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Abstract

The Java virtual machine is a popular target for many lan-
guage implementers. Due to the unusually poor performance
of hosted interpreters, many programming language imple-
menters resort to implementing a custom compiler that emits
Java bytecode instead. We studied performance of these
hosted interpreters targeting the JVM and identified common
bottlenecks preventing their efficient execution. First, similar
to interpreters written in C/C++, instruction dispatch is ex-
pensive on the JVM. Second, Java’s array semantics dictate
expensive runtime exception checks, which negatively affect
array performance essential to interpreters.

We present two optimizations targeting these bottlenecks
and show that the performance of the optimized interpreters
increases dramatically: we report speedups by a factor of
up to 2.45 over the Jython interpreter, and 3.57 over the
Rhino interpreter respectively. Furthermore, the performance
attained through our optimizations is comparable with
custom compiler performance. We provide an easily accessible
annotation-based interface to enable our optimizations. Thus,
interpreter implementers can expect substantial performance
boosts in a matter of hours of implementation effort.

Categories and Subject Descriptors D.3.4 [Program-
ming Languages]: Processors—Code generation, Compilers,
Interpreters, Optimization

General Terms Design, Languages, Performance

Keywords Interpreters, just-in-time compilers, threaded
code, dynamic languages, Jython, Rhino, Java virtual ma-
chine

1. Motivation

The easiest way of getting a new dynamic language off
the ground is by writing an interpreter. If that interpreter
runs on top of a widely available virtual machine such
as the Java Virtual Machine (JVM), the new language
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then becomes instantly available on all the platforms that
already have the underlying VM. Unfortunately, this “hosted”
approach in which one VM runs on top of another has serious
performance implications. Compiler-based implementations
of the dynamic language typically run much faster than
hosted ones.

Hence, implementers often invest effort into building a
compiler once a dynamic language becomes more popular.
Among possible compiler-based implementation choices are
“native” compilers that translate directly into executable ma-
chine code and “host-VM targeted” compilers that translate
into a host VM’s intermediate language and thereby preserve
portability of the implementation. Many recent implementa-
tions of dynamic languages follow this “host-VM targeted”
model, for example both Jython and Rhino implement a
custom compiler in addition to their bytecode interpreters.
Similar to their corresponding traditional C/C++ imple-
mentations, these custom compilers frequently emit a simple
bytecode representation of the program, but usually do not
perform expensive optimizations. Nevertheless, implementa-
tion costs for these custom compilers are significantly higher
than the effort needed to implement an interpreter.

In this paper we investigate the performance potential
of optimizing hosted JVM interpreters, with the intent to
reconcile the ease-of-implementation of interpreters with the
performance of custom compilers. To this end, our paper
makes the following contributions:

• We illustrate the primary factors explaining why inter-
preters targeting the Java virtual machine are inefficient
(Section 2).

• We describe the implementation of two optimizations
targeting the identified inefficiencies (Section 3). We
added these optimizations to the virtual machine, such
that they are available to all language implementers
targeting the JVM by using annotations.

• We report the results of a careful and detailed evaluation
of two hosted JVM interpreters, Jython/Python and
Rhino/JavaScript (Section 4). Following these data, we
conclude:

Performance: We report speedups of up to a factor
of 2.45 and 3.57 for Jython and Rhino, respectively
(Section 4.2.1).

Ease of implementation: Manually transforming
an existing bytecode interpreter to use our optimiza-
tions requires orders of magnitude less effort than
implementing a custom Java bytecode compiler (Sec-
tion 4.5).





operands corresponds to writing to the array, and popping
operands to reading from the array.

In a stack-based virtual machine interpreter, almost every
instruction is going to push its result on the array. In
addition, Shi et al. [26] measured that load instructions
for Java bytecode account for almost half of all executed
interpreter instructions. Similar measurements for Python
confirm that this observation holds for Python bytecode
interpreters, too [6]. In consequence, we establish that due
to this unusually high frequency, efficient interpreters need
high array store performance.

In systems programming languages, such as C and C++,
implementers need not give this a second thought, be-
cause arrays are implicitly low-level and therefore yield
the desired performance. But in Java, array semantics are
different. In addition to the NullPointerException and
ArrayIndexOutOfBoundsException exceptions in the case
of arrays, Java’s array semantics guarantee type-safety, too.
To this end, Java checks whether the insertion-candidate ob-
ject matches the type of other array elements for each write
to an array. Whenever the Java virtual machine detects a
type-safety violation, it will raise an ArrayStoreException.

While it is known that exception checks are expensive,
and that exception elimination has been actively researched
and successfully addressed in previous work, the case for
virtual machine interpreters is particularly pathological. The
reason for this is twofold: (i) the unusually high frequency of
array stores on the operand stack, and (ii) expensive nature
of involved type checking operations.

3. Reusable, Annotation-based

Optimizations

The previous section highlights the importance of optimiz-
ing both instruction dispatch and high performance array
stores to make hosted JVM interpreters efficient. In this sec-
tion, we are going to discuss our implementation of reusable,
annotation-based interpreter optimizations addressing both
issues. By adding these optimizations to the Java virtual
machine, they become immediately available to all hosted lan-
guage implementations. As a result, language implementers
can leverage this foundation to unleash performance potential
previously reserved for custom compilers.

3.1 Efficient Instruction Dispatch

As we described in a previous section (see Section 2),
traditional threaded code implementation techniques cannot
be translated to Java. This is primarily due to the restricted
access to pointers, preventing the use of computed goto’s
or function pointers. We address this fundamental issue by
adding the ability to generate efficient subroutine threaded
code to the Java virtual machine. The following sections are
going to address the two different perspectives to providing
subroutine threaded code to implementers: the point-of-view
of programming language implementers on the one hand,
and the perspective of JVM implementers on the other hand.

The Language Implementer’s Perspective

For a language implementer, our current full-fledged proto-
type implementation requires only negligible sets of changes.
First, we assume that the language implementer already im-
plemented a switch-dispatch based interpreter. Frequently,
this resembles a straightforward port of an interpreter present
in a system that does not target the Java virtual machine.

For example, Jython’s bytecode interpreter resembles the
interpreter of CPython.

The following listing presents an abstracted view of this
interpreter, with the BINARY_ADD i-op highlighted:

1 while (True) {
2 int opcode= instructions[pc++];
3 /* optional operand decoding */
4 switch (opcode) {
5 case Opcode.LOAD_FAST:
6 /* i-op implementation
7 omitted
8 */
9 case Opcode.BINARY_ADD: {

10 PyObject b = stack.pop ();
11 PyObject a = stack.pop ();
12 stack.push(a._add(b));
13 break;
14 }
15 }
16 }

Listing 1: Original switch-based interpreter.

For the implementer to enable threaded code generation
and execution, we require only two steps:

1. extract the i-op implementations to their own methods,
and

2. add annotations to these methods.

Listing 2 illustrates these changes for the BINARY_ADD in-
struction:

1 @I_OP(Opcode.BINARY_ADD)
2 public void binary_add () {
3 PyObject b = stack.pop ();
4 PyObject a = stack.pop ();
5 stack.push(a._add(b));
6 }

Listing 2: After performing transformations.

Listing 2 shows that the annotation on line one binds
the actual opcode value to the binary_add method. Our
implementation of automated threaded code generation
requires this mapping of opcodes to method addresses; the
following section explains this in sufficient detail.

It is worth noting that this transformation is purely
mechanical. This is precisely, why we believe that this
transformation could be automated in future work. For
example, by annotating only the dispatch loop, one should
be able to automate the subsequent processing steps. But,
even without automation, this task is straightforward and
introduces two new lines of code per i-op (one for the
annotation, and one for the method declaration), and replaces
the break statement with a closing parenthesis.

The JVM Implementer’s Perspective

The effort of adding a threaded code generator to the
Java virtual machine pales in comparison to writing a full-
blown just-in-time compiler. But, before delving into the
implementation details let us first recapitulate what we
know from threaded code. This is interesting insofar, as
in a virtual machine environment we are free to support
multiple threaded code techniques and the VM can choose
which one to generate based on other sources of information,
such as platform or profiling information. As mentioned
in Section 2, subroutine threaded code is a particularly
attractive derivative of the original threaded code technique.
This is due to having the full context of each function’s



Algorithm 1 I-Ops Code Table Initialization

1: procedure InitializeICT(class)
2: for method ∈ class.getDeclaredMethods() do
3: i op← method.getAnnotation()
4: if i op 6= ∅ then
5: opcode← i op.getAnnotationValue()
6: ICT [opcode] ← compile(i op)
7: end if
8: end for
9: end procedure

bytecode sequence mapped to native machine code. It is
precisely this representation, which allows full exploitation
of the speculative execution features of modern CPUs.

In consequence, a JVM implementation might choose
among several different threaded code representations. For
instance, it is reasonable to start out executing by generating
direct threaded code interpreter at first, and switching to
a subroutine threaded code interpreter only for frequently
executed functions. We chose to only implement subroutine
threaded code in our prototype, but there is no restriction
preventing the use of multiple different kinds of threaded
code.

To generate threaded code, we need to map the guest
virtual machine instructions to the native machine instruc-
tions. This requires (i) decoding of guest virtual machine
instructions, and (ii) finding operation implementations, the
i-ops, corresponding to opcodes. The former is mostly an
engineering problem, as most interpreter implementations
use reasonably similar instruction encodings. An industrial-
strength implementation could, e.g., support multiple dif-
ferent instruction encodings by having separate annotations
or more parameters for each annotation. The second point,
binding opcode values to i-ops, is precisely what we require
from guest language implementers. To emit the actual na-
tive machine code, we rely on the Java virtual machine
implementation’s backend and assembler; this makes our
implementation portable by design.

Algorithm 1 shows how we build an internal representation—
known as the i-ops code table, or ICT for short—that maps
each opcode to the native machine address of the compiled
code. It is worth noting that we leverage the existing JIT
compiler for generating the i-ops assembly code. Further-
more, we initialize the ICT in the static constructor of our
subroutine threaded code interpreter.

Next, we need to generate the actual subroutine threaded
code. Algorithm 2 presents the algorithm at the heart
of our threaded code generator (abbreviated as TCG):
This algorithm contains several interesting details. First
of all, we see that we need to be able to decode the
python bytecode representation, py code. For both of the
language implementations we evaluated on our prototype,
the necessary changes are restricted to this part only. Then,
we see how we use the ICT to map the opcode to the actual
machine code address. Finally, we see that our threaded code
generator emits either a call instruction or a jump instruction
on line 7 via genCallOrJump. This is due to handling
simple intra-procedural control flow, such as backwards
jumps and returns. Context-threaded code includes inlining
jump instructions into standard subroutine threaded code,
too, but in contrast we do not perform its tiny inlining [2].

Inlining Control-Flow Instructions Inlining uncondi-
tional branches is straightforward. We just translate an un-

Algorithm 2 Threaded Code Generator

1: procedure GenThreadedCode(py code)
2: threaded code← allocate(py code)
3: while py code 6= ∅ do
4: opcode← py code.nextOpcode()
5: compiled i op← ICT [opcode]
6: address← compiled i op.getEntryPoint()
7: code← genCallOrJump(opcode, address)
8: threaded code.append(code)
9: end while

10: end procedure

conditional branch into a jmp machine instruction, thus elimi-
nating the corresponding call instruction. To find the native
machine jump target, we need to extract the virtual target
address from the input bytecode instruction, and convert it
to the corresponding target address at machine level while
assembling the jmp instruction.

Inlining conditional branches is not directly possible, how-
ever. The key issue preventing this is that we cannot in gen-
eral infer Boolean expression evaluation logic implemented
in the interpreted host language. To optimize subsequent
processing using native machine instructions, we require the
guest language implementers to return integer results con-
sistent with commonly agreed upon semantics, i.e., zero for
false and non-zero for true. The following listing illustrates
the problem:

22 call &jump_if_true

27 test rax , rax

32 jnz &branch_target

Listing 3: Emitted native machine code for conditional
branch.

An Example

Listings 4, 5, and 6 explain the details of threaded code
generation as described above.

def add(item0 , item1 ):
return item0 + item1

Listing 4: Python function add.

Listing 4 shows a simple Python function, add, that “adds”
two local variables, item0, and item1. Due to dynamic
typing and ad-hoc polymorphism, we will not know which
operation to invoke until we witness the actual operands and
choose the actual operation, e.g., numeric addition or string
concatenation, at run-time.

0 LOAD_FAST 0 (item0)
3 LOAD_FAST 1 (item1)
6 BINARY_ADD
7 RETURN_VALUE

Listing 5: Python bytecode sequence for add function.

Listing 5 presents the Python bytecode representation of the
add function of Listing 4, as emitted by the CPython compiler.
Both of the LOAD_FAST instructions require an operand, zero
and one respectively, to identify the corresponding local
variables.
Listing 6 displays the native machine code we emit for
the bytecode sequence of Listing 5. Note that we inline
the immediate operands zero and one from the LOAD_FAST

instructions directly into the generated native machine code,



thereby eliminating instruction decoding altogether. Switch-
based interpreter decodes the optional operands from the
instruction stream as shown in Listing 1. However, subroutine
threaded code interpreter does not operate on the instruction
stream, so we decode the the optional operands during
threaded code generation, and inline into the threaded code.

8 mov rsi , 0x0 ;LOAD_FAST 0
13 call &load_fast ;LOAD_FAST 0
18 mov rsi , 0x1 ;LOAD_FAST 1
23 call &load_fast ;LOAD_FAST 1
28 call &binary_add ;BINARY_ADD
33 call &return_value ;RETURN_VALUE
38 ret

Listing 6: Emitted subroutine threaded code for add function.

Putting It All Together

Algorithm 3 Putting It All Together.

1: procedure Interpret(method)
2: code← getThreadedCode(method)
3: if code = ∅ then
4: code← genThreadedCode(method)
5: method.cache(code)
6: end if
7: callThreadedCode(code)
8: end procedure

Algorithm 3 details the actual implementation of how all
parts fit together. We lazily generate subroutine threaded
code at run-time, in a just-in-time fashion, i.e., before its first
execution. If our code cache is of limited size, we can easily
remove previously generated, cached subroutine threaded
code. Subsequent invocation triggers re-generation, which
requires only a linear pass and therefore is efficient. The
execution of the threaded code interpreter starts by calling
threaded code, i.e. transferring the control to the generated
machine code.

3.2 Efficient Array Stores

The second major problem affecting hosted interpreter per-
formance on the Java virtual machine is array-write perfor-
mance. We identified the detrimental effect of preserving
array type-safety for hosted interpreters. Since almost all
interpreter instructions write the results of their execution
to the operand stack, repeatedly verifying the type-safety of
the array used to model the operand stack is expensive. This
is particularly costly due to the nature of type compatibility
checks incurred by hosted language implementations.

For example, Jython uses the following implementation
to manage the operand stack:

1 static class PyStack {
2 final PyObject [] stack;
3 /* ... details omitted ... */
4 }

Listing 7: Jython’s operand stack implementation.

Internally, PyStack uses an array of PyObject objects to
implement a stack. However, PyObject is the root class of
Jython’s object hierarchy, used to model Jython’s object
model on the Java virtual machine. During actual inter-
pretation, elements of the stack array will be instances of
PyDictionary, PyComplex, PyInteger, etc. As a result, type

checking the stack Java array requires repeatedly verifying
that the objects actually derive from PyObject.

It turns out, however, that checking this exception is com-
pletely redundant. Since PyObject is the root class for all
Jython-level classes, it follows that a sound interpreter imple-
mentation will exclusively operate on objects corresponding
to this class hierarchy. Consequently, while checking the
ArrayStoreException is necessary in the general case, it is
strictly not necessary for a hosted interpreter operating on
its own class hierarchy. Put differently, by construction the
interpreter will never operate on an object not deriving from
PyObject.

Similar to Java bytecode verification [21], we should be
able to verify that the interpreter only operates on objects
of the same type. We would need to implement the data-
flow analysis described by Leroy [21] to apply to all i-ops
and show that for all possible combinations, operands are
bounded by the PyObject, or some other base class for
another interpreter implementation. We did not, however,
implement this step and leave this for future work. Our
current prototype implementation provides an annotation
that acts like an intrinsic and instructs the just-in-time
compiler to omit the ArrayStoreException check.

Please keep in mind that the same argument holds not only
for Jython, but for other implementation, too, such as Rhi-
no/JavaScript, which we use in our evaluation. Similarly, for
languages like Python, JavaScript, and Ruby, we can compute
the maximum stack size for the operand stack and could sub-
sequently eliminate the ArrayIndexOutOfBoundsException

by verifying that an actual function sequence’s stack height
does not exceed its precomputed limit.

4. Evaluation

In this section, we evaluate the performance of our system for
both Jython and Rhino. We start by explaining the system
setup, and Maxine, which the underlying Java VM used in our
implementation. Then, we show our benchmark results for
Jython and Rhino, and analyze the effectiveness of subroutine
threaded code and array store optimization. Furthermore, we
analyze the performance effect of using the HotSpot server
compiler. Finally, we present our results of investigating
the implementation effort required by implementing an
interpreter and a custom compiler.

4.1 System Setup

Hardware and Java virtual machines. We use Oracle
Labs’ meta-circular Maxine [29] research virtual machine to
implement the previously described optimizations. Maxine’s
just-in-time compilation strategy eschews a mixed-mode in-
terpretation strategy that is found in the HotSpot virtual
machine, and relies on a fast, non-optimizing template just-
in-time compiler, known as T1X, instead. Once profiling
information embedded by T1X discovers a “hot” method,
Maxine relies on its derivation of the optimizing HotSpot
client compiler [20], named C1X, to deliver high performance
execution. Since Maxine does not have regular release num-
bers, we used the Maxine build from revision number 8541
(committed on October 16th, 2012) for implementing our
optimizations.

For our comparison against the HotSpot server com-
piler [24], we use Oracle’s HotSpot Java virtual machine
version 1.6.

Regarding hardware, we use an Intel Xeon E5-2660 based
system, running at a frequency of 2.20 GHz, using the Linux
3.2.0-29 kernel and gcc version 4.6.3.
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Figure 2: Speedups over Jython’s switch-based interpreter.
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Figure 3: Speedups over Rhino’s switch-based interpreter.

Interpreters. We evaluated the performance potential of
our optimizations using two mature and popular interpreters
targeting the Java virtual machine: Jython and Rhino, which
implement Python and JavaScript, respectively. Both of
these interpreters not only implement a virtual machine
interpreter, but for performance reasons also implement their
own custom compilers, which compile their corresponding
input languages directly down to Java bytecode. Therefore,
we can provide comprehensive performance evaluation that
compares against both, interpreters and custom compilers.
We optimized the interpreters for Jython version 2.7.0a2,
and Rhino version 1.7R4.

Interpreter Benchmarks. We select several benchmarks
from the computer language benchmarks game [15], a popular
benchmark suite for evaluating the performance of different
programming languages. We use the following benchmarks to
measure the performance of our modified systems in Jython
and Rhino: binarytrees, fannkuchredux, fasta, mandelbrot,
meteor (only available for Jython), nbody, and spectralnorm.

Procedure We run each benchmark with multiple argu-
ments to increase the range of measured running time. We
turn dynamic frequency and voltage scaling off to minimize
measurement noise [16]. We run ten repetitions of each bench-



mark with each argument and report the geometric mean
over all runs.

4.2 Performance

We evaluate the performance of subroutine threaded code
interpreter with and without array store optimization. First,
we compare our optimizations against switch-dispatch in-
terpreters. Next, we compare the performance of our opti-
mized interpreters against custom Java bytecode compilers
of Jython and Rhino, respectively. Then, we evaluate perfor-
mance improvements resulting from improving array stores in
isolation. Finally, we compare the baseline of using the client
compiler, C1X, against using the HotSpot server compiler,
C2.

4.2.1 Raw Interpreter Performance

Figures 2 and 3 report the speedups of our interpreter op-
timizations over Jython’s and Rhino’s switch-based inter-
preters, respectively. We normalize the performance by the
switch-based interpreter.

We achieve a 1.73× speedup over the switch-based inter-
preter only from subroutine threaded code in Jython. With
the array store optimization, we achieve a 2.45× speedup
over the switch-based interpreter. Similarly, we achieve a
2.13× speedup from subroutine threaded code, and when
combined with the array store optimization, we achieve a
3.57× speedup over the switch-based interpreter in Rhino.

The average speedup of 2.13× over Rhino’s switch-based
interpreter is higher than the average speedup of 1.73×
over Jython’s interpreter from subroutine threaded code.
The reason is that Rhino executes more instructions than
Jython for the same benchmarks, so the dispatch overhead is
higher in Rhino. Therefore, reducing the dispatch overhead
by subroutine threaded code gives higher speedups in Rhino.

The spectrum of the speedups is relatively wide. Our
subroutine threaded code interpreter and array store opti-
mization together performs better in the benchmarks that
have higher dispatch overhead, such as fannkuchredux. For
example, the Python version of this benchmark only has one
Python function, therefore, the interpreter is only invoked
once. Currently, Maxine does not support on-stack replace-
ment (OSR) which allows the VM to replace the stack frame
with that of an optimized version. Therefore, Maxine never
gets a chance to recompile the switch-based interpreter for
fannkuchredux.

When C1X recompiles the switch-based interpreter, it pro-
duces better code, so the switch-based interpreter performs
better. For instance, the threaded code interpreter speedups
are lower for the call-intensive binarytrees benchmark.

4.2.2 Custom Compiler Performance

Figures 4 and 5 show the speedups of our optimizations
over Jython’s and Rhino’s custom Java bytecode compilers.
We normalize the performance by the custom compiler
performance, i.e., values lower than 1.0 indicate a slow-down
relative to the custom compiler.

For Jython, subroutine threaded code achieves 70% of
the performance of the custom compiler. Together with the
array store optimization, it delivers 99% of the performance
of Jython’s custom compiler. Likewise, subroutine threaded
code itself delivers 42% of the performance of the custom
compiler in Rhino. In combination with the array store
optimization, the subroutine threaded interpreter achieves
72% of the performance of Rhino’s custom compiler.

Our average performance of 0.72× compared to Rhino’s
custom compiler is lower than our average performance of
0.99× compared to Jython’s custom compiler. The reason
is that Rhino has a more complex compiler implementing
aggressive optimizations, such as data flow and type infer-
ence analyses. Rhino’s custom compiler uses nine different
optimization levels, and we use the highest optimization level
in our evaluation.

Our subroutine threaded code interpreter with array
store optimization outperforms the custom compiler in
fannkuchredux, fasta, mandelbrot, and nbody benchmarks in
Jython. We report the two highest speedups in fannkuchredux,
and mandelbrot.

Jython’s custom compiler compiles each Python program
into one class file, and generates a Java method for each
Python function. Maxine initially compiles each Java method
using its template-based just-in-time compiler, T1X. When
a method becomes hot, Maxine recompiles it using its opti-
mizing just-in-time compiler, C1X. Hence, subsequent invo-
cations of this method execute the optimized code. However,
the Java method generated by Jython’s custom compiler must
be invoked at least more than a certain threshold number of
times to trigger the recompilation by C1X. Fannkuchredux
and mandelbrot have only one Python function that executes
a hot loop. Without on-stack replacement, Maxine is not
able to produce optimized code for these two benchmarks.
As a result, the custom compiler does not perform well for
these benchmarks.

For call intensive benchmarks, such as binarytrees, our op-
timized interpreter performs worse than the custom compiler.
The optimizing JIT compiler is able to recompile the Java
methods generated by the custom compiler at a very early
stage in this benchmark.

4.3 Array Store Performance

We gain an additional 36% speedup by applying array store
optimization to our subroutine threaded code interpreter
for Jython. Similarly, we achieve an extra 68% speedup by
applying the same optimization to our subroutine threaded
code interpreter for Rhino. We counted the total number
of array stores performed in our subroutine threaded code
interpreters. On average, Rhino performs 21% more array
stores than Jython. Moreover, we use the perf [22] tool to
measure the number of machine instructions eliminated by
this optimization. We find out that array store optimization
removes 24% of the executed machine instructions on average
in our subroutine threaded code interpreter for Jython.
Furthermore, it reduces the executed machine instructions by
34% on average in our subroutine threaded code interpreter
for Rhino. Since Rhino performs more array stores and array
store optimization eliminates more instructions in Rhino, the
speedup we get from this optimization is higher.

4.4 HotSpot Server Compiler Performance

Previous studies of threaded code used a traditional, ahead-
of-time compiler which performs many time-consuming opti-
mizations. In contrast, Maxine’s C1X compiler—and the com-
piler it is modeled after, HotSpot’s client compiler C1 [20]—
focuses on keeping compilation time predictably low by omit-
ting overly time-consuming optimizations. On the other hand,
HotSpot’s server compiler—known as C2 [24]—generates
higher-quality code at the expense of higher latency imposed
by longer compilation times.

To qualify the potential gain from using a more aggressive
compiler, we compare the impact of our optimizations to
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Figure 4: Performance relative to Jython’s custom Java bytecode compiler.
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Figure 5: Performance relative to Rhino’s custom Java bytecode compiler.

compiling Jython’s switch-based interpreter with the server
compiler. Since the server compiler will only optimize long
running code, we increased the arguments when running the
benchmark suite in this set of experiments. We found that the
server compiler delivers 50% better performance on average.
Therefore, while using an aggressively optimizing compiler
does give a better baseline to the interpreter, it does not offset
our performance gains, but puts them into perspective with
the reported speedup potential in the relevant literature [12].

Furthermore, our technique allows the fast client compiler
to outperform the server compiler without using any of the
more expensive optimization techniques, which certainly has

practical implications, for example in embedded systems or
smartphones, where energy-efficiency is key.

4.5 Implementation Effort

4.5.1 Custom Compiler Effort

We found that some implementations targeting the Java
virtual machine started out by porting their C implementa-
tion counterparts to Java. Due to the bottlenecks identified
in Section 2, performance-conscious language implementers
will invariably write a custom Java bytecode compiler. This
investment, however, is costly in terms of initial implementa-
tion and continuous maintenance efforts.



Language Custom Compiler Package # Lines Interpreter Package/File # Lines Reduction

Jython org.jython.compiler 5007 org.jython.core.PyBytecode 1097 ∼ 5×

JRuby

org.jruby.compiler 5095
org.jruby.compiler.impl 6744
org.jruby.compiler.util 339
total 12178 org.jruby.ir.Interpreter.java 631 ∼ 19×

Rhino
org.mozilla.classfile 4183
org.mozilla.javascript.optimizer 5790
total 9973 org.mozilla.javascript.Interpreter.java 2584 ∼ 4×

Table 1: Implementation Effort Comparison.

Comparing the number of lines of code in an interpreter
and those in a custom compiler gives an indication of the
complexity of a custom compiler. Therefore, we counted the
number of lines of code in an interpreter and a custom com-
piler for various programming language implementations. We
used the sloccount program [10] to measure the number
of Java lines of code for Jython, JRuby, and Rhino. Ta-
ble 1 reports the lines of code numbers for each of these
programming language implementations. The second and
fourth columns list the package names counted. The third
and fifth columns show the number of lines counted from
these packages. The last column shows the factor of the
code size reduction between the custom compiler and the
interpreter of a particular implementation.

Jython’s custom compiler has 5007 lines of Java code.
This line count does not include the ASM Java bytecode
framework [4] used by the compiler for bytecode assembling.
Jython’s custom compiler relies extensively on generating
JVM-level calls to its runtime system to simplify the com-
pilation process. This technique results in a relatively small
and manageable compiler. Rhino has a more complicated,
optimizing compiler consisting of 9973 lines of Java code.

4.5.2 Manual Transformations

As explained in section Section 3.1, the language implementer
only needs to add two new lines of code for each i-op to the
existing switch-based interpreter to enable threaded code
generation. For example, this manual transformation results
in ∼ 250 new lines of Java code in Jython, and ∼ 160 new
lines of Java code in Rhino.

4.5.3 Virtual Machine Implementation Efforts

On the other hand, the threaded code generator for Jython
requires only 337 lines of Java code. Similarly, the threaded
code generator for Rhino needs 393 lines of Java code.

4.6 Discussion

Unsurprisingly, comparing against the optimized vs. switch-
dispatch virtual machine interpreters of both Jython and
Rhino paints a clear picture with significant speedups. It
is worth noting, however, that half of the speedup is due
to eliminating the expensive ArrayStoreException check.
Interestingly, for fannkuchredux on Rhino, the dramatic
speedup is due to having efficient array stores. This is due to
fannkuchredux executing the most instructions, and almost
all instructions cause an array store check for writing their
result to the operand stack.

Regarding our comparison to custom Java bytecode
compilers, we find that a Java virtual machine implementing
our optimizations makes the interpreter price/performance
sweet-spot even sweeter: with little manual modifications, an

efficient hosted JVM interpreter is competitive with a simple
custom compiler. Unlike Jython’s custom compiler, Rhino’s
JavaScript custom compiler performs multiple optimizations.
This generally decreases the potential of our optimizations—
discarding the cases where Maxine cannot demonstrate its
full potential due to the lack of on-stack replacement—by
about a third, resulting in a performance within 60% of
Rhino’s custom compiler. Furthermore, we notice that the
performance profile of eliminating the ArrayStoreException
check changes noticeably. Compared with custom compiler
performance, it does not contribute half, but roughly a third
of the reported speedups. We have not yet investigated this in
detail, but believe that the evaluated custom Java bytecode
compilers do not use an array to pass operands, but rather
use local variables instead.

Concerning the implementation effort, our evaluation data
has two primary implications. First, using annotations for
enabling our optimizations requires minimal effort by the
guest language implementer; these data supports our claim
that we can measure the effort in a matter of hours. Second,
our investigation of implementation effort for the Java
virtual machine implementer shows that the threaded code
generators mostly diverge in supporting separate bytecode
decoding mechanisms. Most of the bytecode decoding logic
can be packed into separate annotations, and supporting
a large set of different decoding mechanisms is mostly an
engineering problem.

Regarding portability, our transformed interpreter satisfies
functional portability, but it does not guarantee performance
portability. Putting differently, we can still run the trans-
formed interpreter in another JVM that does not support
our optimizations. However; it may not provide good perfor-
mance. Whenever the JVM implementers add our suggested
optimizations into their implementation, it would improve
the performance of all hosted interpreters.

5. Related Work

We group the related work into the most appropriate subsec-
tions, i.e., on interpreter optimizations and on approaches
leveraging existing virtual machines. To the best of our knowl-
edge, there is no previous work on adding interpreter opti-
mizations to existing JIT compilers.

5.1 Threaded Code

The canonical reference for threaded code is Bell’s paper
from 1973, introducing direct threaded code [1]. In 1982,
Kogge describes the advantages of using threaded code and
systematically analyzes its performance potential [19]. In
1990, a book by Debaere and van Campenhout [11] reports
the state-of-the-art for threaded code, including an in-depth



discussion of all threaded code techniques known at the
time, plus the effects of using a dedicated co-processor to
“offload” the interpretative overhead from the critical path
of the CPU. In 1993, Curley [8] [9] explains the subroutine-
threaded interpreter for Forth.

In 2003, Ertl and Gregg [12] find that using threaded
code for instruction dispatch makes some interpreters more
efficient than others. They describe how threaded code with
modern branch prediction can result in performance speedups
by a factor of up to 2.02. In 2004, Vitale and Abdelrah-
man [28] report dramatically lower effects on using threaded
code when optimizing the Tcl interpreter. In 2005, Berndl
et al. [2] introduce context threading technique for virtual
machine interpreters which is based on subroutine threading.
They show that context threading technique significantly
improves branch prediction and reduces execution time for
OCaml and Java interpreters. In 2009, Brunthaler [5] explains
that the optimization potential for threaded code varies with
the complexity of the i-ops.

All of the previous work in the area of threaded code
focuses on interpreter implementations using a low level sys-
tems programming language with an ahead-of-time compiler.
In addition to improving array store performance—which,
after all, constitutes almost half of the speedup—we present
threaded code as a simple, domain-specific optimization for
virtual machines having a just-in-time compiler. Further-
more, wrapping threaded code generation in annotations
gives implementers a straightforward way to enable efficient
interpretation, which can also be reused for several different
hosted interpreters.

5.2 Targeting Virtual Machines

The idea of optimizing dynamic languages in an existing JIT
environment is not new. For example, the Da Vinci Machine
Project [23] extends the Java HotSpot VM to run non-Java
languages efficiently on top of a JVM. The project intro-
duces a new Java bytecode instruction: invokedynamic [27].
This instruction’s intent is to improve the costly invocation
semantics of dynamically typed programming languages tar-
geting the Java virtual machine. Similar to invokedynamic,
our system can also be adopted by JVM vendors to improve
the performance of guest language interpreters running on
top of them.

In 2009, Bolz et al. [3] and Yermolovich et al. [30] describe
an approach to optimize hosted interpreters on top of a
VM that provides a JIT compilation infrastructure. This
is particularly interesting, as this work provides a solution
to circumvent the considerable implementation effort for
creating a custom JIT compiler from scratch. There are
two key parts in their solution. First, they rely on trace-
based compilation [7] to record the behavior of the hosted
program. Second, they inform the trace recorder about the
instruction dispatch occurring in the hosted interpreter.
Therefore, the subsequent trace compilation can remove the
dispatch overhead with constant folding and create optimized
machine code.

There are several differences between the approach of
hierarchical layering of VMs and automatically creating
threaded code at runtime. Our approach does not trace
the interpreter execution, i.e., subroutine threaded code
compiles a complete method, more like a conventional JIT
compiler. In addition, our technique does not depend on
any tracing subsystem, such as the trace compiler, recorder
and representation of traces. Furthermore, our approach
does not need to worry about bail out scenarios when the

interpreter leaves a compiled trace so it does not require any
deoptimization. Finally, we think that using both approaches
together could have mutually beneficial results, though they
inhabit opposing ends in implementation effort/performance
spectrum.

In 2012, Ishizaki et al. [17] describe an approach to opti-
mize dynamic languages by “repurposing” an existing JIT
compiler. They reuse IBM J9 Java virtual machine and ex-
tend the JIT compiler to optimize Python. Their approach
and ours share the same starting point, as we both believe
that developing a JIT compiler for each dynamic language
from scratch is prohibitively expensive. However, their tech-
nique is still complicated to use for programming language
implementers, as they need to extend the existing JIT with
their own implementation language. In contrast, our approach
requires only minimal mechanical transformations that are
independent of the interpreted programming language (e.g.,
Python or JavaScript) to generate a highly efficient inter-
preter.

6. Conclusion

In this paper we look into the performance problems caused
by hosted interpreters on the Java virtual machine. Guided
by the identified bottlenecks, we describe a system that opti-
mizes these interpreters for multiple guest languages by using
simple annotations. Specifically, we present two optimizations
that improve interpretation performance to such a big extent
that they become comparable to performance previously re-
served for custom Java bytecode compilers. First, we optimize
instruction dispatch by generating subroutine threaded code
with inlined control-flow instructions. Second, we improve
array store efficiency by eliminating redundant type-checks,
which are particularly expensive for hosted interpreters.

To evaluate the potential of our approach, we apply this
technique to two real-world hosted JVM interpreters: Jython
and Rhino. Our technique gives language implementers
the opportunity to execute their language efficiently on
top of a Java virtual machine without implementing a
custom compiler. As a result of freeing up these optimization
resources, guest language implementers can focus their time
and attention on other parts of their implementation.
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