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Abstract
Generators offer an elegant way to express iterators. How-
ever, performance has always been their Achilles heel and
has prevented widespread adoption. We present techniques
to efficiently implement and optimize generators.

We have implemented our optimizations in ZipPy, a mod-
ern, light-weight AST interpreter based Python 3 implemen-
tation targeting the Java virtual machine. Our implementa-
tion builds on a framework that optimizes AST interpreters
using just-in-time compilation. In such a system, it is crucial
that AST optimizations do not prevent subsequent optimiza-
tions. Our system was carefully designed to avoid this prob-
lem. We report an average speedup of 3.58× for generator-
bound programs. As a result, using generators no longer has
downsides and programmers are free to enjoy their upsides.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—interpreters, code generation, op-
timization

General Terms Languages, Performance

Keywords generator; iterator; dynamic languages; opti-
mization; Python

1. Motivation
Many programming languages support generators, which
allow a natural expression of iterators. We surveyed the use
of generators in real Python programs, and found that among
the 50 most popular Python projects listed on the Python
Package Index (PyPI) [18] and GitHub [11], 90% of these
programs use generators.

Generators provide programmers with special control-
flow transfers that allows function executions to be sus-
pended and resumed. Even though these control-flow trans-
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fers require extra computation, the biggest performance bot-
tleneck is caused by preserving the state of a function be-
tween a suspend and a resume. This bottleneck is due to the
use of cactus stacks required for state preservation. Popu-
lar language implementations, such as CPython [20], and
CRuby [22], allocate frames on the heap. Heap allocation
eliminates the need for cactus stacks, but is expensive on
its own. Furthermore, function calls in those languages are
known to be expensive as well.

In this paper, we examine the challenges of improving
generator performance for Python. First, we show how to ef-
ficiently implement generators in abstract syntax tree (AST)
interpreters, which requires a fundamentally different de-
sign than existing implementations for bytecode interpreters.
We use our own full-fledged prototype implementation of
Python 3, called ZipPy1, which targets the Java virtual ma-
chine (JVM). ZipPy uses the Truffle framework [26] to op-
timize interpreted programs in stages, first collecting type
feedback in the AST interpreter, then just-in-time compiling
an AST down to optimized machine code. In particular, our
implementation takes care not to prevent those subsequent
optimizations. Our efficient generator implementation opti-
mizes control-transfers via suspend and resume.

Second, we describe an optimization for frequently used
idiomatic patterns of generator usage in Python. Using this
optimization allows our system to allocate generator frames
to the native machine stack, eliminating the need for heap al-
location. When combined, these two optimizations address
both bottlenecks of using generators in popular program-
ming languages, and finally give way to high performance
generators.
Summing up, our contributions are:

• We present an efficient implementation of generators for
AST based interpreters that is easy to implement and en-
ables efficient optimization offered by just-in-time com-
pilation.

• We introduce generator peeling, a new optimization that
eliminates overheads incurred by generators.

• We provide results of a careful and detailed evaluation of
our full-fledged prototype and report:

1 Publicly available at https://bitbucket.org/ssllab/zippy

https://bitbucket.org/ssllab/zippy


an average speedup of 20.59× over the CPython base-
line.

an additional average speedup of 3.58× from apply-
ing generator peeling.

2. Background
2.1 Generators in Python
A generator is a more restricted variation of a coroutine [12,
16]. It encompasses two control abstractions: suspend and
resume. Suspend is a generator exclusive operation, while
only the caller of a generator can resume it. Suspending a
generator always returns control to its immediate caller. Un-
like regular subroutine calls, which start executing at the be-
ginning of the callee, calls to a suspended generator resume
from the point where it most recently suspended itself. Those
two operations are asymmetric as opposed to the symmetric
control transfer in coroutines.

Generator Functions

def$producer(n):
,,for$i$in$range(n):
,,,,yield$i

for$i$in$producer(3):
,,print(i)

#"0,"1,"2

(a) Simple generator

g"=!producer(3)
try:
""while"True:
""""print(g.__next__())
except"StopIteration:
""pass

#"0,"1,"2

(b) Python iterator protocol

Figure 1. A simple generator function in Python

In Python, using the yield keyword in a function defi-
nition makes the function a generator function. A call to a
generator function returns a generator object without evalu-
ating the body of the function. The returned generator holds
an execution state initialized using the arguments passed to
the call. Generators implement Python’s iterator protocol,
which includes a next method. The next method
starts or resumes the execution of a generator. It is usually
called implicitly, e.g., by a for loop that iterates on the gener-
ator (see Figure 1(a)). When the execution reaches a return
statement or the end of the generator function, the genera-
tor raises a StopIteration exception. The exception ter-
minates generator execution and breaks out of the loop that
iterates on the generator. Figure 1(b) shows the desugared
version of the for loop that iterates over the generator object
g by explicitly calling next .

Generator Expressions
Generator expressions offer compact definitions of simple
generators in Python. Generator expressions are as memory
efficient as generator functions, since they both create gener-
ators that lazily produce one element at a time. Programmers
use these expressions in their immediate enclosing scopes.

n"="3
g"=(x"for"x"in"range(n))
sum(g)
#"3

(a) Generator expression

def$_producer():
,,for$x$in$range(n):
,,,,yield$x

(b) Desugared generator function

Figure 2. A simple generator expression in Python

Figure 2 shows a simple generator expression and its equiv-
alent, desugared generator function definition. A generator
expression defines an anonymous generator function, and di-
rectly returns a generator that uses the anonymous function
definition. The returned generator encapsulates its enclosing
scope, if the generator expression references symbols in the
enclosing scope (n in Figure 2). The function sum subse-
quently consumes the generator by iterating on it in a loop
and accumulating the values produced by the generator.

Idiomatic Uses of Generators

for$i$in$generator(42):
..process(i)

(a) Generator loop

size%=%42
sum(x*2%for%x%in%range(size))

(b) Implicit generator loop

Figure 3. Idiomatic uses of generators

The idiomatic way of using generators in Python is to
write a generator loop. As shown in Figure 3(a), a gener-
ator loop is a for loop that calls a generator function and
consumes the returned generator object. The common use
pattern of a generator expression is to use it as a closure and
pass it to a function that consumes it (see Figure 3(b)). The
consumer functions, like sum, usually contain a loop that it-
erates on the generator. Therefore, we refer to this pattern
as an implicit generator loop. Explicit and implicit genera-
tor loops cover most of the generator usage in Python pro-
grams. Our generator peeling optimization, which we ex-
plain in Section 4, targets these patterns.

2.2 Python on Truffle
In principle, “everything” can change at any moment in
dynamic language programs. This dynamic nature is the
major impediment to ahead-of-time optimization. In prac-
tice, however, programmers tend to minimize the rate of
change, which makes the code highly predictable. Types,
for instance, typically remain stable between successive
executions of a particular operation instance. Deutsch and
Schiffman report that speculative type specialization suc-
ceeds 95% of the time in their classic Smalltalk-80 imple-
mentation [7].

Truffle is a self-optimizing runtime system that makes it
easy to perform type specialization for dynamic languages
running on top of the Java Virtual Machines (JVM) [26]. It
allows language implementers to implement their guest lan-
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guage by writing an AST interpreter using Java. An inter-
preter written in this way enjoys low cost type specialization
via automatic node rewriting [5, 6, 25]. AST node rewriting
collects runtime type information, and speculatively replaces
the existing nodes with specialized and more efficient ones.
Subsequently, Truffle just-in-time compiles the specialized
AST, written in Java, directly to machine code using the
underlying Java compiler. Upon a type mis-speculation, the
specialized AST node handles the type change by replacing
itself with a more generic one. The node replacement trig-
gers deoptimization from the compiled code and transfers
execution back to the interpreter. If the re-specialized AST
stays stable, Truffle can again compile it to machine code.

Our system, ZipPy, is a full-fledged prototype Python 3
implementation built atop Truffle. It leverages Truffle’s type
specialization feature and its underlying compilation infras-
tructure (see Figure 4). This architecture helps ZipPy out-
perform Python implementations that either do not exploit
runtime type specialization or lack a just-in-time compiler.
However, Truffle has no knowledge about specific high level
guest language semantics, like generators in Python. Further
performance exploration of a guest language will mainly
benefit from better insights on distinct features of the lan-
guage and making better use of the host compiler based on
those insights. In this paper we focus on guest language level
optimizations we added to ZipPy.

3. Generators Using an AST Interpreter
Java, the host language of Truffle and ZipPy, does not of-
fer native support for coroutines. Our AST interpreter needs
to model the semantics of generators. However, the conven-
tional way of implementing generators in a bytecode inter-
preter does not work in an AST setting. In this section, we
discuss the challenges of supporting generators in an AST
interpreter, and present the solution we devised for ZipPy.

3.1 AST Interpreters vs. Bytecode Interpreters
The de-facto Python implementation, CPython, uses byte-
code interpretation. It parses the Python program into a lin-
earized bytecode representation and executes the program
using a bytecode interpreter. A bytecode interpreter is itera-
tive. It contains an interpreter loop that fetches the next in-
struction in every iteration and performs its operation. The

bytecode index pointing to the next instruction is the only
interpreter state that captures the current location of the pro-
gram. The interpreter only needs to store the program acti-
vation and the last bytecode index when the generator sus-
pends. When resuming, a generator can simply load the pro-
gram activation and the last bytecode index before it contin-
ues with the next instruction.

An AST interpreter on the other hand is recursive. The
program evaluation starts from the root node, then recur-
sively descends to the leaves, and eventually returns to
the root node. In ZipPy, every AST node implements an
execute method (see Figure 5). Each execute method re-
cursively calls the execute methods on its child nodes. The
recursive invocation builds a native call stack that captures
the current location of the program. The interpreter has to
save the entire call stack when the generator suspends. To
resume the generator execution, it must rebuild the entire
call stack to the exact point where it last suspended.

3.2 Generator ASTs
ZipPy stores local variables in a heap-allocated frame object.
AST nodes access variables by reading from and writing
to dedicated frame slots. During just-in-time compilation,
Truffle is able to map frame accesses to the machine stack
and eliminate frame allocations. However, a generator needs
to store its execution state between a suspend and resume.
The frame object must therefore be kept on the heap which
prevents Truffle’s frame optimization.

In general, our AST interpreter implements control struc-
tures using Java’s control structures. We handle non-local
returns, i.e., control flow from a deeply nested node to an
outer node in the AST, using Java exceptions. Figure 6(a) il-
lustrates the AST of a Python generator function. We model
loops or if statements using dedicated control nodes, e.g.,
a WhileNode. The BlockNode groups a sequence of nodes
that represents a basic block. The YieldNode performs a
non-local return by throwing a YieldException. The ex-
ception bypasses the two parent BlockNodes, before the
FunctionRootNode catches it. The FunctionRootNode

then returns execution to the caller.



class!WhileNode!extends!PNode!{
!!protected!ConditionNode!condition;
!!protected!PNode!body;

!!public!Object!execute(Frame!frame)!{
0000try!{
!!!!!!while(condition.execute(frame))!{
!!!!!!!!body.execute(frame);
!!!!!!}
!!!!}!catch!(BreakException!e)!{
!!!!!!//!break!the!loop
!!!!}
!!!!return0PNone.NONE;
!!}
}

(a) Implementation of WhileNode

class!GenWhileNode!extends!WhileNode!{
!!private.final!int!flagSlot;

!!boolean.isActive(Frame!frame)!{!
....return.frame.getFlag(flagSlot);!
!!}

!!void.setActive(Frame!frame,!
!!!!!!!!!!!!!!!!!boolean!value)!{!
!!!!frame.setFlag(flagSlot,!value);!
!!}

!!public!Object!execute(Frame!frame)!{
!!!!try!{
!!!!!!while(isActive(frame)!||!!!!!!
!!!!!!!!!!!!condition.execute(frame))!{
!!!!!!!!setActive(frame,!true)
!!!!!!!!body.execute(frame);
!!!!!!!!setActive(frame,!false);
!!!!!!}
!!!!}!catch!(BreakException!e)!{
!!!!!!setActive(frame,!false);
!!!!}
!!!!return.PNone.NONE;
!!}
}

(b) Implementation of GenWhileNode

Figure 5. Two different WhileNode versions

Generator Control Nodes
Every control node in ZipPy has a local state stored in
the local variables of its execute method. The local state
captures the current execution of the program, for instance,
the current iterator of a for loop node or the current node
index of a block node. To support generators we decide to
implement an alternative generator version for each control
node. These control nodes do not rely on local state, and
keep all execution state in the frame. However, it is overly
conservative to use generator control nodes everywhere in a
generator function. We only need to use generator control
nodes for the parent nodes of YieldNodes, since a yield
operation only suspends the execution of these nodes.

FunctionRootNode

ParametersNode

BlockNode

WhileNode

ConditionNode

BlockNode

YieldNode

StatementNode[2]

parameters

body

condition

StatementNode[0]

body

(a) Before translation

GenFunctionRootNode

ParametersNode

GenBlockNode

GenWhileNode

ConditionNode

GenBlockNode

YieldNode

parameters

body

condition

StatementNode[0]

body

StatementNode[2]

(b) Translated

Figure 6. Translation to generator AST

Figure 5(a) shows the implementation of a WhileNode.
Note that the loop condition result is a local state of the
node stored in the call stack of its execute method. When a
YieldException is thrown somewhere in the loop body, it
unwinds the call stack and discards the current loop con-
dition result. When the generator resumes, it will not be
able to retrieve the previous loop condition result without re-
evaluating the condition node. The re-evaluation may have
side effects and violate correct program behavior. Therefore,
this implementation only works for normal functions but not
for generator functions.

Figure 5(b) shows the generator version of the WhileNode,
the GenWhileNode. It keeps an active flag, a local helper
variable, in the frame. The execute method accesses the
flag by calling the isActive or setActive method. When
a yield occurs in the loop body, the active flag remains true.
When resuming, it bypasses the condition evaluation and
forwards execution directly to the loop body.

Note that it is incorrect to store the active flag as a field
in the GenWhileNode. Different invocations of the same
generator function interpret the same AST, but should not
share any state stored in the AST. An alternative way to
implement a GenWhileNode is to catch YieldExceptions
in the execute method and set the active flag in the catch
clause. This implementation requires the GenWhileNode to
re-throw the YieldException after catching it. If we imple-
ment generator control nodes in this way, a yield operation
will cause a chain of Java exception handling which is more
expensive than the solution we chose.

Similar to the GenWhileNode, we implement a genera-
tor version for all the other control nodes in ZipPy. Every
generator control node has its own active flags stored in the
frame. The descriptions of the generator control nodes are as
follows:



• GenFunctionRootNode: Stores an active flag in the
frame. Only applies arguments when the flag is false.
Resets the flag and throws StopIteration exception
upon termination of the generator.

• GenBlockNode: Stores the current node index in the
frame. Skips the executed nodes when the index is not
zero. Resets the index to zero upon exit.

• GenForNode: Stores the current iterator in the frame.
Resets the iterator to null upon exit.

• GenIfNode: Similar to GenWhileNode, uses an active
flags to indicate which branch is active.

• GenWhileNode: See Figure 5(b).
• GenBreakNode: Resets active flags of the parent control

nodes up to the targeting loop node (the innermost en-
closing loop), including the loop node.

• GenContinueNode: Resets active flags of the parent con-
trol nodes up to the targeting loop node, excluding the
loop node.

• YieldNode: Must be a child of a GenBlockNode. Eval-
uates and stores the yielding value in the frame be-
fore throwing the YieldException. The root node
then picks up the value and returns it to the caller. The
YieldNode also advances the statement index of its par-
ent BlockNode to ensure that the generator resumes from
the next statement.

Control Node Translation
ZipPy first parses Python functions into ASTs that use the
normal control nodes. Generator functions require an ad-
ditional translation phase that replaces the normal control
nodes with their generator equivalents. Figure 6 illustrates
this translation. We only replace the control nodes that are
parents of the YieldNodes, since these nodes fully capture
the state required to suspend and resume execution.

The translated generator AST always keeps a snapshot
of its execution in the frame. When resuming, it is able to
retrieve all the necessary information from the snapshot and
rebuild the entire interpreter call stack to the exact point
where it left off.

The flag accesses in the generator control nodes and
the exception based control flow handling add performance
overheads. However, the underlying compiler is able to com-
pile the entire generator AST into machine code. It also
optimizes control flow exceptions and converts them to di-
rect jumps. The jumps originate from where the exception
is thrown and end at the location that catches it. The AST
approach, enforced by the underlying framework, does add
complexity to the implementation of generators. However,
the performance gains offset this slight increase of the im-
plementation effort.

x"="foo()"+"(yield&i*2)

_tmp"="foo()
x"="_tmp"+"(yield&i*2)

extract 
statement

(a) Yield expression

MulNode

GenBlockNode

YieldNode

YieldSendValueNode

ConstantNode(2)

yield

resume

(b) Translated multiply

Figure 7. Translation of a yield expression

Yield as an Expression
Python allows programmers to use yield in expressions. A
yield expression returns a value passed from the caller by
calling the generator method send. This enhancement al-
lows the caller to pass a value back to the generator when
it resumes, and brings generators closer to coroutines. How-
ever, it requires generator ASTs to be able to resume to a
specific expression.

Figure 7(a) shows an example of yield expressions. The
assignment statement to variable x consumes the value re-
turned by the yield expression. Figure 7(b) shows the trans-
lated AST of the multiplication sub-expression. Note that
we translate the yield expression to a GenBlockNode con-
taining a YieldNode and a YieldSendValueNode. When
the YieldNode suspends execution, it advances the active
node index of the parent GenBlockNode to point to the next
node. This action ensures that the generator restarts exe-
cution from the YieldSendValueNode, which returns the
value sent from the caller.

In a more complicated case, the statement consuming the
yield expression could contain sub-expressions with a higher
evaluation order. In other words, the interpreter should eval-
uate these expressions before the yield expression. Some of
them could have side effects, i.e., the call to foo in Fig-
ure 7(a). To avoid re-evaluation, we convert such expres-
sions into separate statements and create variables to store
the evaluated values. When the generator resumes, it picks
up the evaluated values from the variables without visiting
the expression nodes again.

4. Optimizing Generators with Peeling
Generator peeling is an AST level speculative optimization
that targets the idiomatic generator loop pattern. It trans-
forms the high level generator calling semantics to lower
level control structures and eliminates the overheads in-
curred by generators altogether.

4.1 Peeling Generator Loops
Figure 8 shows a generator loop (left) that collects even
numbers among the first ten Fibonacci numbers generated
by fib (right) into the list l. For each iteration in the loop,
the program performs the following steps:



l"="[]
for$i$in$fib(10):
""if"i"%"2"=="0:
""""l.append(i)

def$fib(n):
""a,"b"="0,"1
""for$i$in$range(n):
""""a,"b"="b,"a+b
""""yield$a

1

234

5
generator(bodygenerator(loop

Figure 8. Program execution order of a generator loop

1. Call next on the generator and resume execution.

2. Perform another iteration in the for range loop to com-
pute the next Fibonacci number.

3. Return the value of a to the caller and assign it to i.

4. Execute the body of the generator loop.

5. Return to the loop header and continue with the next
iteration.

Among those steps listed above, only step two and four
perform the actual computation. Steps one and three are gen-
erator specific resume and suspend steps. They involve call-
ing a function, resuming the generator AST to the previous
state and returning the next value back to the caller. Those
generator specific steps add high overhead to the real work
in the generator loop.

The most common and effective technique for optimiz-
ing function calls is to inline callees into callers. However,
traditional function inlining does not work for generators.
The desugared generator loop (similar to the one shown in
Figure 1(b)) includes two calls: one to the generator func-
tion fib and another one to the next method. The call
to fib simply returns a generator object during loop setup,
and is not performance critical. Inlining the call to next

requires special handling of yields rather than treating them
as simple returns. An ideal solution should handle both calls
at the same time, while still preserving semantics.

Observe that the generator loop always calls next

on the generator unless it terminates. If the generator loop
body was empty, we can replace the loop with the generator
body of fib and still preserve semantics. Furthermore, as-
suming the above mentioned replacement is in-place, for the
non-empty loop body case, we can replace each yield state-
ment with the generator loop body. Figure 9 illustrates this
transformation. The solid arrow depicts the generator loop
replacement that “inlines” the generator body. The dashed
arrow shows the yield replacement that combines the gener-
ator code and the caller code.

Figure 10 shows the pseudo-code of the transformed pro-
gram. We combine the generator body and the loop body in
the same context. The original call to the generator function
fib translates to the assignment to n which sets up the initial
state of the following generator body. The generator body
replaces the original generator loop. We simplify the yield
statement to a single assignment. The assignment transfers

the value of a from the generator body to the following loop
body. The loop body in turn consumes the “yielded” value
of i.

def$fib(n):
((a,(b(=(0,(1
((for$i$in$range(n):
((((a,(b(=(b,(a+b
((((yield$a

l(=([]
for$i$in$fib(10):
((if(i(%(2(==(0:
((((l.append(i)

generator(body
loop(body

Figure 9. Peeling transformation

l"="[]
n"="10
a,"b"="0,"1
for$i$in$range(n):
""a,"b"="b,"a+b
""i"="a
""if"i"%"2"=="0:
""""l.append(i)

2

3

4
5

generator(body

loop(body

1

Figure 10. Transformed generator loop

The transformation peels off the generator loop, and re-
moves both calls, to fib and next . The optimized pro-
gram does not create a generator object. It eliminates the step
one and simplifies the step three shown in Figure 8. These
two steps do not contribute to the real computation. The
numbers on the right of Figure 10 denote the correspond-
ing execution steps of the original generator loop shown in
Figure 8. The two assignments preceding the transformed
generator body and the loop body (grayed in Figure 10) pre-
serve the correct data flow into and out of the generator code.

We simplified the pseudo code shown in Figure 10 for
clarity. Our transformation is not limited to the case where
the call to the generator function happens at the beginning of
the consuming loop. If the creation of the generator object
happens before the loop, we apply the same transformation
that combines the generator body with the loop body. We
explain the actual AST transformation in more detail in
Section 4.2.

4.2 Peeling AST Transformations
Figure 11(a) shows the AST transformation of our Fibonacci
example. The upper half of the figure shows the AST of the
generator loop. The AST contains a CallGenNode that calls
the generator function fib, and returns a generator object
to its parent node. The parent ForNode representing the for
loop then iterates over the generator. The lower half of the
figure shows the AST of the generator function fib. Note
that the generator body AST uses generator control nodes
and includes the YieldNode that returns the next Fibonacci
number to the caller.
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(b) Transformed generator loop AST

Figure 11. Peeling AST transformation

The figure also illustrates the two-step peeling AST
transformation. First we replace the ForNode that iter-
ates over the generator with the AST of the generator
body. Second, we clone the AST of the loop body and use
it to replace the YieldNode in the generator body. Fig-
ure 11(b) shows the result of the transformation. We use
a PeeledGenLoopNode to guard the transformed genera-
tor body. The PeeledGenLoopNode receives the arguments
from the ArgumentsNode and passes them the transformed
generator body. The FrameTransferNode transfers the Fi-
bonacci number stored in the variable a to the following loop
body (equivalent to step three in Figure 10). The transformed
loop body in turn consumes the “yielded” number.

ZipPy implements a number of different versions of
PeeledGenLoopNode to handle different loop setups. For
instance, a generator loop could consume an incoming gen-
erator object without calling the generator function at the be-
ginning of the loop. The transformed PeeledGenLoopNode

in this case guards against the actual call target wrapped by

the incoming generator object and receives the arguments
from the generator object.

4.3 Polymorphism and Deoptimization
ZipPy handles polymorphic operations by forming a chain
of specialized nodes with each node implementing a more
efficient version of the operation for a particular operand
type. The interpreter then dispatches execution to the desired
node depending on the actual type of the operand. Like other
operations in Python, the type of the iterator coming into a
loop can change at runtime. A loop that iterates over multiple
types of iterators is a polymorphic loop.

Generator peeling is a loop specialization technique that
targets generators, a particular kind of iterators. ZipPy
handles polymorphic loops by forming a chain of spe-
cialized loop nodes including PeeledGenLoopNodes. A
PeeledGenLoopNode checks the actual call target of the
incoming iterator before it executes the optimized loop. As
shown in Figure 12, if the target changes, then the execution
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Figure 12. Handling of polymorphic generator loop

falls through to the original loop node. ZipPy is able to apply
an additional level of the generator peeling transformation
for the new iterator type if it happens to be a generator as
well.

However, forming a polymorphic chain that is too deep
could lead to code explosion. If the depth of the chain goes
beyond a pre-defined threshold, ZipPy stops optimizing the
loop and replaces the entire chain with a generic loop node.
The generic loop node is capable of handling all types of
incoming iterators but with limited performance benefit.

4.4 Frames and Control Flow Handling
The AST of the optimized generator loop combines nodes
from two different functions and therefore accesses two dif-
ferent frame objects. Programmers can use non-local con-
trol flows such as breaks or continues in a generator loop
body. We explain how to handle frames and such control
flows in the rest of this section.

Frame Switching
The transformed AST illustrated in Figure 11(b) accesses
two frames: the caller frame and the generator frame. Fig-
ure 13 shows the layouts of the two frames. The nodes
belonging to the caller function read from and write to
the caller frame to access its local variables. The gener-
ator body nodes do so through the generator frame. The
PeeledGenLoopNode allocates the generator frame and
passes it to the dominated generator body. To enable caller
frame access in the deeply nested loop body, the node also
passes over the caller frame. Therefore, in the sub-tree dom-
inated by the PeeledGenLoopNode, both frames are acces-
sible.

0:    l

1:    i

0:    n

1:    a

2:    b

3:    i

caller&frame generator&frame

yield

Figure 13. The caller and generator frame objects of the
Fibonacci example

Although keeping both frames alive and accessible, the
interpreter picks one frame object as the current frame and

retains the other one as the background frame. It passes the
current frame to every execute method of the AST nodes
as an argument for faster access. The current frame stores
a reference to the background frame. The accesses to the
background frame require one more level of indirection.

In the generator body shown in Figure 11(b), the inter-
preter sets the generator frame as the current frame. The
FrameTransferNode propagates the values of a in the gen-
erator frame to i in the caller frame. This value propagation
corresponds to step 3 in Figure 8 and Figure 10. The follow-
ing FrameSwitchingNode swaps the positions of the two
frames and passes the caller frame as the current frame to
the dominated loop body.

Truffle’s underlying JIT compiler optimizes frame ac-
cesses. It eliminates frame allocations as long as references
to the frame object are not stored on the heap. A generator
stores its execution state by keeping a frame object refer-
ence on the heap. Therefore, the generator AST introduced
in Section 3.2 prevents this frame optimization. After gen-
erator peeling, however, the program does not create and
iterate over generators. It is not necessary to adopt gener-
ator control nodes in the “inlined” generator body and store
frame object references on the heap. As a result, the compiler
can successfully optimize frame accesses in the transformed
generator loop regardless of the number of frames.

For generator functions containing multiple yields, we
apply the same transformation to each YieldNode. The re-
sulting AST contains more than one loop body, hence multi-
ple FrameSwitchingNodes. We rely on the control-flow op-
timizations of the underlying compiler to minimize the cost
of this replication.

Merging both frames could also guarantee correct frame
accesses in the transformed AST. However, this approach is
more complicated. Merging frames combines the allocations
of both frames, which requires redirecting all frame accesses
to the combined frame. Upon deoptimization, we need to
undo the merge and redirect all frame accesses back to their
separate frames. This process become more complex for
the nested generator loop scenario which we explain more
in Section 4.6. Since the underlying compiler is able to
optimize multiple frame objects, merging frames does not
produce faster code.

Breaks and Continues
ZipPy implements break and continue statements using Java
exceptions. A BreakNode throws a break exception, and
then a parent node catches the exception. The control flow
exception skips all the nodes between the throwing node and
the catching node. The location of the catch clause deter-
mines what the exception can skip. Figure 5(b) shows the
catch clause in a GenWhileNode. The node catches the break
exception after the while loop, hence the exception breaks
the loop. Similarly, a continue exception caught in the loop
body quits the current iteration and continues with the next
iteration. There are no labeled break or continue statements
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Figure 14. Complex control flow handling

in Python. Thus, a control flow exception does not go be-
yond its enclosing loop. Furthermore, we can extract the ex-
ception catch clauses to dedicated nodes to construct more
complicated control structures.

A generator loop body may contain break or continue
statements that target the generator loop. Generator peeling
replaces the generator loop and embeds the loop body inside
the generator body. To properly handle breaks in the loop
body, we interpose a BreakTargetNode between the caller
and the generator body as shown in Figure 14(a). The nested
BreakNode throws a dedicated break exception to skip the
generator body, before it reaches the BreakTargetNode.
After catching the exception, the BreakTargetNode returns
to its parent and skips the rest of the generator loop. We
handle continues by interposing a ContinueTargetNode

between the loop body and the generator body (see Fig-
ure 14(b)). A continue exception skips the rest of the nodes
in the loop body and returns execution to the generator body.
This control flow is equivalent to what a continue does in the
original generator loop, that is resuming the generator exe-
cution from the statement after the last yield.

The above mentioned interposition is only necessary
when the optimized loop body contains break or continue
statements. As we explained in Section 3.2, the underly-
ing compiler optimizes control-flow exceptions into direct
jumps. Therefore, the exception-based control handling has
no negative impact on peak performance.

4.5 Implicit Generator Loops
An implicit generator loop consists of a generator expression
that produces a generator, and a function call that consumes
the generator. ZipPy applies additional transformation on
implicit generator loops to enable further optimizations such
as generator peeling.

Figure 15 illustrates this two-step process. First, we in-
line the function sum to expose the loop that consumes the
generator (see Figure 15(b)). The inlining step triggers an es-

size%=%42
sum(x*2%for%x%in%range(size))
1 2function(call( generator(expression

(a) Original

size%=%42
g=%(x*2%for%x%in%range(size)

_sum%=%None
for%i%in%g:
%%_sum%+=%i
%%

2generator(expression

1 inlined(sum(

(b) Inlined

size%=%42
def%_genexp(n):
$$for$i$in$range(n):
%%%%yield$i*2

_sum%=%None
for%i%in%_genexp(size):
%%_sum%+=%i
%%

2
desugared
generator+
function

1
explicit
generator+
loop

(c) Desugared

Figure 15. Implicit generator loop transformation

cape analysis of all the generator expressions in the current
scope. If our analysis finds a generator expression such that
the generator it produces does not escape the current scope
and a generator loop that consumes the produced generator
exists, ZipPy desugars the expression to a generator function
(see Figure 15(c)). Note that the desugared generator func-
tion redirects the references to the enclosing scope to the
argument accesses in the local scope. This redirection elimi-
nates non-local variables in the generator expression and al-
lows the compiler optimization for the enclosing frame. The
desugaring also replaces the generator reference in the in-
lined loop to a function call. The transformation exposes the
explicit generator loop that we can optimize using generator
peeling.

One obstacle when optimizing an implicit generator loop
is that the function consuming the generator can be a Python
built-in function. Programmers can use any built-in function
that accepts iterable arguments in an implicit generator loop.
Table 1 lists all the Python 3 built-in functions that accept
iterables and divides them into three different categories:

1. Implement in Python: Convenience functions that one
can write in pure Python. ZipPy implements these func-
tions using Python code. They share the same inlining
approach with user defined functions.

2. Synthesize to loop: Constructors of immutable data
types in Python. Cannot be written in pure Python with-
out exposing internal data representations of the language



1. Implement in 2. Synthesize to loop 3. No loop
Python

all, any bytes iter

bytearray dict next

enumerate frozenset

filter, list set

map, max tuple

min, sorted
sum, zip

Table 1. Python Built-in functions that accept iterables

runtime. The current solution is to speculatively intrinsify
the built-in call by replacing the call node with a synthe-
sized AST. The synthesized AST contains the generator
loop and constructs the desired data type. The intrinsified
call site exposes the generator loop and enjoys the same
peeling optimization.

3. No loop: Contains no loop. We exclude them from the
optimization.

4.6 Multi-level Generator Peeling
ZipPy relies on the tiered execution model of the underly-
ing framework. It starts executing a Python program in in-
terpretation mode. The interpreter collects runtime informa-
tion and inlines function calls that are hot. We apply function
inlining using an inlining budget. This budget helps to pre-
vent code explosions caused by inlining too many calls or
too big a callee. We perform generator peeling when a gen-
erator function call becomes hot, and possibly bail out if the
transformation did not succeed. Generator peeling shares its
budget with function inlining. If a generator peeling transfor-
mation is going to overrun the inlining budget, ZipPy aborts
the transformation. After exhausting all possible inlining and
peeling opportunities, Truffle compiles the entire AST into
machine code. All subsequent calls to the compiled function
execute at peak performance.

An optimized generator loop might include another gen-
erator loop. We call these cases nested generator loops.
Python programs can contain arbitrary levels of nested gen-
erator loops. Our optimization is capable of handling mul-
tiple levels of nested generator loops by iteratively peeling
one loop layer at a time. It requires minimal modifications
to our existing algorithms to handle this scenario.

Figure 16 shows the AST of three nested generator loops
after peeling transformations. In a simple case, an optimized
generator loop consists of two parts: the inlined generator
body and the embedded loop body. To illustrate the relation-
ships between these two program regions, we simplify the
structure of the AST by using one node for each program re-
gion. A numbered solid circle denotes a generator body, and
a numbered dashed circle denotes a loop body. An “inlined”
generator body node is always associated with a loop body
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Figure 16. Multi-level generator peeling

node as its immediate child. As shown in Figure 16, the first
level peeling results in node one being the generator body
and node two being the loop body. The second level peel-
ing includes two optimized generator loops with nodes three
and four extended from the generator body and nodes five
and six extended from the loop body. Note that at any level
in the tree, a next level peeling can either extend from the
generator body or the loop body of the current level. More
complicated cases recursively repeat the same tree structure
as shown in Figure 16. Therefore, a working solution for the
shown tree structure automatically extends to more compli-
cated cases.

The tree shown in the figure adheres to the following
rules: Since it is a tree, every node only has one parent except
the root node. Every solid node has an associated dashed
node as its child but possibly not the only child. Every
dashed node has an associated solid node as its only parent.
Every dashed node must have one and only one grandparent.

The arrows in Figure 16 depict the desired frame and
control-flow handling. Every dashed node receives two
frames: one from its parent and another one from its grand-
parent. Since every dashed node has a unique parent and
a unique grandparent, there it no ambiguity on which two
frames it receives. A continue returns from a dashed node
to its associated solid node. Since the associated solid node
is its only parent, no node can intercept this control-flow.
Our existing algorithms therefore automatically cover frame
handling and continue statements for nested generator loops.



Break statements are more complicated. A break returns
from a dashed node to its grandparent. However, its solid
parent node may be the break target of another node and
intercept the break exception. For instance, node one in the
figure might catch the break exception thrown in node two
or node four. This ambiguity may cause an incorrect break
from node two. To resolve this issue, we need to label the
overlapping break exceptions to filter out undesired ones.
Since it is rare to have two nested generator loops that both
use breaks, we consider this scenario as a corner case.

In summary, our peeling transformation is able to handle
arbitrary levels of nested generator loops.

5. Evaluation
We evaluate the performance of our generator peeling imple-
mentation in ZipPy. We compare the performance of our sys-
tem with existing Python VMs: CPython [20], Jython [13]
and PyPy [19]. Our system setup is as follows:

• Intel Xeon E5462 Quad-Core processor running at a fre-
quency of 2.8GHz, on Mac OS X version 10.9.3 build
13D65.

• Apple LLVM 5.1, OpenJDK 1.8.0 05, Truffle/Graal 0.3.2

We run each benchmark ten times on each VM and aver-
age the execution times. For VMs that use a tiered execution
strategy, we warm up the benchmarks to ensure that the code
is just-in-time compiled. This allows us to properly measure
peak performance.

Benchmark Selection
We analyzed hundreds of programs listed on the Python
Package Index [18]. We picked a set of programs that in-
cludes compute intensive benchmarks as well as larger ap-
plications. The following chosen programs use generators to
various degrees:

• nqueens is a brute force N-queens solver selected from
the Unladen Swallow benchmark suite [2].

• The publicly available solutions to the first 50 Project Eu-
ler problems [1]: euler11 computes the greatest product
of four adjacent numbers in the same direction in a ma-
trix; euler31 calculates the combinations of English cur-
rency denominations.

• Python Algorithms and Data Structures (PADS) library [9]:
eratos implements a space-efficient version of sieve of
Eratosthenes; lyndon generates Lyndon words over an
s-symbol alphabet; partitions performs integer partitions
in reverse lexicographic order.

• pymaging is a pure Python imaging library. The bench-
mark draws a number of geometric shapes on a canvas.

2 From source code repository http://hg.openjdk.java.net/graal/

graal

• python-graph is a pure Python graph library. The bench-
mark processes a deep graph.

• simplejson is a simple, fast JSON library. The benchmark
encodes Python data structures into JSON strings.

• sympy is a Python library for symbolic mathematics. The
benchmark performs generic unifications on expression
trees.

• whoosh is a text indexing and searching library. The
benchmark performs a sequence of matching operations.

We learned from our generator survey that popular HTML
template engines written in Python use generators. There are
two reasons we do not include them in our performance eval-
uation. First, we implement ZipPy from scratch. It is infeasi-
ble for us to support all Python standard libraries required to
run these applications. Second, many of these applications
are not compute intensive. They spent most of the execution
time processing Unicode strings or in native libraries, which
is not a good indicator of the VM performance.

5.1 The Performance of Generator Peeling
Table 2 shows the results of our experiments. We use a score
system to gauge VM performance. We calculate the score
by dividing 1000 by the execution time of the benchmark.
A score system is more intuitive than execution times for
visualization purpose. It also offers a higher resolution for
our performance measurements. We carefully chose the pro-
gram inputs such that the resulting scores stay in the range
between 10 and 1000. Larger inputs have limited impacts on
the speedups our of optimization.

The second and third rows of Table 2 show the score of
each benchmark without and with the generator peeling op-
timization respectively. The speedup row gives the speedups
of our optimization. The geometric mean of the speedups is
3.58×. The following two rows of Table 2 show the number
of generator loops and generator expressions (implicit gen-
erator loops) used in the benchmarks as well as how many
of them are successfully optimized using generator peeling.
The number on the left in each cell is the number of opti-
mized generator loops, and the number on the right is the
total number generator loops used in the benchmark. Note
that we only count generator loops that are executed by the
benchmarks, since these are the ones that we can potentially
optimize. Table 2 also shows, for each benchmark, the num-
ber of lines of Python code in the bottom row.

Performance Analysis
Our experiments show that generator peeling covers most
instances of generator loops used in the benchmarks and re-
sults in speedups of up to an order of magnitude. The fol-
lowing four steps explain how we obtain this performance.

1. Generator peeling eliminates the allocation of generator
objects.

http://hg.openjdk.java.net/graal/graal
http://hg.openjdk.java.net/graal/graal


Benchmark nqueens euler11 euler31 eratos lyndon partitions pymaging python- simple- sympy whoosh mean
graph json

Score −GP 69.09 71.42 47.70 277.13 37.89 50.36 102.80 51.89 66.12 198.55 242.74
Score +GP 313.14 941.73 134.35 316.64 859.91 217.56 283.99 93.08 242.52 259.68 676.10
Speedup 4.53 13.19 2.82 1.14 22.69 4.32 2.76 1.79 3.67 1.31 2.79 3.58

No. gen 2/2 2/2 1/1† 2/2 3/3 1/1 2/2 2/2 1/1 4/5† 4/4
No. genexp 5/5 5/5 2/2 0/0 0/0 0/0 0/0 2/2 0/0 1/2 0/0
No. of lines 41 61 46 86 127 228 1528 3136 3128 262k 40k

† Contains recursive generator calls.

Table 2. The performance numbers of generator peeling

2. Generator peeling eliminates expensive suspend and re-
sume control-flow transfers and replaces them with local
variable assignments.

3. The optimized generator loops avoid the use of genera-
tor ASTs, which enables frame optimizations provided
by the underlying JIT compiler. The implicit generator
loop transformation eliminates the closure behavior of
the generator expressions and enables frame optimization
of the enclosing scope.

4. Generator peeling increases the scope of optimizations
for the underlying compiler. As a result, generator peel-
ing creates more optimization opportunities for the com-
piler, resulting in better optimized code.

To verify that generator peeling completely eliminates the
overhead incurred by generators, we rewrote the benchmark
nqueens to a version that only uses loops instead of genera-
tors. We compare the scores of ZipPy running the modified
version and the original benchmark with generator peeling
enabled. We found that generator peeling delivers the same
performance on the original benchmark as manually rewrit-
ing generator functions to loops.

However, the number of optimized generator loops does
not directly relate to the speedups we observed. The time
each program spends in generator loops varies from one to
another. The shorter the time a program spends in generator
loops, the smaller the speedup resulting from our optimiza-
tion. For each generator loop, the overhead-to-workload ra-
tio is the overhead incurred by the generators divided by the
actual computation performed in the loop. Generator loops
with a higher overhead-to-workload ratio achieve higher
speedups from generator peeling. Loops in which the ac-
tual computation dominates overall execution benefit less
from generator peeling.

For instance, euler11 is a compute intensive program
where generator overhead dominates the execution. Genera-
tor peeling transfers the program into nested loops that per-
form mostly arithmetic, which is an ideal optimization target
for the JIT compiler. On the other hand, larger programs like
python-graph contain extensive use of user-defined objects
and other heap-allocated data structures. The overhead-to-
workload ratio in such programs is relatively low. Although

having the same number of generator functions optimized,
generator peeling results in different speedups in these two
programs.

Despite the fact that larger Python programs exhibit a
large number of type changes, generator loops tend to re-
main stable. Programmers tend to write generator loops that
consume generator objects produced by the same generator
function. In our experiments, We only found a few number
of polymorphic generator loops, which, as described in Sec-
tion 4.3, our optimization is able to handle.

When optimizing nested generator loops, ZipPy starts
by peeling off the root layer in a non-generator caller. If
it successfully optimizes the first layer, ZipPy continues
to peel off subsequent layers. If this iterative process fails
at one layer, ZipPy stops peeling. The benchmark euler31
and sympy include recursive generator functions that con-
tain calls to itself. Such a recursive generator function ef-
fectively contains infinite levels of generator loops. In other
words, the optimized generator body always contain a gen-
erator loop that calls the same generator function. The fixed
inlining budget only allows ZipPy to optimize the first few
invocations of a recursive generator function to avoid code
explosion. Generator peeling has limited impact on the per-
formance of a deep recursive call to such a generator func-
tion. This incomplete coverage of recursive generator func-
tions is an implementation limitation.

Generator peeling is essentially a speculative AST level
transformation that is independent from JIT compilation.
Not only does it improve peak performance, it also speeds
up interpretation before the compilation starts. Generator
peeling does not introduce new optimization phases to the
compiler, rather it simplifies the workload for the underlying
compiler. For the nested generator loops case, generator
peeling does increase the AST size but it also reduces the
number of functions that need to be compiled. In general,
generator peeling has negligible impact on the compilation
times.

5.2 Comparison with Existing Python VMs
To fully evaluate our optimization, we compare the perfor-
mance of ZipPy with generator peeling against CPython,
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Figure 17. Detailed speedups of different Python implementations normalized to CPython 3.4.0

Benchmark nqueens euler11 euler31 eratos lyndon partitions pymaging python- simple- sympy whoosh mean
graph json

Z−GP 0.52 0.72 0.60 2.30 0.30 0.37 0.54 0.51 0.33 0.27 0.90 0.55
Z+GP 2.36 9.51 1.70 2.63 6.71 1.58 1.48 0.92 1.22 0.36 2.52 1.95

Table 3. The speedups of ZipPy without and with generator peeling normalized to PyPy3

Jython and PyPy. The VM versions used in the comparison
and the description of their execution models are as follows:

• CPython 2.7.6 and 3.4.0: Interpreter only.
• Jython 2.7-beta2: Python 2 compliant, hosted on JVMs.

Compiles Python modules to Java classes and lets the
JVM JIT compiler further compiles them to machine
code.

• PyPy 2.3.1 and PyPy3 2.3.1: Python 2 and 3 compliant
respectively. Uses a meta-tracing JIT compiler that com-
piles Python code to machine code.

Python 3 is not backward compatible with Python 2.
Although ZipPy exclusively supports Python 3, including
well-established Python 2 VMs in the comparison highlights
the potential of our optimization. The benchmarks we chose
support both Python 2 and 3. The same code, however,
suffers from a slight difference in the semantics interpreted
by different VMs.

Figure 17 shows the performance of different Python
VMs running the selected benchmarks relative to our base-
line, CPython 3.4.0. The average speedups of PyPy3 and
ZipPy against CPython 3 are 10.53× and 20.59×, respec-
tively. These numbers improve performance by an order of
magnitude relative to other VMs.

To give a better overview of ZipPy’s performance, we in-
clude experiment results on additional popular benchmarks
in the Appendix (Table 4 and Table 5). The additional bench-
marks include compute intensive ones from the Computer

Language Benchmarks Game [10] as well as object-oriented
ones that are frequently used to evaluate VM performance.
These benchmarks do not contain generator loops that are
performance critical, hence they cannot benefit from gen-
erator peeling. However, including these additional results
demonstrate ZipPy’s performance on a wider selection of
programs.

ZipPy vs. PyPy
PyPy is the state-of-the-art implementation of Python that
implements a meta-tracing JIT compiler for aggressively
optimizing Python programs [4, 21]. PyPy is fairly mature
and complete compared to ZipPy.

ZipPy on the other hand is more light weight in terms of
implementation effort. It benefits from low-cost speculative
type specialization, which is the most critical performance
optimization for dynamic languages. ZipPy does not have to
invest or maintain its own compilation infrastructure. It re-
lies on the underlying Java compiler to JIT compile Python
code. The Java JIT compiler is, in general, more sophisti-
cated and aggressive than the one in PyPy. Any additional
optimizations added to Truffle will automatically benefit our
system.

PyPy’s Generator Optimization
PyPy also supports a generator optimization that primarily
targets simple generator functions in its recent releases. Fig-
ure 18(a) shows an example generator loop (left) that con-
sumes a simple generator function (right). We use this ex-



def$gen(n):
''x'='0
''for$i$in$range(n):
''''yield$x
''''x'+='i

l'='[]
for$j$in$gen(10):
''l.append(j)

(a) A generator loop example
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(b) Optimized trace of the generator loop example

Figure 18. Generator optimization in PyPy

ample to demonstrate PyPy’s optimization. PyPy is able to
trace the execution of the loop and compiles it into machine
code. The trace compiler inlines the implicit call to the gen-
erator’s next method into the loop body. It does so by
constant folding the last instruction pointer on the gen-
erator frame, which stores the suspended program location in
the generator. The subsequent compiler optimizations con-
vert the yield operation to a direct jump. However, generator
frame accesses are not fully optimized, since its allocation
happens outside the trace and cannot be seen by the JIT com-
piler.

PyPy’s trace compiler compiles linear execution paths
into machine code. Different iterations of a generator loop
are likely to be compiled into different traces. Figure 18(b)
illustrates two different traces the compiler generates for our
example. We simplified the intermediate representation for-
mat in PyPy’s trace to make it more readable. The first it-
eration of the loop goes into trace one; the remaining itera-
tions execute in trace two. More complicated control struc-
tures and multiple yields in a generator function introduce
more branches in the consuming loop. The number of traces

generated by the compiler increases for more complicated
generators. As a result, the execution of an optimized gen-
erator loop has to switch between different traces. Not only
does the trace switching incur slow paths, it also increases
instruction cache misses. Currently more complicated gen-
erators are not properly optimized by PyPy.

Generator peeling on the other hand is able to optimize
more complicated generators. ZipPy using the underlying
method-based JIT compiler compiles the entire transformed
generator loop into machine code, and completely removes
overheads incurred by a generator. Moreover, by analyz-
ing the assembly code produced by both JIT compilers, we
found that, even for a simple generator case, Truffle is able
to produce more efficient machine code. Table 3 shows the
speedups of ZipPy with and without generator peeling, rela-
tive to PyPy3 (Python 3). The overall performance of ZipPy
without generator peeling is competitive with PyPy3. How-
ever, by enabling generator peeling, our system outperforms
PyPy3 by a factor of two.

6. Discussion
Besides Python, other mainstream dynamic languages also
support generators, e.g., Ruby and JavaScript (ECMAScript
6 [8]). We plan to integrate the work described in this pa-
per into the Truffle framework, so that other languages can
also benefit from high-performance generators. The guest
language can use Java interfaces or annotations to commu-
nicate with the framework and provide hints about their im-
plementations of generator related nodes. Using those hints,
the framework can apply similar transformations without re-
quiring explicit knowledge of the guest language internals.

Another way to speed up generators is to parallelize them.
A generator that does not share mutable state with its caller
can be parallelized while preserving correctness. We can ex-
ecute such a parallelizable generator in a separate thread and
let it communicate with the caller using a bounded FIFO
queue. The parallelized generator produces values in batch
into the FIFO queue, without having to wait for the con-
sumer to request the next one. The consumer fetches a value
from the FIFO queue without waiting for the next value to
arrive, and continues with the next iteration. To preserve lazy
execution of generators, we need to limit the size of the FIFO
queue. This restriction on size also helps reducing memory
consumption. The parallelization of generators does not tar-
get any particular pattern of using generators, but applies to
all generators. Our preliminary results indicate that we can
double the performance of generators in this way.

7. Related Work
Murer et al. [17] presented the design of Sather iterators de-
rived from the iterators in CLU [14]. Sather iterators encap-
sulate their execution states and may “yield” or “quit” to the
main program. This design inspired the design of generators
in Python.



Stadler et al. [23] presented a coroutine implementation
for the JVMs that can efficiently handle coroutine stacks by
letting a large number of coroutines share a fixed number
of stacks. Our generator solution does not rely on coroutine
stacks and does not require modifications to the host lan-
guage.

In Ruby [22], methods may receive a code block from the
caller. The method may invoke the code block using “yield”
and pass values into the code block. Ruby uses this block pa-
rameter to implement iterators. An iterator method expects
a code block from the caller and “yields” a series of values
to the block. To optimize the iterator method, an efficient
Ruby implementation can inline the iterator method to the
caller and further inline the call to the code block. This opti-
mization combines the iterator method and the code block in
the same context, and resembles the generator peeling trans-
formation. However, iterator methods in Ruby are different
from generator functions in Python. They do not perform
generator suspends and resumes. Generator peeling employs
additional program analysis and high level transformations,
hence is more sophisticated than straight forward call inlin-
ing.

Both CLU [3] and JMatch [15] have both implemented a
frame optimization for the iterator feature in their languages.
To avoid heap allocation, their optimizations allocate iterator
frames on the machine stack. When an iterator yields back
to the caller, its frame remains intact on the stack. When
resuming, the optimized program switches from the caller
frame to the existing iterator frame by restoring the frame
pointer, and continues execution. Their approaches, require
additional frame pointer manipulation and saving the pro-
gram pointer of the iterator to keep track of the correct pro-
gram location. Generator peeling, on the other hand, is an in-
terpretation level specialization, and does not introduce low-
level modifications to the compiler to generate special ma-
chine code for generators. It allows compiler optimizations
to map the caller frame and the generator frame accesses to
the same machine stack frame, and does not require saving
the generator function program pointer to resume execution.
Therefore it is more efficient.

Watt [24] describes an inlining based technique that opti-
mizes control-based iterators in Aldor, a statically typed lan-
guage. His approach requires multiple extra steps that itera-
tively optimize the data structures and the control flows after
the initial inlining. Generator peeling transforms the guest
program AST in a single step before the compilation starts.
It simplifies the workload for the underlying compiler and
enables more optimizations.

8. Conclusion
Many popular programming languages support generators
to express iterators elegantly. Their ability to suspend and
resume execution sets them apart from regular functions and
make them harder to optimize. We address this challenge in

context of a modern, optimizing AST-interpreter for Python
3. It leverages the Truffle framework for the JVM to benefit
from type specialization and just-in-time compilation.

We use a specialized set of control-flow nodes to sus-
pend and resume generator functions represented as abstract
syntax trees and present a generator peeling transformation
to remove the overheads incurred by generators. Together,
our optimizations transform common uses of generators into
simple, nested loops. This transformation simplifies the con-
trol flow and eliminates the need for heap allocation of
frames which in turn exposes additional optimization oppor-
tunities to the underlying JVM. As a result, our generator-
bound benchmarks run 3.58× faster on average.

Our techniques are neither limited to Python nor our lan-
guage implementation, ZipPy. This means that programmers
no longer have to choose between succinct code or efficient
iteration—our solution offers both.
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Appendix: Additional Benchmarks

Benchmark CPython3 CPython Jython PyPy PyPy3 ZipPy

binarytrees 5.40 5.10 10.76 14.05 14.60 39.49
fannkuchredux 2.27 2.20 1.17 101.24 107.52 198.94
fasta 15.52 16.20 24.13 182.09 174.55 241.76
mandelbrot 9.00 9.70 3.03 98.15 97.35 105.18
meteor 100.55 102.83 77.14 265.43 263.75 213.77
nbody 10.12 9.87 7.40 122.83 122.07 62.42
pidigits 77.02 77.40 47.59 75.25 73.02 46.59
spectralnorm 0.90 1.20 1.70 114.60 114.52 115.29
float 10.82 10.23 11.37 93.57 93.82 191.68
richards 16.77 15.83 20.35 495.38 490.70 840.93
chaos 2.05 2.40 3.17 83.77 52.65 139.94
deltablue 19.62 16.77 26.19 590.25 571.82 460.37
go 23.15 24.97 46.16 157.29 154.07 356.80

Table 4. The scores of Python VMs running additional benchmarks

Benchmark CPython3 CPython Jython PyPy PyPy3 ZipPy

binarytrees 1.00 0.94 1.99 2.60 2.70 7.31
fannkuchredux 1.00 0.97 0.51 44.53 47.29 87.50
fasta 1.00 1.04 1.55 11.73 11.24 15.57
mandelbrot 1.00 1.08 0.34 10.91 10.82 11.69
meteor 1.00 1.02 0.77 2.64 2.62 2.13
nbody 1.00 0.97 0.73 12.13 12.06 6.17
pidigits 1.00 1.00 0.62 0.98 0.95 0.60
spectralnorm 1.00 1.33 1.89 127.33 127.25 128.10
float 1.00 0.95 1.05 8.64 8.67 17.71
richards 1.00 0.94 1.21 29.53 29.25 50.13
chaos 1.00 1.17 1.55 40.88 25.69 68.28
deltablue 1.00 0.85 1.33 30.08 29.14 23.46
go 1.00 1.08 1.99 6.79 6.66 15.41
mean 1.00 1.02 1.05 12.15 11.68 15.34

Table 5. The speedups of Python VMs normalized to CPython3 running additional benchmarks
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