly cover the parts which are of
particular interest for SHPF. In our implementation we use
the following header fields for HTTP session monitoring:

• UserAgent string contains browser version and plat-
form information.

• Accept specifies which data types the browser sup-
ports. It is also used to announce a preference for a
certain data type.

• Accept-Language specifies, similar to Accept, which
language is preferred by the browser.

• Accept-Encoding specifies which encodings are sup-
ported and which encoding is preferred by the
browser.

• IP-Address of the client is not part of the HTTP
header. However, the client IP address can be pro-
cessed by the server easily.

The UserAgent contains information about the browser
- often the exact browser version and the underlying
operating system. It is, however, not a security feature,
and can be changed arbitrarily by the user. SHPF is not
dependending on the UserAgent, and works with any
string value provided by the browser. If the UserAgent
changes during a session this is a strong indication
for session hijacking, especially across different web
browsers. Depending on the configuration of SHPF and
the particular security policy in place, it might however
be acceptable to allow changes in the browser version
e.g., with background updates of the browser while using
a persistent session if the browser is restarted.

The UserAgent as well as the other headers and data
usually remain consistent during a session. If any values
or a subset of these values change during a session, the
session has been hijacked (in the simplest case). For
example, if during a session multiple UserAgents from
different IPs use the same session cookie, this implies
in our framework that the session has been hijacked
(session identifiers ought to be unique). The session
would be terminated immediately and the user would
need to reauthenticate. In order to bypass this part of
our framework, the attacker would need to replicate all
the original headers and use the same IP address as
the client in order to send valid requests to the server.
While cloning the HTTP headers is rather easy, binding a
session to a given IP address considerably raises the bar
for adversaries, even if they can obtain a valid session
cookie and the HTTP header with e.g., one of various



Tag Attribute FF12 FF13 C18 C19 IE8 IE9 O11 O12 S4 S5
<audio> — ! ! ! ! % ! ! ! % %

<fieldset> name ! ! % ! % % % % % %

<textarea> maxlength ! ! ! ! % % ! ! % !

<nav> — ! ! ! ! % ! % ! % !

<meter> — % % ! ! % % ! ! % %

<input> type=“url” ! ! ! ! % % ! ! % !

<canvas> — ! ! ! ! % ! ! ! ! !

Table II
EXCERPT OF HTML5 TAGS AND ATTRIBUTES FOR BROWSER FINGERPRINTING

kinds of cross-site scripting (XSS) attack [37].

Apart from the HTTP header values themselves, there is
also a significant difference in how the browsers order the
HTTP header fields. While Internet Explorer 9 for example
sends the UserAgent before the Proxy-Connection and
Host header fields, Chrome sends them in the exact
opposite order. The content of the header fields is not
important in this case, all header fields are included for
this check in our implementation. HTTP header ordering
is especially useful against session hijacking tools like that
clone only the UserAgent or copy the session cookie, but
not the rest of the header information.

IV. SHPF FRAMEWORK

This section describes the implementation of our frame-
work and its architecture, the Session Hijacking Prevention
Framework (SHPF). The source code is released under
an open source license and can be found on github5.
Despite the new fingerprinting methods presented in the
previous section, we also implemented and improved
SessionLock [1] for environments that do not use HTTPS
by default for all connections.

A. General Architecture

SHPF is a server-side framework which is written
in PHP5 and consists of multiple classes that can be
loaded independently. Its general architecture and basic
functionality is shown in Figure 1. We designed it
to be easily configurable (depending on the context
and the security needs of the website), portable and
able to handle a possibly large number of concurrent
sessions. Our implementation can be easily extended with
existing and future fingerprinting methods, e.g., textfont
rendering [29] or JavaScript engine fingerprinting [28],
[35].

The main parts of the framework are the so-called
features. A feature is a combination of different checks
for detecting and mitigating session hijacking. In our
prototype we implemented the following features: HTTP
header monitoring, CSS fingerprinting and SecureSession
(which implements and extends the SessionLock protocol
by Ben Adida). Features are also the means to extending
the framework, and we provide base classes for fast feature

5https://github.com/mmulazzani/SHPF

development. A feature consists of one or more checkers,
which are used to run certain tests. There are two different
types (or classes) of checkers:

• Synchronous checkers can be used if the tests in-
cluded in the checker can be run solely from existing
data, such as HTTP requests or other website-specific
data that is already available.

• Asynchronous checkers are used if the tests have to
actively request some additional data from the client
and the framework has to process the response.

While synchronous checkers are passive in nature,
active checkers can challenge the client to send some
information for a specific checker, allowing the server
to verify that the browser is behaving as expected.
Client responses are sent via asynchronous calls (AJAX)
as part of SHPF, thus not blocking the session or
requiring to rewrite any existing code. Appendix A shows
the basic code needed to incorporate SHPF into a website.

The distinction between features and checkers gives the
website control over which checks to run. Features can
be disabled or enabled according to the website’s security
needs, and can be assigned to different security levels.
Different security levels within a webpage are useful, for
example, in privacy-heterogeneous sessions - basic checks
are performed constantly, while additional checks can be
run only when necessary, e.g., when changing sensitive
information in a user’s profile (much like Amazon does for
its custom session management). In order to communicate
with a Web application, callbacks can be defined both
in PHP and JavaScript. These callbacks are called if a
checker fails and thus allow the application to react in
an appropriate way, e.g., terminate the session and notify
the user. An example configuration for different security
levels with SHPF can be seen in Table III. The details
for each checker in this example are explained in detail
below. Consider a website, e.g., a web store, which uses
three different security levels for every session:

• Level 1 is for customers who are logged in and
browsing the web store.

• Level 2 is for customers who are in a sensitive part
of their session, e.g., ordering something or changing
their profile.

• Level 3 is for administrators who are logged into the
administrative interface.

Level 1 is a very basic security level. In this example it

https://github.com/mmulazzani/SHPF


2. Sync. SHPF Checkers:

Basic HTTP Header Monitoring
HTTP Header Ordering, IP,
UserAgent, …

3. Async. SHPF Checkers:

CSS Fingerprinting
Supported CSS Features

Future Fingerprinting
HTML 5 Fingerprinting,
Javascript, WebGL, ...

1. Regular HTTP / HTTPS Session

5. SHPF SecureSession Feature

4. Async SHPF checks

Figure 1. SHPF Architecture

prevents session hijacking by monitoring the UserAgent
string of the user for modifications. As a sole security
measure it only protects the user against attacks that can
be considered a nuisance, and can possibly be bypassed
by an attacker (by cloning the UserAgent string). The
Web application is designed in such a way that an
attacker cannot actively do any harm to the user, for
example browsing only specific products to manipulate
the web store’s recommendation fields. If the customer
decides to buy something, level 2 is entered, which uses
two additional security measures: the current session
is locked to the user’s IP address and the order of
the HTTP headers is monitored to detect if a different
browser uses the same UserAgent string. Once the
transaction is complete, the customer returns to level 1.
For an administrator, even more checkers are enabled
at the start of the session: SecureSession protects the
session cryptographically with a shared secret between
the particular browsers that started the sessions, and the
CSS properties supported by the browser are monitored.
Please note that this configuration is given merely by
way of an example and must be matched to existing
security policies when implemented. Furthermore, note
that HTTPS is not mentioned in the example - even
though it is strongly advised to use HTTPS during a
session (besides SHPF), it is not a requirement. SHPF
can prevent session hijacking even if session tokens are
transmitted in the clear.

Security Levels
Checks Level 1 Level 2 Level 3
UserAgent monitoring ! ! !

IP binding % ! !

HTTP Header ordering % ! !

CSS fingerprinting % % !

SecureSession % % !

Table III
EXAMPLE - DIFFERENT SECURITY LEVELS FOR A WEBSITE

Additional components in our framework are used for
keeping track of the session state in a database, for output

and logging, and there is a special class for integrating
the framework into existing websites and a crypto feature
CryptoProvider. The crypto feature defines methods of
encrypting and decrypting data. If a crypto provider is
set in SHPF and SecureSession is used, all asynchronous
messages exchanged between the browser and the frame-
work are automatically encrypted by the crypto provider
(see Section IV-D).

B. Basic HTTP Header Monitoring

The HTTP header monitoring feature does the follow-
ing:

1) On the first request, the framework stores the con-
tents and the order of the HTTP headers as described
above.

2) For each subsequent request, the feature compares
the headers sent by the client with the stored
ones and checks whether their content and/or order
match.

Depending on the particular use case, different configu-
rations are possible, e.g., binding a session to a given IP, a
certain IP range or a UserAgent string. Another example
would be to allow IP address roaming while enforcing
that the operating system as claimed by the UserAgent
string as well as the browser has to stay the same, allowing
the browser version to change, e.g., through background
updates in Chrome or Firefox. HTTP header monitoring is
implemented as a synchronous checker, as the data needed
for processing is sent with every request.

C. CSS Fingerprinting

Using the CSS fingerprinting methods explained above,
a SHPF feature has been implemented that does the
following:

1) Check whether the client’s browser supports
JavaScript.

2) On the first request of the client: Run the complete
fingerprinting suite on the client (using 23 CSS
properties at the time of writing) and save the values.

3) For each subsequent request of the client: choose a
subset of CSS properties and test them on the client.



4) Receive the data and check if it was requested by
the framework (anti-replay protection).

5) Compare the values with the saved values.
As this feature needs data from the client, this checker

has been implemented as an asynchronous checker. The
client is challenged to answer a subset of the previously
gathered properties either for each HTTP request or
within a configurable interval between CSS checks (say,
every 10 or 20 requests). By default, the framework
tests three CSS properties and compares the results with
the previously collected fingerprint of that browser. The
data received asynchronously must match the requested
properties and must arrive within a configurable time
span. If the received data do not match the expected
data, arrive too late or are not requested by the feature,
the session is terminated immediately. If no response
is received within a configurable time span, the session
is terminated as well. SHPF may be also configured to
terminate the session if no JavaScript is enabled, thus
making CSS fingerprinting mandatory by policy.

In order to reliably identify a given browser, we selected
a mix of CSS3 properties that are not uniformly supported
by current browsers. In total, 23 properties were identified
as suitable for fingerprinting. The website http://www.
caniuse.com was used to identify CSS properties that
are not uniformly compatible across browsers, as well as
properties that still have vendor prefixes. The 23 identified
properties, possible testing values, and their status in the
standardization and implementation process are shown
in Table IV. Please note that in some cases merely the
additional values of an already existing property are new,
while the CSS property itself is not a novel CSS feature.

For each CSS property, an empty HTML <div> ele-
ment is inserted into the page, which contains an inline
CSS definition. The element is assigned an ID so that it
can be later accessed with JavaScript. Such an element
might, e.g., look like this:

<div id=”cssCheck1” style=”min-width:35px;”></div>

JavaScript is then used to check whether the properties
set previously exist in the style object, and also to query
the property’s value. The answers from the client are col-
lected in an array, which is then converted into JSON and
sent to the server secured by HTTPS or the SecureSession
feature against eavesdroppers.

[”minWidth” in
$(”cssCheck1”).style,$(”cssCheck1”).style.minWidth]

For our implementation of CSS fingerprinting in SHPF
we chose to use CSS properties only - CSS selectors were
not used because CSS properties are sufficient to reliably
identify a given browser. Nonetheless, the framework
could be extended by supporting CSS selector and CSS
filter fingerprinting in the future.

D. SecureSession
The SecureSession feature implements the SessionLock

protocol by Ben Adida [1], but extends and modifies it in

certain aspects:
• SessionLock utilizes HTTPS to transfer the session

secret to the client. In our SecureSession feature we
use a Diffie-Hellman Key Exchange [5]as discussed
by Ben Adida in his paper because of the recent
attacks against the trust foundation of HTTPS (Dig-
inotar, Comodo) to do the same. We also looked at
performance and security implications of that choice.

• We use the new WebStorage [40] features imple-
mented by modern browsers by using JavaScript and
the localStorage object to store the session secret.

• We improved patching of URLs in JavaScript com-
pared to the original protocol.

SessionLock used the URL Fragment Identifier to
keep the session secret around but hidden in the network
traffic. For that, each URL needs to be patched so
that the fragment gets appended. Using WebStorage is
superior in multiple ways. If WebStorage is not supported
by the browser, SecureSession falls back to using the
fragment identifier. SessionLock furthermore hooks into
the XMLHttpRequest object to intercept and modify
asynchronous messages. We determined that there are
cross-browser issues in using this method. In order to
improve compatibility across browsers, we used the
modified XMLHttpRequest object by Sergey Ilinsky [16]
to make message interception compatible across different
browsers.

In order to implement the above features we used two
checkers for the framework feature:

• The SecureSessionSecretNegotiation-Checker is an
asynchronous checker. The server has to run a Diffie
Hellman Key Exchange only if no valid session secret
is present. The server first calculates its private and
public parts, sends them to the client as JavaScript
code, and receives the client parts asynchronously in
response when the client is done calculating. Both
sides can then calculate the shared session secret.

• The SecureSessionSecretChecker-Checker is a syn-
chronous checker that validates all incoming requests
regarding HMAC and timestamp.

The SecureSessionSecretNegotiation initiates the key
exchange by sending JavaScript to the client containing
the calculations as well as the prime, generator and public
number. The client sends its public number back via an
asynchronous call. The server assumes that JavaScript is
disabled if it receives no answer from the client within
a (configurable) period of time. Again, SHPF can be
configured to make this feature mandatory. If an answer
is received, all further requests need to be appended
with a valid HMAC and timestamp (configurable). This
is done by the SecureSessionSecretChecker. While the
method is the same as in SessionLock, we ported it to
PHP. However, there is an exception to the rule: As Ben
Adida discussed in his paper, there may be cases where
a URL is not valid, such as when a page is opened
from a bookmark. In such a case, the feature allows a
configurable amount of consecutive requests that may

http://www.caniuse.com
http://www.caniuse.com


CSS Status - Recommendation CSS Status - Working Draft
Feature Value Feature Value
display inline-block transform rotate(30deg)

min-width 35px font-size 2rem
position fixed text-shadow 4px 4px 14px #969696
display table-row background linear-gradient (left, red, blue 30%, green)
opacity 0.5 transition background-color 2s linear 0.5s

background hsla(56, 100%, 50%, 0.3) animation name 4s linear 1.5s infinite alternate none
resize both

CSS Status - Cand. Recommendation box-orient horizontal
Feature Value transform-style preserve-3d

box-sizing border-box font-feature-setting dlig=1,ss01=1
border-radius 9px width calc(25% -1em)
box-shadow inset 4px 4px 16px 10px #000 hyphens auto

column-count 4 object-fit contain

Table IV
23 CSS PROPERTIES AND VALUES IDENTIFIED FOR CSS FINGERPRINTING

fail. If a valid request is received before that amount is
exceeded, no action is taken. To make the key exchange
secure against MITM attacks, this feature should only be
used on top of HTTPS or a secure, offline communication
channel for exchanging the parameters and the JavaScript
code.

For implementation we used the Crypt DiffieHellman
library from the PEAR Framework6 on the server side.
On the client, we used the Big Integer Library of Leeom
Baird7. The SecureSession feature also implements a
CryptoProvider. The CryptoProvider offers AES-CBC en-
cryption by using the SHA-1 hash of the session secret ne-
gotiated between the framework and the client as the key.
For PHP, the PHP extension mcrypt8 is used, for JavaScript
we use the library crypto-js9. The CryptoProvider then
encrypts all asynchronous messages from the client to the
framework. Furthermore, it prepends a timestamp to the
plaintext before encryption, thus preventing replay attacks
if the age of the timestamp exceeds a configurable time
span.

E. Further Fingerprinting Methods

Our framework is especially designed to allow new
and possibly more sophisticated fingerprinting methods to
be added at a later point in time by implementing them
as additional checkers. The presented results on HTML5
fingerprinting above, e.g., have not yet been implemented
at the time of writing. We are planning to implement
HTML5 fingerprinting as an asynchronous checker in
the near future. Other fingerprinting methods e.g., EFF’s
Panopticlick, can be added at ease adding 18.1 bits of
entropy on average [7]. See Section VI-A for related work
and other fingerprinting methods which could be added to
SHPF.

V. EVALUATION

There are multiple possible attack vectors that enable
an attacker to obtain session tokens of any kind and take

6http://pear.php.net/package/Crypt DiffieHellman
7http://leemon.com/crypto/BigInt.html
8http://php.net/manual/en/book.mcrypt.php
9https://code.google.com/p/crypto-js/

over the victim’s session. We will discuss for each attack
vector how SHPF can detect session hijacking and how it
prevents it.

A. Threat Model

An attacker in our threat model can be local or
remote from the victim’s point of view, as well as either
active or passive. While a passive attacker just listens
without interacting with the client, an active attacker
sends, modifies or actively drops communication content.
Different requirements have to be met for each of the
outlined attacks, however, these are beyond the scope of
this paper.

Figure 2 shows an overview of the different points of
attack that were considered while designing SHPF. They
are based on the OWASPS Top 10 from 201010, which
has multiple categories that either directly allow session
hijacking, or facilitate it. The most notable categories are
”A2 Cross-Site Scripting“, ”A3 Broken User Authenti-
cation and Session Management“ and ”A9 Insufficient
Transport Layer Protection“. We particularly considered
threats that are actively exploited in the wild, with tools
available for free.

The following points of attack allow an attacker to
hijack a session:

1) Different attacks where the attacker has access to
the victim’s network connection.

2) The target website is vulnerable to code injection
attacks (XSS), pushing malicious code to the client.

3) Local code execution within the victims browser’s
sandbox, e.g., by tricking the victim into executing
Javascript (besides XSS).

4) Attacker has access to 3rd party server with access
to the session token, e.g., a proxy, Tor sniffing or
via HTTP referrer string.

The detailed attack descriptions for each of these
attacks are as follows: 1) If the attacker is on the same
network as the victim, e.g., on unencrypted Wi-Fi,
searching for unencrypted session tokens is trivial - these
are the methods used, for example, by Firesheep and

10https://owasp.org/index.php/Top 10

https://owasp.org/index.php/Top_10
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              2. XSS
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Figure 2. Attack Points for Session Hijacking

FaceNiff. In case the connection between victim and
website is encrypted with HTTPS, the attacker might
use sslstrip [25] or cookiemonster [32], as HTTPS as a
sole countermeasure against session hijacking has been
shown to often be insufficient. The token could also be
obtained by an active attacker on the same network by
means of ARP or DNS spoofing, redirecting the victim’s
communication in a man-in-the-middle attack, or DNS
cache poisoning [18]. 2) If an attacker is able to inject
Javascript into the website which is then executed at
the victim side (XSS), he can transmit all necessary
session tokens to himself and take over the session. 3)
An attacker could access session tokens by attacking the
browser directly using social engineering or a malicious
browser extension, e.g., by tricking a victim into copy-
pasting some Javascript into the URI bar of the browser.
4) In case of a poorly implemented Web application
(HTTP referrer string), insecure transport (HTTP only)
or network design (logging proxy server), an attacker
might be able to access accidentally leaked tokens. This
class of attacks would also include shoulder surfing (if
the token is part of the URI) and improper usage of the
Tor [6] anonymization network [27], [14].

B. Discussion

To counter the attacks listed above, SHPF relies on a
combination of its features: the shared secret between the
server and client using the SecureSession feature, and
session hijacking detection using browser fingerprinting.
An attacker would thus have to find out the secret, share
the same IP and copy the behavior of the victim’s browser
- either by running the same browser version on the same
operating system or by collecting the behavior of the
browser over time.

The basic monitoring of HTTP information gives a
baseline of protection. Binding a session to, e.g., an
IP address makes it considerably harder for a remote
attacker to attack, and a local attacker needs to be on

the same local area network if the victim is behind NAT.
Changes in the UserAgent or the HTTP header ordering
are easily detectable, especially if careless attackers use
sloppy methods for cloning header information, or only
use some parts of the header for their user impersonation:
Firesheep and FaceNiff, for example, both parse the
header for session tokens instead of cloning the entire
header. A recent manual analysis of the Alexa Top100
pages showed that only 8% of these very popular websites
use basic monitoring in any form - notably eBay, Amazon
and Apple [3]. Even though asynchronous challenges for
fingerprinting on the attacker’s machine could also simply
be forwarded to the victim for the correct responses, the
additional delay is detectable by the server.

We shall now discuss for each of the attacks outlined
above how SHPF protects the session through active
attack detection and prevention. Even though SHPF
could work without HTTPS in certain configurations and
environments, it should be used for starting the session,
as without HTTPS bootstrapping the session becomes
complicated, e.g., with respect to possible MITM attacks.
As HTTPS is already used widely for user authentication,
we assume that it is available at least for bootstrapping
the SecureSession feature. SHPF has the following impact
on the attack vectors: 1) Snooping or redirecting local
network traffic can be detected at the server with either
browser fingerprinting or using the shared secret, which
is never transmitted in clear from SecureSession - both
methods are equally suitable. 2) Cross-site scripting
prevention relies on browser fingerprinting only, as
the attacker could obtain session tokens by executing
Javascript code in the victim’s browser. The shared secret
is not protected against such attacks. 3) Local attacks are
also detected by browser fingerprinting only - the session
secret is not safe, thus the attacker has to either run the
same browser, or answer the asynchronous checks from
the framework correctly. 4) Accidental token leakage is
again prevented by both aspects, so even if the session is
not encrypted by HTTPS the content is encrypted by the
SecureSession feature and fingerprinting is used to detect
changes in the used browser. Please see the original paper
about SessionLock [1] for a detailed security analysis of
the protocol.

SHPF does not intend to replace traditional security fea-
tures for web sessions. While our approach cannot prevent
session hijacking entirely it makes it considerably harder
for the attacker. For sensitive websites with a high need for
security, additional measures like 2-factor authentication
or client-side certificates should be employed.

C. Limitations

Even though SHPF makes session hijacking harder, it
has limitations: the HTTP headers and their ordering, as
well as the UserAgent, are by no means security measures
and can be set arbitrarily. However, if enough information
specific to a browser is used in combination with ever



shorter update intervals for browsers, we believe that
fingerprinting is suitable for preventing session hijacking.
Secondly, SHPF does not protect against CSRF: An at-
tacker who is able to execute code outside of the browser’s
sandbox, or has access to the hardware, can bypass our
framework. Thus session hijacking is made harder in the
arms race with the adversary, but not entirely prevented.
Another limitation is the vulnerability to man-in-the-
middle attacks: Diffie-Hellman in Javascript for shared
secret negotiation is vulnerable to MITM, and either a
secure bootstrapping process for session establishment or
offline multifactor authentication is needed to protect the
session against such adversaries.

D. Future Work

We plan to extend CSS fingerprinting with CSS se-
lectors and CSS filters and intend to implement HTML5
fingerprinting as an additional SHPF feature. We further-
more plan to assess the tradeoff between the numbers of
asynchronous challenges sent by the server to the total
pool size of challenges for recent browser versions, as well
as to measure the entropy of each fingerprinting method
in practice. Even though the SHPF features for CSS (and
soon HTML5 fingerprinting) are not designed to be used
as single-use challenges within a session, we believe that
measuring the entropy on a large set of users would be
beneficial for the area of browser fingerprinting.

VI. RESULTS

In general, the performance impact of running SHPF
on the server is negligible as most of the processing is
implemented as simple database lookups. Only a few
kilobytes of RAM are needed per session and client for
all features combined, while the overhead on the network
is around 100 kilobytes (mostly for the libraries used by
our framework - they need to be transferred only once due
to browser caching). A mere 15 lines of code are needed
to include SHPF in existing websites (see Appendix
A), while the features each consist of a few hundred
lines of code on average, with SecureSession being by
far the biggest feature (about 4000 lines). Existing Web
applications implement far more complicated logic flows
and information processing capabilities then SHPF. 11

The biggest impact on performance is caused by the
generation of the primes for the Diffie-Hellman key ex-
change. We used a small but diverse set of devices to
assess the clients’ performance for creating the shared
secret: a notebook (i7 CPU with 2 Ghz), a netbook (AMD
Sempron with 1.5 Ghz) and two different smartphones
(iPhone 4S and Nexus S). On the notebook, the latest
versions of Chrome and Firefox at the time of writing
(Chrome 18 and Firefox 12) were the fastest browsers for
this operation, while Internet Explorer 9 was up to four
times slower. As smartphones are limited with regard to
CPU performance, they were even slower. A comparison

11We will release our datasets along with the source code once the
paper is accepted.

of runtime needed for generating primes of different length
can be seen in Figure 3. Depending on the security need of
the website this overhead should be considered, as well as
the amount of expected mobile users. The overhead caused
by CSS fingerprinting on the client side is negligible
compared to regular website rendering.

Figure 3. Performance of Prime Number Generation

A. Related Work

In the area of browser fingerprinting, different
approaches have been used to identify a given browser.
Panopticlick12 relies on the feature combination of
UserAgent string, screen resolution, installed plugins and
more to generate a unique fingerprint [7] that allows the
tracking of a given browser even if cookies are disabled.
Even though the features of Panopticlick, such as screen
resolution or installed browser plugins, are not yet fully
incorporated in our framework, we are planning to do
this in the near future. Other recent work in the area of
browser fingerprinting identifies a client’s browser and
its version as well as the underlying operating system
by fingerprinting the JavaScript engine [9]. While the
approach in [28] uses various well-known JavaScript
benchmarks to generate a unique fingerprint based on
timing patterns, [35] employs a JavaScript conformance
test to identify subtle differences in the conformance
of the underlying JavaScript engine. Another recent
method uses website rendering differences as presented
in [29]. Like SHPF, these methods allow the detection
of a modified or spoofed UserAgent string, as it is
not possible to change the behavior of core browser
components like the rendering or the JavaScript engine
within a browser.

With regards to privacy, cookies and browser
fingerprinting can be employed to track a user and
their online activity. A survey on tracking methods in
general can be found in [26]. Other work has recently
shown that the UserAgent is often sufficient for tracking a
user across multiple websites or sessions [43]. Intersection
attacks on browsing history [31] or social networking

12https://panopticlick.eff.org

https://panopticlick.eff.org


sites [42] can be used to identify users. Session hijacking
has been shown to allow access to sensitive information
on social networking sites [15]. Finally, session hijacking
is often conducted using cross-site scripting (XSS)
attacks that are used to send the session information to
an attacker. While this can be employed to protect a user
from entering the password at an insecure terminal [3], it
is often used maliciously, e.g., to impersonate the victim.
Different approaches have been implemented to protect
users from XSS on the client side [19], [39], [30] as well
as on the server side [17].

The OWASP AppSensor project13 is a framework that
offers similar features as SHPF for Web applications:
It can detect anomalies within a session and terminate
it if necessary. However, it only uses a very limited set
of checks compared to SHPF, namely the IP and the
UserAgent string.

VII. CONCLUSION

In this paper, we presented our framework SHPF, which
is able to raise the bar for session hijacking significantly.
It detects and prevents attacks and hijacking attemps of
various kinds, such as XSS or passive sniffing on the
same network (Wi-Fi). We furthermore proposed two
new browser fingerprinting methods based on HTML5
and CSS, which can identify a given browser. SHPF
uses browser fingerprinting to detect session hijacking
by constantly checking (e.g., with every request) if the
browser is still behaving as it did when the session was
started. SHPF can be configured to run with different
security levels, allowing additional security checks for
sensitive sessions or session parts. Future and upcoming
fingerprinting methods can be incorporated easily.

APPENDIX

APPENDIX A - SHPF EXAMPLE
include (’../SHPF/SHPF.php’);

$shpf = new SHPF\SHPF ();
$shpf->setCheckFailedHandler (’\failedHandler’);
$shpf->getOutput()->includeJSLibrary = false;

$serverEnvFeature = new SHPF\Features\HttpHeader\HttpHeaderFeature ($shpf);
$serverEnvFeature->setCheckAll (true);
$shpf->addFeature ($serverEnvFeature);

$shpf->addFeature (new SHPF\Features\SecureSession\SecureSessionFeature ($shpf));

$shpf->addFeature (new SHPF\Features\CSSFingerprint\CSSFingerprintFeature ($shpf));

$ret = $shpf->run ();

$output = Registry::get (’smarty’);

$output->append ($shpf->getOutput()->flushHead(true), ’head’);
$output->append ($shpf->getOutput()->flushHTML(true));
$output->append ($shpf->getOutput()->flushJS(true));
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