
Covert Computation
Hiding Code in Code for Obfuscation Purposes

Sebastian Schrittwieser∗, Stefan Katzenbeisser‡, Peter Kieseberg†, Markus Huber†,
Manuel Leithner†, Martin Mulazzani†, Edgar Weippl†

Vienna University of Technology∗

sebastian.schrittwieser@tuwien.ac.at
Darmstadt University of Technology‡

skatzenbeisser@acm.org

SBA Research†

{pkieseberg, mhuber, mleithner, mmulazzani, eweippl}@sba-research.org

ABSTRACT
As malicious software gets increasingly sophisticated and re-
silient to detection, new concepts for the identification of
malicious behavior are developed by academia and industry
alike. While today’s malware detectors primarily focus on
syntactical analysis (i.e., signatures of malware samples), the
concept of semantic-aware malware detection has recently
been proposed. Here, the classification is based on models
that represent the underlying machine and map the effects of
instructions on the hardware. In this paper, we demonstrate
the incompleteness of these models and highlight the threat
of malware, which exploits the gap between model and ma-
chine to stay undetectable. To this end, we introduce a
novel concept we call covert computation, which implements
functionality in side effects of microprocessors. For instance,
the flags register can be used to calculate basic arithmetical
and logical operations. Our paper shows how this technique
could be used by malware authors to hide malicious code in
a harmless-looking program. Furthermore, we demonstrate
the resilience of covert computation against semantic-aware
malware scanners.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General-
Security and protection

Keywords
code obfuscation; side effects; malware detection

1. INTRODUCTION
Malware detection is an important research problem in

computer security that strives to spot malicious routines in
software. In recent years, the threat of malware, viruses,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIA CCS’13, May 8–10, 2013, Hangzhou, China.
Copyright 2013 ACM 978-1-4503-1767-2/13/05 ...$15.00.

spyware, and trojans has dramatically increased and re-
sulted in a cat-and-mouse game between malware authors
and developers of anti-malware software. The ultimate goal
of malware detectors (commonly known as virus scanners) is
to determine whether a program includes malicious routines
or not. Since the early days of malware defense, this was
done by matching a signature of known malware against the
software to be analyzed [2]. With the increasing amount of
malicious software, the extraction of signatures from mal-
ware samples as the sole detection technique became ineffi-
cient as well as insufficient. Over time, other identification
methods were developed and used in combination with mal-
ware signatures, which are still widely used by anti-malware
software [9]. Heuristic-based malware detection identifies
malicious code by statistically analyzing its structure and
behavior without depending on prior knowledge of the mal-
ware. However, this approach suffers from false positives as
well as false negatives as decisions are based on statistical
models for maliciousness. Furthermore, the rise of concepts
such as polymorphism and metamorphism lead to an entirely
new class of malware, which is resistant against signature-
based detectors, as these focus exclusively on malware syn-
tax and ignore malware semantics. The idea of semantic-
aware malware detection was introduced by Christodorescu
et al. in 2005 [3]. Their approach is based on the definition
of templates for malicious behavior and is more resistant to
simple obfuscation techniques such as garbage insertions [5]
and equivalent instruction replacement [7] as the semantics
of the code are analyzed.

In this paper, we demonstrate that today’s static mal-
ware detection approaches ignore fundamental knowledge of
the underlying hardware and thus are ineffective against our
novel covert computation obfuscation method. Static anal-
ysis techniques for binary code are based on a specific ma-
chine model in order to understand the functionality of the
analyzed program. Such a model describes how code is in-
terpreted by the machine, i.e., how a specific instruction
influences the state of the microprocessor. Based on the en-
tirety of effects that a sequence of instructions has on the
model, its maliciousness is evaluated by the malware detec-
tion software. This model, however, is a simplified, abstract
representation of the real machine. This simplification poses
a problem for model-based code analysis, as abstract mod-
els are not strong enough to entirely simulate the effects of

529

the code running on real hardware. It is possible to refine
machine models and make them more expressive, but this
results in a tradeoff between correctness and complexity.
In a malware detection context, the complexity of testing
whether a given code matches a model for malicious behav-
ior has to be low enough for the problem to be decidable
in real time. The fundamental dilemma of static malware
detection is that, on the one hand, code can be made arbi-
trarily complex with acceptable performance losses, while,
on the other hand, a model strong enough to perform a
complete evaluation of code semantics would reach an im-
practical level of complexity for real-life applications.

As main contributions of this paper we introduce a novel
approach for code obfuscation called covert computation,
based upon side effects in today’s microprocessor architec-
tures. We further show feasibility of our concept based on
instruction side effects in the flags register as well as LOOP
and string instructions. We finally demonstrate how our ap-
proach fundamentally raises the bar for semantic-aware code
analysis.

2. RELATED WORK
The use of code obfuscation to prevent reverse engineering

of any given software is a well-studied field [4, 17]. A formal
concept of code obfuscation has been defined by Barak et
al. [1]. Although this work shows that a universal obfuscator
for any type of software does not exist and perfectly secure
software obfuscation is not possible, various types of code
obfuscation are still used by today’s malware to “raise the
bar” for detection.

Various malware obfuscation approaches presented in the
literature follow the concept of polymorphism [13], which
hides malicious code by packing or encrypting it as data that
cannot be interpreted by the analysis machine. Thus, an un-
packing routine has to be used to turn this data back into
machine-interpretable code. A number of approaches have
been suggested to defeat this obfuscation technique, such as
detecting malicious code with model checking [11] or sym-
bolic execution [6]. Today’s malware detection systems eval-
uate the maliciousness of a program based on structural and
behavioral patterns [10]. Christodorescu et al. [3] first in-
troduced the concept of semantic-aware malware detection.
In their paper, the authors define formal semantics for the
maliciousness of programs and a semantic-aware matching
algorithm for malware detection based on them. Templates
for malicious behavior are defined and matched against the
potential malware. If both have the same effect on memory,
the binary is identified as malicious. This approach can deal
with simple forms of obfuscation but does not recognize in-
struction replacements based on patterns completely. The
concept was further formalized by Preda et al. in 2007 [14]
and 2008 [15].

Recently, Wu et al. [18] introduced the concept of mimi-
morphism, which aims at obfuscating malicious code against
both static and statistical detection systems. In the area of
code obfuscation, various approaches for hiding a program’s
semantics can be found. In recent literature on code obfus-
cation, several authors have proposed the removal of instruc-
tion patterns in order to increase de-obfuscation complexity.
Recent work by De Sutter et al. [7] on avoiding characteristic
instruction patterns normalizes the distribution of instruc-
tions used in a program by replacing rare ones with semanti-
cally equivalent blocks of more frequently used instructions

with equivalent blocks of less frequently used instructions.
The drawback to this approach is, however, that an equal
distribution of instructions used by a program is statistically
unlikely and therefore easily detectable for a code analyst.
Furthermore, semantic-aware detection approaches such as
described in [3] can implement the replacement patterns in
their templates for malicious behavior.

Giacobazzi [8] first theoretically discussed the idea of mak-
ing code analysis more difficult by forcing the detection sys-
tem to become incomplete. However, no practical approach
of this idea was given in the paper. Moser et al. [12] dis-
cussed the question whether static analysis alone allows re-
liable malware detection.

3. APPROACH
All semantic-aware malware identification techniques fol-

low the same basic approach. The classification of malicious-
ness is based on a model of the underlying system (i.e., the
microprocessor), which describes how a specific instruction
modifies the system’s state. The quality and completeness
of the model are crucial for a high identification rate. An
incomplete model is not able to map all effects that an in-
struction has on the hardware and thus cannot evaluate its
impact on the system and the system’s state after execut-
ing the instruction. Current models for malware detection
are focused on the instruction layer but do not fully map all
effects of an instruction on the model. Today’s microproces-
sors are highly complex systems with hundreds of different
instructions that influence the processor’s state.

In general terms, there are two types of models for us
to consider. First, a human analyst defines his or her own
model of the machine when trying to understand the mean-
ing of a program’s code. Given that the analyst knows the
purpose of a specific instruction, he or she can perceive the
code’s meaning on a semantic layer and draw conclusions
concerning the functionality of a sequence of instructions.
However, it is drastically more difficult to keep the program’s
entire state, which is modified constantly while executing in-
structions, in mind. Thus, the human model of a machine
can be described as a very basic semantic representation.
The second model that has to be considered is the one of an
automatic analysis tool, which makes a decision regarding
the maliciousness of a program based on predefined tem-
plates and patterns. If side effects are not implemented in
this model, its impact cannot be evaluated and is missed by
the analysis tool.

In order to hide the implementation of a specific func-
tionality of a program, we identified the possibility of im-
plementing it based on features of the processor that are
not described by its model and thus not evaluated. Ana-
lyzing such code on the semantic layer would not identify
the hidden functionality as it is not contained in the basic
semantics of a sequence of instructions, but in some deeper
abstraction layer that is not included in the model.

3.1 Side Effects
In computer science, side effects in general describe any

persistent modification of a program’s state or its environ-
ment after executing a basic block, which is a straight block
of instructions with one entry and one exit point. This in-
cludes setting a global variable, writing to the file system
or accessing auxiliary equipment. Side effects are a funda-
mental prerequisite for a program’s ability to interact with

530

the user, the underlying computing system or other pro-
grams. Depending on the programming paradigm, side ef-
fects are more or less frequently used in programming lan-
guages. While in functional programming languages, such as
Haskell, side effects do not exist or are restricted to a min-
imum, imperative programming (e.g., C, Java, and many
others) makes use of side effects more frequently.

While most side effects are intended by the developer and
are an integral part of the functionality (e.g., writing data
to the file system or interacting with the outside world over
a network connection), some side effects modify states of
the program or the outside world without the developer’s
direct knowledge. The developer has a mental model of in-
structions and its effects, which might not cover the entire
functionality of the instruction. The same applies to a code
analyst and even, in a similar form, to machine-based mal-
ware detection systems. Code is analyzed based on expecta-
tions of what functionality a specific instruction implements.
This can be the mental model of the human code analyst or
the hardware model that is implemented in the automatic
malware analysis system. Consider the x86 instruction ADD
EAX, EBX. The core functionality, which is expected by the
analyst, is the calculation of the sum of the two operands
EAX and EBX. Thus, the new state of the machine after the
execution of the instruction includes a modified register EAX
that now holds the sum of the registers EAX and EBX. How-
ever, there is another register that was influenced by the
ADD instruction. Within the flags register, several bits could
have been modified by the instruction, depending on the re-
sult of the operation. For example, the Zero flag is set to 1
if the result of the operation is 0.

3.2 Using side effects to hide functionality
Usually, side effects are avoided at an early stage of soft-

ware development (e.g., developers are discouraged from us-
ing global variables heavily), as they could influence the
program’s state in a way that was not considered by the
developer and cause an unpredictable malfunction of the
program.

In a security context, we have identified side effects as ex-
cellent vehicles for hiding malicious functionality inside ar-
bitrary program code. The idea of injecting malicious func-
tionality by making program code look harmless is not new.
Winning examples of the Underhanded C Contest1, an an-
nual contest for writing innocent-looking C code implement-
ing covert malicious behavior, use very subtle techniques for
hosting hidden functionality. In contrast to that contest,
which is based on the high-level language C, we describe
covert functionality that is tied very closely to the under-
lying hardware, based on side effects in the microprocessor
and implemented at assembly level.

3.3 Flags
Flags in microprocessors are status bits that are used for

indicating states and conditions of different operations per-
formed by the microprocessor. For example, most of today’s
architectures such as x86 implement a Zero flag, which is set
when the result of an arithmetic or logical operation is equal
to zero. The value of a flag bit is then used for conditional
jumps and is therefore responsible for modifying the control
flow of a program’s execution.

1http://underhanded.xcott.com (Last accessed February
12th 2013)

In the context of side effects within programs, flags are the
target of side effects. In x86 as well as in many other micro-
processor architectures, most arithmetic and logical opera-
tions influence at least one bit in the flags register. Flags can
therefore be seen as global variables that are permanently
modified by instructions. The concept of covert computa-
tion uses flags for basic operations in such a way that the
flags are directly used for performing the calculation and
storing intermediate results by using conditional jumps. In
the following, we show how flags can be used as interme-
diate storage for the calculation of logical operations. This
concept can easily be adopted for arithmetic operations.

In a bitwise logical operation the calculation of the four
different possible combinations (00/01/10/11) can be repre-
sented by two conditional jumps. The two input operands
are stored in two arbitrary flags. In a first step, the value
of the first flag is determined by implementing a conditional
jump, which evaluates this specific flag. In x86, for example,
the Zero flag can be evaluated with a JZ (jump if zero) or a
JNZ (jump if not zero) instruction. For each case (jump was
performed or not performed), the second phase again im-
plements a conditional jump, thus resulting in four possible
outgoing control flows, each representing one possible result
of the bitwise operation of the values stored in the two flags.
Figure 1 illustrates the approach. The two source values 1
and 0 are stored in the Zero and the Carry flag. Two condi-
tional jumps are implemented to calculate the logical XOR.
The first one (JZ) evaluates the value stored in the Zero
flag. For both cases – the jump is either performed or not –
a second conditional jump (JC), which evaluates the carry
flag, is implemented. The control flow of the software now
follows the calculation of a logical XOR, and at each of the
four possible end points of the control flow graph, code can
be implemented that stores the result of the calculation to
some output register.

JZ

JCJC

result

0

result

1

zero flag

1

carry flag

0

result

1

result

0

Figure 1: Calculation of XOR using the Zero and
the Carry flag.

This concept can be extended to the full length of 32-bit
operands very easily by repeating the two jumps for each bit-
wise operation. Other logical operations can be represented
as side effects analogous to the XOR replacement pattern.

3.4 Other side effects in the x86 architecture
Many instructions of the x86 architecture modify the state

of the processor in a way that is not the primary function-
ality of the instruction. In the following, we exemplarily
describe side effects of the LOOP as well as string instruc-
tions and explain how side effects can be used to emulate
other instructions.

531

LOOP instruction. The LOOP instruction in x86 be-
haves as follows: The value of the counter register (CX/ECX)
is decremented by one. If it contains 0 after this operation,
the loop terminates and execution continues past the LOOP
instruction. Otherwise, a short jump to the relative offset
specified as the operand to LOOP is taken. While the obvious
behavior of the LOOP instruction is the repeated execution
of one or more instructions, it also can be perform other,
not so obvious functionality. One of the most trivial ways
to repurpose this instruction’s behavior is by using it as a
short JMP or conditional jump. This can be achieved by
ensuring that ECX does not contain 0 (or writing a value
unequal to 0 to ECX if the given condition is met) and in-
stead of using a JMP instruction, writing LOOP <label>.
However, there are far more sophisticated ways to emulate
other given instructions using LOOP. In Listing 1, the stan-
dard SUB instruction is represented using a combination of
LOOP and XCHG.

SUB EAX,200

⇓

MOV ECX,200
XCHG EAX,ECX
LOOP -1

Listing 1: SUB with LOOP instruction

At first glance, this loop may seem entirely pointless, sim-
ply exchanging the values of EAX and ECX at every iteration
and decreasing the value of ECX. However, because ECX con-
stantly witches between containing the actual loop counter
and the value of EAX, the latter is actually decremented by
the former until either of them reaches the value 0. Note
that this sequence of commands will not work as intended
if EAX contains a value between 0 and 0x200. A variety of
other instructions can be emulated using LOOP, e.g., MOV
between registers (by moving the target value into ECX and
incrementing the target register’s value at every loop itera-
tion).

String instructions. Another source of side effects in
the x86 architecture are the string instructions. MOVS, SCAS,
CMPS, STOS, and LODS instructions are intended to operate
on continuous blocks of memory instead of single bytes. Be-
cause of the fact that these instructions modify the registers
ESI, EDI, and ECX it is possible to emulate ADD, SUB, INC,
and DEC instruction. An example of a replacement pattern
for the INC instruction is given in Listing 2. The replace-
ment pattern will clobber the value of ESI and is only ap-
plicable if the value of EAX points to a memory location that
is accessible to the program.

INC EAX

⇓

XCHG EAX, ESI
LODS
XCHG EAX, ESI

Listing 2: Arithmetic operations with string
instructions.

4. EVALUATION
In this section we discuss the effectiveness of the concept of

covert computation for obfuscation purposes. We first con-
sidered assessing its resilience against commercial malware
detectors by using real malware samples that were modi-
fied to implement some of their functionality in side effects.
However, as pointed out in [12], this type of evaluation would
be of doubtful value. The detection engines of today’s virus
scanners are mainly signature-based, which means that mod-
ifying the binary code would most likely destroy the signa-
ture. It would then come as no surprise to have a detection
rate that was lower than the one for the original binaries. As
this effect can be simply tracked down to the modification of
the signature and not to the concept of covert functionality
in the code, it would heavily restrict the significance of the
evaluation. Therefore, we decided to focus our evaluation
on the concept of semantic-aware malware detection. We
performed a theoretical analysis to evaluate the resilience of
our approach against Christodorescu et al.’s [3] approach.
For semantic-aware malware detection, the binary program
is disassembled and brought to an architecture-independent
intermediate representation, which is matched against tem-
plates describing malicious behavior. In order to be able
to detect basic obfuscation methods like register reassign-
ment or instruction reordering (e.g., by inserting jumps in
the control flow graph), so-called def-use chains are utilized.
Furthermore, a value-preservation oracle is implemented for
detecting NOP instructions as well as NOP fragments.

Normalization of intermediate representation. The
approach introduced by Christodorescu et al. [3] is based on
IDAPro for decompilation of the program to be analyzed.
By generating an intermediate representation (IR), seman-
tically equivalent instruction replacement patterns such as
INC EAX, ADD EAX, 1, and SUB EAX, -1 are normal-
ized with semantically disjoint operations and can then be
matched against the generic template, which describes ma-
licious behavior.

Semantics detection. Since the general problem of de-
ciding whether one program is an obfuscated form of another
program is closely related to the halting problem, which in
general is undecidable [16], the presented algorithm uses the
following strategy to match the program to the template:
The algorithm tries to match (unify) each template node
to a node in the program. In case two matching nodes are
found, the def-use relationships in the template are evalu-
ated with respect to the program code. If they hold true
in the actual program, the program fragment matches the
template.

Value preservation and NOP detection. The goal
of this analysis step lies in the detection of NOP operations,
i.e., program fragments that do not change the values of
the watched variables. The following strategies were im-
plemented by the authors in [3]: (i) Matching instructions
against a library of known NOP commands and NOP frag-
ments, (ii) symbolic execution of the code sequence with
randomized initial states, as well as (iii) two different theo-
rem provers.

Resilience against the approach. As outlined by the
authors, the semantic-aware malware detection approach is

532

A = const_addr1

B = const_addr2

condition(A) ?

mem[B] = f(mem[A])

A = A - c

B = B + d

C = 2

Template

true

false

Example Instance

eax = 0x403000

ebx = 0x400000

edx = eax + 3

eax != 0 ?

mem[ebx] = mem[edx-3] << 2 + 1

eax = eax - 4

ebx = ebx + 1

ecx = 2

true

Obfuscated Instance

eax = 0x403000

ebx = 0x400000

edx = eax + 3

mem[ebx] = mem[edx-3] << 2 + 1

ecx = 2

xchg eax, esi

lods

xchg eax, esi

ecx = 4

xchg eax, ecx

loop -1

false

B

C

ecx = eax

loop 8A

Figure 2: Resilience against semantic-aware malware detection.

able to detect instruction reordering and register reassign-
ment as well as a garbage insertion. Furthermore, with re-
spect to the underlying instruction replacement engine, a
limited set of replaced instructions can be detected. How-
ever, this approach is not able to detect obfuscation tech-
niques using equivalent functionality or reordered memory
access. In Figure 2 we give an example of a code fragment
(left) that is matched to a template (center) and an obfus-
cated form (right) of the same fragment. The obfuscation
steps applied are flagged with the letters (A) and (B). Note
that for reasons of simplicity, JMP instructions have been
omitted from the illustration.

Since our obfuscation technique does not work by insert-
ing NOP fragments, the direct detection and removal of NOP
elements has no impact on our approach. Nevertheless, we
use these mechanisms in the course of the matching algo-
rithm in order to check for value preservation. The seman-
tic detection relies heavily on the algorithm applying local
unification by trying to find bindings of program nodes to
template nodes. It is important to note that the bindings
may differ at different program points, i.e., one variable in
the template may be bound to different registers in the pro-
gram, and the binding is therefore not consistent. The idea
behind this approach lies in the possibility to detect register
reassignments. In order to eliminate inconsistent matches
that cannot be solved using register reassignment, a mecha-
nism based on def-use chains and value-preservation (using
NOP detection) is applied.

The local unification used to generate the set of candidate
matches that is then reduced using def-use chains and value
preservation is limited by several restrictions. The following
two are the most important ones with respect to our obfus-
cation method: (i) If operators are used in a template node,
the node can only be unified with program nodes containing

the same operators and (ii) symbolic constants in template
nodes can only be unified with program constants. The ob-
fuscation pattern (B) in Figure 2 violates restrictions (i) and
(ii) as, e.g., the simple “+”-function is replaced by a MOV in-
struction followed by looping an XCHG instruction. The same
holds true for obfuscation pattern (C). In case of obfusca-
tion pattern (A) even the control flow graph was changed as
the explicit jump instruction following the condition as well
as the condition itself are replaced by an assignment and a
LOOP instruction. Thus, the local unification engine is not
able to match these program fragments to the respective
template fragments. In order to generate the set of match
candidates, the local unification procedure must be able to
match program nodes with template nodes, relying on the
IR-engine to detect semantically identical program nodes
and to convert them into the same intermediate represen-
tation. However, authors state that “[...] same operation
[...] has to appear in the program for that node to match.”.
For example, an arithmetic left shift (eax = eax << 1)
would not match a multiplication by 2 (x = x ∗ 2) despite
these instructions being semantically equivalent. Therefore,
we can safely conclude that replacements with side effects
as proposed in our concept would not match in the local
unification as they do not use the same operations as the
original code for implementing a specific functionality.

One could argue that once the concept of covert compu-
tation is publicly known, malware detectors could simply
improve the hardware models on which the instruction re-
placement engine is based to be able to identify malicious
behaviors implemented in side effects. While in theory, ev-
ery single aspect of the hardware could be mapped to the
machine model, we strongly believe that this is an unrealistic
assumption as increasing the level of detail and completeness
of the model is costly and reduces its practical applicability

533

in real-life malware detection scenarios, where the decision
on maliciousness has to be made in real time. A more com-
plex model also increases the complexity of the evaluation,
so the model has to be kept as general as possible, preventing
completeness in semantic-aware program analysis. Today’s
virus scanners as well as semantic-aware malware detection
concepts are not even able to cover the entire semantics of
side effects-free code. Following the original argument of the
possibility of a complete model, mapping these semantics
should have been even more trivial. The second important
aspect is diversity. Christodorescu et al. [3] argue that a
malware author would have to “devise multiple equivalent,
yet distinct, implementations of the same computation, to
evade detection”. With covert computation we have shown
that side effects in the microprocessor can be used to achieve
exactly this requirement.

5. CONCLUSION
In this paper, we have shown that the complexity of to-

day’s microprocessors, which support a myriad of different
instructions, can be exploited to hide functionality in a pro-
gram’s code as small code portions. In the context of mal-
ware, we demonstrated that existing concepts for semantic-
aware malware detection systems are not able to analyze
the semantics of code that is implemented in side effects
and argue that the indirectly shown incompleteness of ma-
chine models for semantic-aware malware detection raises
the threat of malware that exploits exactly this knowledge
gap. A successful implementation of the obvious mitigation
strategy – improving the models – is doubtful, as, while it
might be possible to map the side effects of a specific in-
struction in the model, it would complex to evaluate the
impact of the side effects of an entire sequence of instruc-
tions. Models are abstract representations of the real world,
which implies that some information is lost in its develop-
ment. The increasing complexity of the real world makes
it hard to design models that are strong enough to entirely
simulate the effects of the code running on real hardware.
The obfuscator has an important advantage over code an-
alysts as he or she can make the code arbitrarily complex.
In contrast, analysts have to keep their models simple to
avoid an impractical level of complexity for testing whether
a given code matches a model for malicious behavior. Thus,
the feasibility of implementing a complete hardware model
for malware detection is an unrealistic assumption.

Acknowledgments
The research was funded under Grant 826461 (FIT-IT) and
COMET K1 by the FFG – Austrian Research Promotion
Agency.

6. REFERENCES
[1] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich,

A. Sahai, S. Vadhan, and K. Yang. On the (im)
possibility of obfuscating programs. In Advances in
Cryptology—Crypto 2001, pages 1–18. Springer, 2001.

[2] M. Christodorescu and S. Jha. Testing malware
detectors. ACM SIGSOFT Software Engineering
Notes, 29(4):34–44, 2004.

[3] M. Christodorescu, S. Jha, S. Seshia, D. Song, and
R. Bryant. Semantics-aware malware detection. In

Security and Privacy, 2005 IEEE Symposium on,
pages 32–46. IEEE, 2005.

[4] C. Collberg and C. Thomborson. Watermarking,
tamper-proofing, and obfuscation-tools for software
protection. Software Engineering, IEEE Transactions
on, 28(8):735–746, 2002.

[5] C. Collberg, C. Thomborson, and D. Low. A
taxonomy of obfuscating transformations. Technical
report, Department of Computer Science, The
University of Auckland, New Zealand, 1997.

[6] J. Crandall, Z. Su, S. Wu, and F. Chong. On deriving
unknown vulnerabilities from zero-day polymorphic
and metamorphic worm exploits. In Proceedings of the
12th ACM conference on Computer and
communications security, pages 235–248. ACM, 2005.

[7] B. De Sutter, B. Anckaert, J. Geiregat, D. Chanet,
and K. De Bosschere. Instruction set limitation in
support of software diversity. Information Security
and Cryptology–ICISC 2008, pages 152–165, 2009.

[8] R. Giacobazzi. Hiding information in completeness
holes: New perspectives in code obfuscation and
watermarking. In Software Engineering and Formal
Methods, 2008. SEFM’08. Sixth IEEE International
Conference on, pages 7–18. IEEE, 2008.

[9] K. Griffin, S. Schneider, X. Hu, and T. Chiueh.
Automatic generation of string signatures for malware
detection. In Recent Advances in Intrusion Detection,
pages 101–120. Springer, 2009.

[10] N. Idika and A. Mathur. A survey of malware
detection techniques. Purdue University, page 48,
2007.

[11] J. Kinder, S. Katzenbeisser, C. Schallhart, and
H. Veith. Detecting malicious code by model checking.
Detection of Intrusions and Malware, and
Vulnerability Assessment, pages 514–515, 2005.

[12] A. Moser, C. Kruegel, and E. Kirda. Limits of static
analysis for malware detection. In Computer Security
Applications Conference, 2007. ACSAC 2007.
Twenty-Third Annual, pages 421–430. IEEE, 2007.

[13] C. Nachenberg. Computer virus-coevolution.
Communications of the ACM, 50(1):46–51, 1997.

[14] M. Preda, M. Christodorescu, S. Jha, and S. Debray.
A semantics-based approach to malware detection. In
ACM SIGPLAN Notices, volume 42, pages 377–388.
ACM, 2007.

[15] M. Preda, M. Christodorescu, S. Jha, and S. Debray.
A semantics-based approach to malware detection.
ACM Transactions on Programming Languages and
Systems (TOPLAS), 30(5):25:1–25:53, 2008.

[16] A. Turing. On computable numbers, with an
application to the entscheidungsproblem. In
Proceedings of the London Mathematical Society,
volume 42, pages 230–265, 1936.

[17] S. Udupa, S. Debray, and M. Madou. Deobfuscation:
Reverse engineering obfuscated code. In Reverse
Engineering, 12th Working Conference on, pages
10–pp. IEEE, 2005.

[18] Z. Wu, S. Gianvecchio, M. Xie, and H. Wang.
Mimimorphism: a new approach to binary code
obfuscation. In Proceedings of the 17th ACM
conference on Computer and communications security,
pages 536–546. ACM, 2010.

534

	Introduction
	Related Work
	Approach
	Side Effects
	Using side effects to hide functionality
	Flags
	Other side effects in the x86 architecture

	Evaluation
	Conclusion
	References

