
Genie in a Model? Why Model Driven Security will not secure
your Web Application

Christoph Hochreiner1, Peter Frühwirt1∗, Zhendong Ma2, Peter Kieseberg1,
Sebastian Schrittwieser3, and Edgar Weippl1

1SBA Research, Austria
{chochreiner, pfruehwirt, pkieseberg, eweippl}@sba-research.org

2Austrian Institute of Technology, Austria
zhendong.ma@ait.ac.at

3St. Pölten University of Applied Sciences, Austria
sebastian.schrittwieser@fhstp.ac.at

Abstract

More often a new software development methodology called Model Driven Engineering (MDE) is
used to increase productivity by supporting powerful code generation tools, which allows a less error-
prone implementation process. However the idea of modeling system aspects during the design phase
- so called Model Driven Security (MDS) - was proposed by the scientific community decades ago
and yet it is still unclear whether MDS can improve the security of a software project. In this paper
we provide a comprehensive evaluation of current MDS approaches based on a web application sce-
nario in regards to the most common web security attacks. We discuss their strengths and limitations
as well as the practicability of MDS for modern web application security in general.

Keywords: model engineering, model driven security, security engineering

1 Introduction

Within the course of the past few years, software correctness and secure software became more and more
important. One of the most effective approaches to obtain software correctness is to make use of Model
Driven Engineering (MDE). Due to the widespread diffusion of modeling languages, like the Uniform
Modeling Language (UML), several developers and research groups picked up the development of MDE
techniques and proposed sophisticated tools for code generation. These techniques and tools can be used,
to reduce design flaws as well as bugs, which are often introduced during the different phases in the
software development process. Flaws are typically introduced in the early stages of the planning phase.
These flaws can lead to conceptual problems later in the implementation phase. Modeling techniques are
designed to support the software architect during the planning phase to detect and resolve well-known
design flaws to obtain a solid software architecture. The second type of software defects are bugs. These
defects are introduced during the development phase by software developers. The application of MDE
in this phase can eliminate these bugs with the application of automatic code generation approaches.
Assumed that the software models are flawless, the abstract model can be automatically translated into
bug-free code. Apart from the software development process, techniques like model-based testing, model
checking and model validation can be used to verify the reliability a program implementation in reference
to its model.

Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, volume: 5, number: 3, pp. 44-62
∗Corresponding author: Favoritenstrasse 16, 1040 Wien, Austria; Tel: +43-699-17941418, Web: http://www.

sba-research.org

44

http://www.sba-research.org
http://www.sba-research.org


Why Model Driven Security will not secure your Web Application Hochreiner, et al.

Due to the tremendous success of MDE, the scientific community [1, 2] suggested to apply these ap-
proaches to the security domain to improve the software quality, especially in respect to security. Model
Driven Security (MDS) techniques can be applied to the same software development phases, which were
already mentioned above. Design-based vulnerabilities can be eliminated in the requirements engineer-
ing and the design phase by applying goal oriented system analysis approaches and model checking
techniques. In the implementation phase, automatic code generation tools can eliminate bugs, which are
typically introduced by software developers. Although the MDE and MDS techniques seem very similar,
there are several important aspects introduced by the MDS techniques.

This paper provides an overview about the major approaches and compares these approaches based
on the example of a simple web application. The goal is to evaluate, how these techniques can support a
software architect to incorporate important security concepts and detect potential security flaws already
in the design phase. Due to the non-functional nature of security aspects, MDS is heavily influences
by the open world assumption in contrast to MDE. For MDE it is vital to implement all aspects of the
model, while for MDS, some parts of the implementation can be omitted, without affecting the functional
aspects of the program. Due to the open world assumption it is infeasible to model all possible attacks.
Based on the results of our evaluation, we believe, that MDS provides excellent tools to design secure
programs, but it lacks the ability to actually enforce these security aspects.

The content of this paper is based on our contribution to the latest AsiaARES-conference [3]1, where
we outlined the basic methods. The main contributions of this paper can be defined as follows: We show
which types of common threats in web application scenarios can be modeled and to what degree the
corresponding security measures are enforced by the different modeling techniques. Furthermore, we
provide the analysis of our experimental assessment of current security modeling techniques based on a
typical web application scenario. Additionally, we discuss the practicability of MDS for the secure devel-
opment of web applications. In contrast to the original paper we have updated our findings to the OWASP
Top 10 of 2013, provide extended details of the different modeling methods and propose a strategy for
how to apply and combine the modeling methods considering their characteristics in Section 6.

2 Related work

Models enable us to use simplified representations and levels of abstraction to solve complex real-world
problems. In particular, graphical models are very helpful for understanding and communicating prob-
lems in an intuitive way. MDS exploits these advantages by tightly integrating models into the process of
design, analysis and implementation of secure software systems. Consequently, existing work on MDS
mainly deals with three issues: modeling, model-based security analysis, and model transformation [4].
Modeling focuses on how to capture and model a system and how to model the system design along with
security requirements. Due to the de facto standard of UML in software engineering, most approaches
extend UML to integrate security aspects. For example, UMLsec [5, 1] defines a UML profile to in-
clude security requirements such as confidentiality and secure information flow in the UML diagram.
SecureUML [6, 7] adds syntax and semantics for modeling system design with access control require-
ments to UML. The syntax is defined by using the OMG Meta-Object Facility (MOF) standard for meta
models and UML profiles.
Modeling is usually the first step in the MDS process. The modeled systems are used for reasoning about
their security properties in the course of the security analysis. To this end, a large amount of related
work exists, which also includes traditional formal methods like model checking and theorem proving
that uses formal languages to specify (hence model) and verify the security of a system.

1 This paper is an extended version of the paper [3], presented at the Information Communication Technology-EurAsia Con-
ference 2014 (ICT-EurAsia 2014 ), Bali, Indonesia, April 14–17, 2014.

45



Why Model Driven Security will not secure your Web Application Hochreiner, et al.

In [8], the authors provided a taxonomy evaluation of different state-of-the-art approaches for model
driven engineering. The taxonomy was proposed purely theoretically, still, to the best of our knowledge,
there has been no structured practical comparison of the actual techniques with respect to implementing
a real-life scenario. Our work is focused towards the practical applicability and effectiveness of model
driven engineering approaches such as Lloyd and Juerjens [9] did when they applied the UMLsec and
JML (Java Modelling Language) approaches to practically evaluate a biometric authentication system.
They used UMLsec to emphasis and specify security requirements for modeling threat levels and to
generate a JML from the UMLsec model. Gruenbauer et al. [10] evaluated layered security protocols
which are used to develop a bank application that contains personal sensitive data. Their approach com-
bines graphical modeling, simulation and model checking to evaluate the security issues of the developed
application. Deubler et al. [11] provide a formal analysis of a security-critical service-based software
system by leveraging a computer-aided system engineering tool. Best et al. [12] used UMLsec to analyze
and explain a search engine used by a German car manufacturer. Further abstract security analysis along
with a detailed authentication protocol analysis was conducted on the search engine. These results re-
sulted in static security requirements. Juerjens and Rumm [13] applied UMLsec analysis on the German
Health Card Architecture. Using the UMLsec notation enabled the security analyst to characterize their
models with respect to the security critical aspects of the system. In [13] Juerjens et al. indicated the
effectiveness of the UMLsec deployment approach on mobile communications. They showed that most
of the indicated security requirements can be implemented without specifically adapting them to mobile
systems. Furthermore they demonstrated that the usage of the UMLsec approach supports the security
requirements of mobile communication architectures.
One of the main advocated advantages of MDS is located in the area of model transformation. The
system models can be used to directly generate system artifacts such as security policies, access rules,
configuration files, and even program code. Alam et al. [14] used models for trust management of Web
services and generate XACML (eXtensible Access Control Markup Language) access control policies.
Nakamura et al. [15] added security requirements to UML-based application models and transformed
them into security configuration files on IBM Web application servers. Jensen and Feja [16] added secu-
rity requirements to process models on the ARIS platform 2 with the goal to generate security-enhanced
business processes for Web services. Souza et al. [17] include security requirements into Business
Process Modeling Notation (BPMN) models and transform them into Web Services Business Process
Execution Language (WS-BPEL) artifacts for secure service composition in Service-Oriented Architec-
ture (SOA) environments. Menzel and Meinel [18] extended SecureUML to enable secure SOA system
design. In a realistic scenario, Ma et al. [19] apply MDS to design and develop a Web service solution
for an e-Government system. Bandara et al. [20] conducted a similar evaluation, where they compared
the implementation of security patterns with different modeling techniques.

3 Methodology

3.1 Evaluation Scenario

For our evaluation we created a basic web application scenario, which outlines the dangers sketched out
by the Open Web Application Security Project (OWASP) in their 2013 published rendition of their TOP
10 [21].

In detail, the situation comprises three machines: A user accesses a web server that is connected
with a database server. On the web service, there are two distinct client parts: a regular user and an
administrator account. These two have distinctive access permissions in regard to the database server.

2http://www.softwareag.com/corporate/products/aris_platform

46

http://www.softwareag.com/corporate/products/aris_platform


Why Model Driven Security will not secure your Web Application Hochreiner, et al.

Figure 1 demonstrates this basic scenario. Please note that the model in the figure is modeled with the
use of any common modeling language to be formed as unbiased as could reasonably be expected before
displaying the situation with the distinctive MDS approaches.

3.2 OWASP Top 10

The OWASP Top 10 [21] provide a comprehensive overview of the most common web application threats
and identifies some of the most critical risks. This List of the Top 10 vulnerabilities was created by an
online community consisting of domain experts and it is one of the most commonly used reference
for web application security analysis. We use this collection as a comparison methodology in order to
evaluate the different modeling approaches (Section 5). In this section we give a short overview on the
different types of vulnerabilities that are referenced in the OWASP Top 10 of 2013.

A1: Injection An attacker modifies parameters or user input in order to trick the interpreter into execut-
ing unintended commands (e.g. SQL, XPath or LDAP queries, operating system commands, we
scripting languages, etc.).

A2: Broken Authentication and Session Management Authentication and Session Management have
different possible attack vectors including weak passwords, too much information in the displayed
error messages, Brute-Force attacks, insecure ”Forgotten password” functionality or a broken ”Re-
member me” functionality. These vulnerabilities may lead into Session Hijacking (the takeover of
a valid user session).

A3: Cross-Site Scripting (XSS) XSS is possible if user input is sent from the server to the browser
without validating or escaping the output data. There are different types of XSS attacks, e.g.
Stored XSS (malicious code is persisted in a data storage location), Reflected XSS (malicious code
is transmitted via URL to the victim) or DOM (Document Object Model)-based XSS (malicious
changes of the DOM tree).

A4: Insecure Direct Object References The attacker changes input parameters to read and modify data
of other users (usually, access to this data is denied)

A5: Security Misconfiguration This vulnerability describes common mistakes that harm the security
of the system, e.g. sensitive information in the source code, default/install are passwords not
changed, errors reveal comprehensive stack traces (information disclosure), security settings of
framework not understood and configured properly.

A6: Sensitive Data Exposure This thread includes common problems with sensitive data, e.g. no en-
cryption of sensitive data in transport (e.g. no SSL) or storage (e.g. no password hashing in DB) or
usage of weak cryptography (e.g. key generation, key exchange, self-made cryptography or weak
hashing).

A7: Missing Function Level Access Control Often applications rely on the user interface layer to per-
form access control. However this leads to vulnerabilities that are bypassing the user interface
(e.g. direct calls of a REST API). An authentication check on the server side is required to prevent
any user request without proper authentication.

A8: Cross-Site Request Forgery (CSRF) CSRF describes an attack where a user is undeliberately logged
in on a vulnerable website by extracting authentication information from vulnerable sites.

47



Why Model Driven Security will not secure your Web Application Hochreiner, et al.

Webserver

<<Internet>>
<<encrypted>> <<Lan>>

<<Integrity>>

 
authenticate doUserAction doAdminAction

read write delete update
 

Client

DB-Server

Figure 1: Simple Web Application Scenario

A9: Using Components with Known Vulnerabilities These vulnerabilities are often caused by out-of-
date components. To avoid these issues it is necessary to keep book of all used components, version
and their dependencies. Furthermore, the security of these components has to be monitored (e.g.
public databases or mailing lists) and updated in case of a discovered vulnerability.

A10: Unvalidated Redirects and Forwards A vulnerable website uses redirects, which use user input
without sufficient input validation. This enables arbitrary redirects. This attack is similar to XSS
attacks (A1) however the impact is less severe. Nevertheless this attack may help an attacker to
perform phishing attacks, because the manipulated link targets a trustworthy site but the victim is
redirected to the attacker’s server.

The scenario of Section 3.1 covers all threats of the OWASP Top 10, because it uses different components
and functionalities that can be attacked. The possible threats are mention in the brackets. The web server
offers different functionality on a transparent persistence layer (A1, A3, A4, A6, A10). The database
server may requires authentication depending on its purpose (A2, A8). The scenario uses a typical web
application environment which requires some kind of deployment in an execution environment (A5, A9)
and finally, the web server is connected over LAN (Local Area Network) with the database server (A7).

4 Selection of methods

This section evaluates the possibility of applying the different MDS approaches to model the threats
outlined in the OWASP Top 10. Each concept is introduced and the web application is then modelled
with regard to each of the OWASP threats.

4.1 UML based approaches

UML [22] is a widely used model notation method for constructing and analyzing software system
objects. It enables the developer to represent the various parts of a system from the abstract to imple-
mentation stage as a series of diagrams. The original UML notations have been extended to allow the
inclusion of non-functional system requirements in a direct manner. These non-functional requirements
include aspects like security measures and the threat environment. Through the use of extended UML
diagrams, a developer can model threats to the system as well as appropriate countermeasures.

48



Why Model Driven Security will not secure your Web Application Hochreiner, et al.

4.1.1 SecureUML

SecureUML is an expansion of the standard UML specification that combines the modeling aspect of
Role Based Access Control (RBAC) and other security aspects [23]. It is a single purpose extension that
enables the modeling of the system with regard to the access control aspects by adding roles, permissions
and constraints on a method level to the existing syntax. The designers of SecureUML have created
a prototypical tool that allows for the automatic conversion of the model into an EJB (Enterprise Java
Beans) based architecture, that combines all standard access controls and primitive comparison functions
(e.g. <,>, 6= /0). Any remaining capabilities must be implemented by the user. Using these additions,
the model can be automatically converted into executable code, helping to mitigate the risks posed by
OWASP entries (A1) and (A3). SecureUML derives input validation [24] by implementing a distinct
validation class that deals with the input. RBAC is a fundamental part of SecureUML as it ensures the
access control restrictions pertaining to objects, databases and files, thus dealing with (A2) and (A4). As
RBAC can also be used for URL access restriction, the threat (A7) can be mitigated. The SecureUML
specification lacks the functionality to model the transport security aspects and the required logging of
queries.

4.1.2 UMLsec

As an expansion to the established UML standard, UMLsec supplies further methods to model the se-
curity aspects of software systems based on so-called secure guards. This allows for models to be
compatible with standard UML diagrams.

When applying the OWASP Top 10 threats to the example web service, there are some aspects that
can be prevented with proper UMLsec modeling. The first two threats, Injection (A1) and Cross-Site
Scripting (A3), concern the data provided by the user. To prevent attacks on the web service based on this
external input we have to check every input. This aspect is modeled with a secure dependency between
the web service and the InputValidator, which is called for every input, as one can see in Figure 5. The
threats concerning the Broken Authentication and Session Management (A2) cannot be dealt with proper
modeling, because the authentication mechanism is encapsulated within the authenticate method. The
evaluation of this functionality was omitted, because they are not in the focus of UMLSec. It is possible
to model countermeasures against Direct Object Reference (A4), Cross-Site Request Forgery (CSRF)
(A8), Missing Function Level Access Control (A7) and Unvalidated Redirects and Forwards (A10) with
secure guards. Every possible attack scenario requires dedicated secure guards. One example is a special
guard that checks the feasibility of the called method to prevent Cross-Site Request Forgery. Another
example is a guard that prevents unauthorized URL or method access. The model (Figure 3), which
shows the usage of secure guards, covers our scenario.

UMLsec can be used to tag particular communication paths with security requirements such as en-
cryptions. Besides the aspects that can be modeled with UMLsec, there are some that cannot be modeled
by using this technique. Both Security Misconfiguration (A5) and Using Components with Known Vul-
nerabilities (A9) cannot be modeled by using UMLsec. It is not possible to handle these two issues using
model-engineering techniques as these techniques only cover the architecture of the program, not the
deployment environment.

4.1.3 Misusecase

Another extension to the use case specification of the UML use case diagram is the misusecase specifica-
tion. Guttorm Sindre and Andreas L. Opdahl [25] developed this extension to outline potential malicious
attacks against a system, which are added to the normal use case diagram with inverted colors. However,
it is not possible to provide any tool support to generate code from this use case diagram, due to the

49



Why Model Driven Security will not secure your Web Application Hochreiner, et al.

high level of abstraction. The misusecase diagram can be used to combat some of the risks listed in the
OWASP Top 10. Attacks such as Injection (A1), Cross-Site Scripting (A3) and Missing Function Level
Access Control (A7) can be modeled using the misusecase diagram. Broken Authentication (A2) can be
mitigated using the misusecase diagram by modeling unauthorized actions, but any temporal or casual
dependencies cannot be modeled. Issues on the OWASP Top 10 relating to configuration: Security Mis-
configuration (A6), and those relating to the use of components with known Vulnerabilities (A9) also can
not be mitigated using misusecase diagrams.

4.2 Aspect oriented software development

Aspect oriented software development (AOSD) is an emerging approach that looks to promote the ad-
vanced separation of concerns. This approach allows system properties such as security to be separately
analyzed and then integrated into the system environment.

4.2.1 Aspect oriented modeling

The framework proposed by Zhu et al. [26] is designed to model the potential threats to a system in
an aspect-oriented manner. These additions are designed to model an attacker-and-victim relation in the
various types of UML diagrams. Due to page limitations, our evaluation only describes the class diagram
as it already displays most of the additional features compared to standard UML specifications. The
premise of the class diagrams is an abstract attacker class that supplies simple attributes and methods.
This framework is applicable in the setting of risk-oriented software development. Following a risk
analysis of the system, any high impact attacks must be identified and subsequently modeled. The
models created in this step can then be converted to aspect-oriented code that can then be integrated into
the existing code base. The code generator published by Zhu et al. is equipped to produce both AspectJ
and AspectC++ code. These expansions of the standard UML specification are not practical enough to
model basic security aspects such as RBAC and transport security. They are only useful for situations
involving particular attack scenarios and adding specific countermeasures to a given system. However, it
is possible to model each of the aspects listed in the OWASP Top 10 using aspect oriented modeling.

4.2.2 Software Architecture Model (SAM)

Moving away from UML-based modeling techniques, other modeling approaches can be found based on
Petri nets and temporal logic, such as the AOD framework described by H.Yu et al. [27]. This framework
is designed to model complex workflows and combine them with security aspects. Nodes in the petri net
represent single steps of the workflow and the security aspects handle the transitions between each node.
The constraints of the workflow are modeled in a temporal logic that enables a formal verification of the
system.

4.2.3 Protocol Checker

The AVISPA Tool for automated validation of Internet security protocols and applications mainly covers
the verification of (cryptographic) protocols with respect to known attack vectors such as man-in-the-
middle and relay attacks. At its core, AVISPA uses a definition language for protocols (HLPSL – High
Level Protocol Security Language), which was designed specifically to combine the modeling of protocol
flows with security parameters and requirements. Moreover, AVISPA supplies four discrete analysis
engines that can be used to work on a problem individually or simultaneously:

50



Why Model Driven Security will not secure your Web Application Hochreiner, et al.

• The On-the-fly-Model-Checker (OFMC) uses symbolic model checking for protocol falsification
and verification with respect to specified bounds.

• The Constraint-Logic-based-Attack Searcher (CL-AtSe) uses constraint solving for identifying
weaknesses and can be extended easily to handle specific algebraic operations.

• The SAT-based Model-Checker (SATMC) generates a propositional formula, which is then fed to
a SAT-solver.

• The Tree-Automata-based-on-Automatic-Approximations-for-the-Analysis-of-Security-Protocols
module (TA4SP) uses regular tree languages for rewriting and approximating intruder knowledge.

Another tool suited for the analysis of both synchronous and asynchronous protocols is the Symbolic
Model Verifier (SMV), which is based on temporal logic. Models are identified in the form of temporal
logic formulae, which are then used by the too to specify and handle finite automata and also to verify
the validity of the temporal logic formulae. A particular strength of this tool is its ability to handle
asynchronous protocols and distributed systems. However, it is not possible to model executable software
systems using SMV.

The modeling language Alloy is based on a first-order relational logic, with its main purpose based
around modeling software designs. The logical structures of the systems are modeled using relations
while the existing properties are modeled using relational operators. Alloy additionally supplies the user
with the ability for typing, sub-typing as well as type-checking during runtime as well as the creation
of reusable modules. The actual analysis is performed by the tool Alloy Analyzer, which is based on a
SAT-solver; due to the construction of the language, the analysis of a model is essentially an application
of constraint solving.

It is not practically feasible to use these techniques to model whole software applications as their
main goal is to provide a detailed security analysis on the protocol level; they are not concerned with
architectural decisions, but rather the execution of protocols using cryptographic primitives. However,
they can be useful for the analysis of cryptographic primitives and transport layer protocols and are
therefore a good strategy for preventing insufficient transport layer protection.

4.3 Goal driven approaches

Goals cover a range of different types of issues, both functional and non-functional. Goal models exhibit
how each of these different high level goals assist others through refinement links down to specific
software requirements and environmental assumptions. Functional goals center around the services that
are required whereas non-functional goals cover the quality of services such as security or availability.

4.3.1 KAOS

The KAOS model originates from the requirements engineering domain and was designed by researchers
at the University of Louvain and the University of Oregon. The name of the methodology KAOS stands
for Knowledge Acquisition in autOmated Specification [28] respectively Keep All Objects Satisfied [29]
The methodology describes a framework, to model and refine goals as well as the selection of alterna-
tives. The framework is supported by a software solution Objectiver 3, which is developed by a spin-off
of the University of Louvain. The software solution supports the developer in designing the goal models
and refining these models, as well generating object or operation models. It does not provide any code
generation functionality, that transforms the models into actual code. The KAOS model itself starts at a

3http://www.objectiver.com

51

http://www.objectiver.com


Why Model Driven Security will not secure your Web Application Hochreiner, et al.

<<secuml.role>>
User

<<secuml.role>>
Admin authenticate(name: String, password: String) : Boolean

doUserAction(params …)
doAdminAction(params …)

Webservice

<<secuml.constraint>>
UserAuthenticated

{userId!=null}

<<seculm.permission>>

<<seculm.permission>>

actiontype: doUserAction

UserPerm

actiontype: doUserAction
actiontype1: doAdminAction

AdminPerm

<<secuml.constraint>>
InputValidated

{!params.contain(XSS commands) 
&& !params.contain(SQLCommands)}

Figure 2: Use case modelled with Secure UML

high level, that describes abstract requirements for the system. These abstract requirements are separated
in functional and non-functional requirements, while the security requirements lie in the non-functional
section. These goal models can be further used to generate object models, operation models [30] or
responsibility models [31] to derive concrete software development requirements and restrictions.

4.3.2 Secure Tropos

The Tropos methodology [32] supports the software development process by describing the environment
of the system and the system itself. It is used to model dependencies between different actors who
want to achieve different goals by executing plans. There are four different abstraction layers defined to
describe different stages of requirements and layers of design. Secure Tropos [33] is an extension to the
original Tropos methodology by adding security constraints and secure entities as well as the concepts of
ownership, trust and dependency. The Secure Tropos methodology does not allow the designer to model
any OWASP TOP 10 threat directly within the model. Nevertheless there are some software solutions,
like SecTro2 4, that support the software engineer during the design and requirements analysis phase.

5 Evaluation

5.1 Secure UML

Beside the intention to use the constraints for both the access restrictions and any pertinent preconditions
such as the UserAuthenticated constraint, it is also possible to include more complex requirements to
provide input validation as the application of the framework to our use case shows. In Figure 2 we have
included the InputValidated constraint, which ensures that the parameters do not feature any strings that
could be exploited either by Cross-Site Scripting or SQL injection. This additional functionality to cover
Cross-Site Scripting and SQL injection checks must be implemented by the user as the tool only allows
for primitive comparison functionalities. Furthermore, the Secure UML specification does not provide
the functionality to model both transport security and the logging of database queries.

4http://sectro.securetropos.org

52

http://sectro.securetropos.org


Why Model Driven Security will not secure your Web Application Hochreiner, et al.

5.2 UMLsec

This evaluation focuses on the class and the deployment diagram, because these two diagrams already
cover all security requirements of our simple web application scenario.

The feature of transport security tangles the communication between the three components, as shown
by Figure 1. The communication between the client and the application server is sent via the Internet, thus
all service-calls and the resulting replies must be encrypted. The communication between the application
server and the database server is less important because they are both connected within the same local
network. This allows for the reduction of the security requirement from the encryption level to the
integrity level. Both of these stereotypes are expressed using the UMLsec specification. Both the Internet
and LAN environments are added to the link between the systems and the calls are tagged with the
required stereotype. Given the heterogeneous nature of the systems and the ease with which the transport
requirements can be modeled, it is not feasible to automatically generate code to ensure compliance with
the requirements.

The aspects relating to both authentication and RBAC are modeled within the class diagram. The
basic model has to be expanded to include two further classes (UserAction and AdminAction) to define
user specific access control as the UMLsec specification only supports class based access restrictions.
Both of these classes are simple wrapper classes, annotated with two different guards. These guards are
both called from the web service class and verify whether or not the current user has a specific role,
assigned to them by a successful authentication.

The model (Figure 3) that demonstrates the usage of secure guards shows this scenario. Due to this
implicit mechanism, additional constraints, such as the users have to be authenticated, do not have to
be modeled. A successful evaluation of how UMLsec properties can be converted into code is shown in
[34]. One disadvantage to this style of modeling is that it often fails to scale sufficiently for additional
roles and it also increases the complexity of the model. The correct input validation is modeled using a
secure dependency between the web service and the InputValidator, which is called for every input, as
demonstrated in Figure 4. These guards verify whether the users have sufficient privileges to perform a
given action.

The last aspect to be looked at is the claim that all queries are logged. This aspect in modeled with the
secure dependency addition of UMLsec. By means of this addition, it is possible to model the constraint
with the log method of the logger class. As each user could potentially submit malicious input to the
system in our scenario, there has to be some instance of input validation to mitigate the risk of both
SQL injection and Cross Site Scripting attacks. This aspect was modeled using the secure dependency
addition: Each input that is passed on to a method provided by the web service must be checked for any
malicious input (see Figure 5).

5.3 Misusecase

The use case diagram shown in Figure 6 demonstrates the modeling of different threats to the system.
Any threats carried out by an attacker are shown with a normal use case actor marked with a black
background color.

This also applies to the misusecases shown in the diagram, which are represented by ordinary use case
elements marked with a black background. The misusecase diagram allows for the modeling of high-
level threats that can be executed by different actors within the system, but does not provide the func-
tionality to model any potential countermeasures or mitigation approaches. The only available method to
model countermeasures is to extend the existing use cases to implement organizational countermeasures,
such as additional permission checks.

53



Why Model Driven Security will not secure your Web Application Hochreiner, et al.

Client

authenticate(name: String, password: String) : Boolean
doUserAction(params …)
doAdminAction(params ...)

userActions
adminActions

Webservice

doUserAction(params ...)

UserAction <<guarded>> 
{guard=UserGuard}

doUserAction(params ...)

AdminAction <<guarded>> 
{guard=AdminGuard}

checkIfUser(userId: String) : Boolean

UserGuard

checkIfAdmin(userId: String) : Boolean

AdminGuard

read(query: String): String
write(query: String): Boolean
update(query: String): Boolean
delete(query: String): Boolean

Database Backend

«call» «call» «call» «call»

Figure 3: Secure Guards in UMLsec

authenticate(name: String, password String): Boolean
doUserAction(parameter: String): void
doAdminAction(parameter: String): void

Webservice
<<critical>>

{high={authenticate(name, password), 
checkForMaliciousInput(name)}}

{high={authenticate(name, password), 
checkForMaliciousInput(password)}}

{high={doUserAction(parameter), 
checkForMaliciousInput(parameter)}}
{high={doAdminAction(parameter), 

checkForMaliciousInput(parameter)}} checkForMaliciousInput(input: String): Boolean

InputValidator

«call»

Figure 4: Input Validation in UMLsec

read(query: String): String
write(query: String): Boolean
update(query: String): Boolean
delete(query: String): Boolean

Database
<<critical>>

{high={read(query), log(query)}}
{high={write(query), log(query)}}

{high={update(query), log(query)}}
{high={delete(query), log(query)}}

log(query: String)

Logger

«call»

Figure 5: Secure Dependency in UMLsec

5.4 Aspect oriented modeling

The basis of the class diagrams is an abstract Attacker class that provides the basic attributes and methods
for the concrete attacker class. In our example, the concrete attacker tries to tamper the authentication
using invalid input (Figure 7. This attack is modeled as an aspect that provides some methods to execute
checks to prevent this attack. The remaining part of the diagram is a simplified representation of our

Webservice

authenticated
doUserAction

User

authenticated
doAdminAction

Admin Attacker

not 
authenticated
doUserAction

not 
authenticated

doAdminAction

access restricted 
page

not intended 
database access

checkPermission

«includes»

«includes»

Figure 6: Modeling of malicious acts with misusecase diagrams

54



Why Model Driven Security will not secure your Web Application Hochreiner, et al.

title(): String
info(): String

state: String

Attacker

SQL_attacker(ip: String): String

ip_adress: String

<<attacker>>
SQL_attacker

<<advice>> before(name: String, password: String): authenticating
getNewState(name: String, password: String): void

<<pointcut>> authenticating (String name, String password)

<<aspect>>
SQLinjection

1..*

authenticate(name: String, password) : boolean

<<victim>>
Webservice

<<joinpoint>>

authenticate

authenticating

Figure 7: Aspect Oriented Modeling

basic UML class diagram. In the context of this framework it is feasible to omit all classes or methods
that are not used in this attack. Every diagram that is modeled within this framework visualizes only one
attack. In a real world setting there will be numerous different diagrams that model different attacks on
a given system.

In general it is possible to model all aspects of the OWASP Top10 using aspect oriented modeling.
Still, the approach is only feasible for covering the most pressing topics like injections and cross site
scripting. In aspect oriented modeling every possible attack needs to be modeled with respect to its
effects on the system, which implies that all possible attacks need to be known beforehand. Furthermore,
in case of real-life-size applications, the number of possible attack scenarios that need to be modeled
separately will grow drastically.

5.5 SAM

Due to the lack of complex workflows in our scenario, we omitted a detailed analysis of this framework.
The single method calls do not trigger any workflows within the web service. Currently there is no tool
support for this framework that provides automatic code generation, but this framework can be used in
order to perform a detailed risk analysis of a complex workflow.

5.6 KAOS

The KAOS model itself begins at a high level and describes the abstract requirements of the system. The
security requirements lie in the non-functional section, as shown in Figure 8. Figure 9 shows a refinement
of the secure system requirement, where the majority of the OWASP Top 10 issues can be modeled. Fig-
ure 10 demonstrates a model for a concrete requirements model for calling the doAdminAction method.
This model already includes actors and specific requirements related to the rather high-level requirements
such as restricted access or authenticity.

55



Why Model Driven Security will not secure your Web Application Hochreiner, et al.

service satisfying 
users' needs

service satisfies 
functional needs

service satisfies non 
functional needs

safe system

cheap systemusable system

secure system

Figure 8: Basic goal model

secure system

restricted access

integrity

confidentiality

authenticity

secure storage

secure configuration

Figure 9: Refined goal model

doAdminAction

web interface 
provided

method called

method call detected

result of 
doAdminAction

error message if not 
authorized

user is informed by 
call state

service company

user

webservice controller

restricted access

authenticity

Figure 10: Goal model for a specific action

User Admin

doUserAction doAdminAction

Service 
Provider

De De

De De

Keep information 
confidential

Keep information 
confidential

Figure 11: Security constraints modeled with Tropos

5.7 Secure Tropos

Figure 11 demonstrates a basic dependency model with security constraints, which are modeled in the
cloud shaped elements. It shows each of the three actors within the system, the user, admin and service
provider as well as the two plans available to be executed by the user and admin actors. The security
constraints can be used to introduce requirements for actions between the user and admin actors but not
for the systems, such as the database server. This methodology is used to model the dependencies and
trust relations between multiple stakeholders. However, it is not practical to apply this methodology to
our evaluation scenario to improve the security of the system.

56



Why Model Driven Security will not secure your Web Application Hochreiner, et al.

6 Discussion

6.1 Comparing results

In the following section we will give an overview on the capabilities of the different modelling ap-
proaches and compare them with respect to the OWASP Top Ten of 2013.

OWASP Top 10 Secure
UML

UMLsec Misuse-
case

Aspect
Oriented

KAOS Protocol
Checker

Secure
Tropos

Injection (A1) 3 3 3 3 3 7 7

Broken Auth. and
Session Mgmnt.
(A2)

3 7 3 3 3 7 7

XSS (A3) 3 3 3 3 3 7 7

Insecure Direct Ob-
ject Ref. (A4)

3 3 3 3 3 7 7

Security Misconfigu-
ration (A5)

7 7 7 3 3 7 7

Sensitive Data Expo-
sure (A6)

7 7 7 3 3 7 7

Missing Func-
tion Level Access
Control (A7)

3 3 3 3 3 7 7

CSRF (A8) 7 3 3 3 3 7 7

Using Compo-
nents with Known
Vulnerabilities (A9)

7 7 7 3 3 7 7

Unvalidated Redi-
rects and Forwards
(A10)

7 3 3 3 3 7 3

Toolsupport 3 7 7 3 3 7 3

Table 1: Summary of OWASP Top 10 mitigation coverage

Table 1 provides a summary on the capabilities of the modeling techniques outlined and compared
in this paper. The approaches can be divided into four distinct categories that they focus on:

Architecture: The UML-based approaches work on an architectural level, thus features like RBAC
can easily modelled (see [35]). With RBAC, the OWASP threats ”Broken authentication and session
management” (A2, limited in UMLsec)), ”Insecure direct object reference” (A4) and ”Missing function
level access control” (A7) can be mitigated, thus this feature is passed on to the UML-based approaches.
Due to the existence of tools for automated code generations, the threats ”Injection” (A1) and ”XSS”
(A3) can be mitigated too. Since deployment is not part of the architecture, threats relating to this part
of the development process, specifically threats A5 and A9, cannot be covered with these tools. The
main differences between the architectural approaches are based on differences in their design and are
discussed in Section 4.1.

57



Why Model Driven Security will not secure your Web Application Hochreiner, et al.

Behaviour: Misusecase on the other side focusses on modelling behaviour. This modelling works
only with respect to internal assets, allowing for flexible modelling of issues like access control, still,
(behavioural) external assets like deployment, exposure of sensitive data or using secure components
cannot be modelled.

Communication/Protocols: Protocol checkers focus on the evaluation of (security) protocols, omit-
ting the architectural layer. Network and transport layer security can thus be modelled easily, still, those
approaches fail at actually defining the assets in an architecture. This makes it impossible to model in-
jections, exposure of sensitive data CSRF, XSS or access control, or even more high-level assets relating
to the actual implementation or deployment issues (e.g. ”Using components with known vulnerabilities”
(A9)).

Risk and Requirement modelling: Aspect oriented approaches as well as KAOS are focussed to-
wards extensive and very detailed risk analysis and modelling of specific requirements. While these
solutions are very powerful in theory, they lack practicability, e.g. in the aspect oriented approach, all
possible attacks have to be recognized, analyzed and modelled.

6.2 Current Application and Combination of Methods

In order to mitigate the deficiencies of the individual modelling approaches, the typical secure software
lifecycle is comprised of several steps, involving several different models and abstractions. Starting
with a detailed requirements analysis a preliminary architecture is modelled. In addition external re-
quirements, especially concerning the definition of sensitive data sets, are introduced as side parameters.
Based on these conceptual designs, a risk analysis is conducted, the results are used as input for fur-
ther changes in the underlying architecture. While this modelling covers the architectural level, other
issues are delegated: Secure coding guidelines enforce the non-usage of components with known vulner-
abilities (A9), as well as secure deployment guidelines try to mitigate security misconfigurations (A5).
Furthermore, the very important topic of using and designing secure protocols is delegated: While the
need for secure protocols can be annotated in the architectural view, the actual security of the protocols
is ensured by external protocol checkers, or even more advanced techniques like language security or
cryptoanalysis.

7 Conclusions

The modeling of countermeasures and mitigation of the OWASP TOP 10 threats are supported in most of
the UML based modeling methodologies, mostly by adding additional constrains on an implementation
level. In contrast the misuse case diagram and the goal-based approach do not model the implemen-
tation. Instead they use a model of a higher abstraction layer that shows real world interactions and
requirements. With these high level requirements some threats can be described as used in the KAOS
methodology. Therefore mitigation of the modeled threats cannot be used to identify potential security
issues or potential collisions for conflicting goals. The detection of conflicts and their resolution are cru-
cial in large systems with different stakeholders involved who have conflicting requirements. In addition
we showed that model driven engineering does not improve the security in general by adding implicit
mitigation procedures or checks for potential flaws in the models, like those listed in the OWASP Top
10. These methodologies are intended to only support the developers by indicating possible locations
of conflicts. This can be achieved by goal based methodologies or by the addition of standard mitiga-

58



Why Model Driven Security will not secure your Web Application Hochreiner, et al.

tion features to existing systems like UMLsec and Secure UML methodologies. Table 1 presents an
summarized overview of the capabilities of the evaluated methodologies.

In conclusion model driven engineering can reduce potential threats that are listed in the OWASP
Top 10 indicting them in the model. However this indication does not ensure that the software architect,
who is in charge of designing the model, plans appropriate countermeasures or mitigation features and
further the actual implementation is compliant with the model itself.

Acknowledgements

This work has been supported by the Austrian Research Promotion Agency (FFG) under the Austrian
COMET Program.

References

[1] J. Jürjens, “UMLsec: Extending UML for secure systems development,” in Proc. of the 5th International
Conference on the Unified Modeling Language (UML’02), Dresden, German, LNCS, vol. 2460. Springer-
Verlag, September-October 2002, pp. 412–425.

[2] T. Lodderstedt, D. Basin, and J. Doser, “SecureUML: A UML-based modeling language for model-driven se-
curity,” in Proc. of the 5th International Conference on the Unified Modeling Language (UML’02), Dresden,
German, LNCS, vol. 2460. Springer-Verlag, September-October 2002, pp. 426–441.

[3] C. Hochreiner, Z. Ma, P. Kieseberg, S. Schrittwieser, and E. Weippl, “Using model driven security approaches
in web application development,” in Proc. of the 2nd IFIP TC5/8 Information & Communication Technology-
EurAsia Conference (ICT-EurAsia’14), Bali, Indonesia, LNCS, vol. 8407. Springer-Verlag, April 2014, pp.
419–431.

[4] D. Basin, M. Clavel, and M. Egea, “A decade of model-driven security,” in Proc. of the 16th ACM symposium
on Access control models and technologies (SACMAT’11), Innsbruck, Austria. ACM, June 2011, pp. 1–10.

[5] J. Jürjens, Secure systems development with UML. Springer-Verlag, October 2004.
[6] D. Basin, J. Doser, and T. Lodderstedt, “Model driven security for process-oriented systems,” in Proc. of the

8th ACM symposium on Access control models and technologies (SACMAT’03), Villa Gallia, Como, Italy.
ACM, June 2003, pp. 100–109.

[7] D. Basin, J. Doser, and T. Lodderstedt, “Model driven security: From uml models to access control infrastruc-
tures,” ACM Transactions on Software Engineering and Methodology (TOSEM), vol. 15, no. 1, pp. 39–91,
January 2006.

[8] K. Kasal, J. Heurix, and T. Neubauer, “Model-driven development meets security: An evaluation of current
approaches,” in Proc. of the 44th Hawaii International Conference on System Sciences (HICSS’11), Manoa,
Hawaii, USA. IEEE, January 2011, pp. 1–9.

[9] J. Lloyd and J. Jürjens, “Security analysis of a biometric authentication system using umlsec and jml,” Model
Driven Engineering Languages and Systems, pp. 77–91, October 2009.

[10] J. Grünbauer, H. Hollmann, J. Jürjens, and G. Wimmel, “Modelling and verification of layered security
protocols: A bank application,” in Proc. of 22nd International Conference on Computer Safety, Reliability,
and Security (SAFECOMP’03), Edinburgh, UK, LNCS, vol. 2788. Springer-Verlag., September 2003, pp.
116–129.

[11] M. Deubler, J. Grünbauer, J. Jürjens, and G. Wimmel, “Sound development of secure service-based systems,”
in Proc. of the 2nd international conference on Service oriented computing (ICSOC’04), New York City, New
York, USA. ACM, November 2004, pp. 115–124.

[12] B. Best, J. Jurjens, and B. Nuseibeh, “Model-based security engineering of distributed information systems
using umlsec,” in Proc. of the 29th International Conference on Software Engineering (ICSE’07), Minneapo-
lis, Minnesota, USA. IEEE, May 2007, pp. 581–590.

59



Why Model Driven Security will not secure your Web Application Hochreiner, et al.

[13] J. Jurjens, J. Schreck, and P. Bartmann, “Model-based security analysis for mobile communications,” in
ACM/IEEE 30th International Conference on Software Engineering (ICSE’08), Cape Town, South Africa.
IEEE, May 2008, pp. 683–692.

[14] M. Alam, R. Breu, and M. Hafner, “Model-driven security engineering for trust management in sectet,”
Journal of Software, vol. 2, no. 1, pp. 47–59, January 2007.

[15] Y. Nakamura, M. Tatsubori, T. Imamura, and K. Ono, “Model-driven security based on a web services se-
curity architecture,” in Proc. of the 2005 IEEE International Conference on Services Computing (SCC’05),
Orlando, Florida, USA, vol. 1. IEEE, July 2005, pp. 7–15.

[16] M. Jensen and S. Feja, “A security modeling approach for web-service-based business processes,” in Proc.
of the 16th Annual IEEE International Conference and Workshop on the Engineering of Computer Based
Systems (ECBS’09), San Francisco, California, USA. IEEE, April 2009, pp. 340–347.

[17] A. Souza, B. Silva, F. Lins, J. Damasceno, N. Rosa, P. Maciel, R. Medeiros, B. Stephenson, H. Motahari-
Nezhad, J. Li et al., “Incorporating security requirements into service composition: From modelling to
execution,” in Proc. of the 7th International Joint Conference on Service-Oriented Computing (ICSOC-
ServiceWave’09), Stockholm, Sweden, LNCS, vol. 5900. Springer-Verlag, November 2009, pp. 373–388.

[18] M. Menzel and C. Meinel, “Securesoa modelling security requirements for service-oriented architectures,”
in Proc. of the 7th IEEE International Conference on Services Computing (SCC’10), Miami, Florida, USA.
IEEE, July 2010, pp. 146–153.

[19] Z. Ma, C. Wagner, and T. Bleier, “Model-driven security for web services in e-government system: Ideal and
real,” in Proc. of the 7th International Conference on Next Generation Web Services Practices (NWeSP’11),
Salamanca, Spain. IEEE, October 2011, pp. 221–226.

[20] A. Bandara, H. Shinpei, J. Jurjens, H. Kaiya, A. Kubo, R. Laney, H. Mouratidis, A. Nhlabatsi, B. Nuseibeh,
Y. Tahara et al., “Security patterns: Comparing modeling approaches,” October 2010.

[21] OWASP, “Open web application security project top 10,” https://www.owasp.org/index.php/Top10#OWASP
Top 10 for 2013 (Last Access: Apr 23, 2014).

[22] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Language Reference Manual (2nd Edition).
Pearson Higher Education, May 2004.

[23] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman, “Role-based access control models,” Computer, vol. 29,
no. 2, pp. 38–47, February 1996.

[24] P. Hayati, N. Jafari, S. Rezaei, S. Sarenche, and V. Potdar, “Modeling input validation in uml,” in Proc. of the
19th Australian Conference on Software Engineering (ASWEC’08), Perth, Australia. IEEE, March 2008,
pp. 663–672.

[25] G. Sindre and A. Opdahl, “Templates for misuse case description,” in Proc. of the 7th International Workshop
on Requirements Engineering, Foundation for Software Quality (REFSQ’01), Interlaken, Switzerland, June
2001.

[26] Z. Zhu and M. Zulkernine, “A model-based aspect-oriented framework for building intrusion-aware software
systems,” Information and Software Technology, vol. 51, no. 5, pp. 865–875, May 2009.

[27] H. Yu, D. Liu, X. He, L. Yang, and S. Gao, “Secure software architectures design by aspect orienta-
tion,” in Proc. of the 10th IEEE International Conference on Engineering of Complex Computer Systems
(ICECCS’05), Shanghai, China. IEEE, June 2005, pp. 47–55.

[28] A. van Lamsweerde, A. Dardenne, B. Delcourt, and F. Dubisy, “The KAOS project: Knowledge acquisition
in automated specification of software,” in Proc. of the 1991 AAAI Spring Symposium Series, Track: Design
of Composite Systems, Stanford University, USA, November 1991, pp. 59–62.

[29] A. Van Lamsweerde and E. Letier, “From object orientation to goal orientation: A paradigm shift for re-
quirements engineering,” in Proc. of the 9th International Workshop on Radical Innovations of Software and
Systems Engineering in the Future (RISSEF’02), Venice, Italy, LNCS, vol. 2941. Springer-Verlag, October
2004, pp. 153–166.

[30] E. Letier and A. Van Lamsweerde, “Deriving operational software specifications from system goals,” ACM
SIGSOFT Software Engineering Notes, vol. 27, no. 6, pp. 119–128, November 2002.

[31] E. Letier and A. Van Lamsweerde, “Agent-based tactics for goal-oriented requirements elaboration,” in Proc.
of the 24th International Conference on Software Engineering (ICSE’02), Orlando, Florida, USA. ACM,

60

https://www.owasp.org/index.php/Top10#OWASP_Top_10_for_2013
https://www.owasp.org/index.php/Top10#OWASP_Top_10_for_2013


Why Model Driven Security will not secure your Web Application Hochreiner, et al.

May 2002, pp. 83–93.
[32] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos, “Tropos: An agent-oriented software

development methodology,” Autonomous Agents and Multi-Agent Systems, vol. 8, no. 3, pp. 203–236, May
2004.

[33] H. Mouratidis and P. Giorgini, “Enhancing secure tropos to effectively deal with security requirements in
the development of multiagent systems,” in Safety and Security in Multiagent Systems - Research Results
from 2004-2006, LNCS, M. Barley, H. Mouratidis, A. Unruh, D. Spears, P. Scerri, and F. Massacci, Eds.
Springer-Verlag, October 2009, vol. 4324, pp. 8–26.

[34] L. Montrieux, J. Jürjens, C. Haley, Y. Yu, P. Schobbens, and H. Toussaint, “Tool support for code generation
from a umlsec property,” in Proc. of the 25th IEEE/ACM International Conference on Automated Software
Engineering (ASE’10), Antwerp, Belgium. ACM, September 2010, pp. 357–358.

[35] M. Strembeck and J. Mendling, “Modeling process-related RBAC models with extended uml activity mod-
els,” Information and Software Technology, vol. 53, no. 5, pp. 456–483, May 2011.

——————————————————————————

Author Biography

Christoph Hochreiner is a researcher at SBA Research the Austrian non-profit re-
search institute for IT-Security. Christoph’s research interests cover the whole spec-
trum of privacy preserving mechanism, especially in the area of location privacy and
model driven security.

Peter Frühwirt is a researcher at SBA Research and lecturer at the Vienna University
of Technology. Peter received a Dipl. Ing. (equivalent to MSc) degree in Software
Engineering and Internet Computing in 2013. His research interests include mobile
security and database forensics.

Zhendong Ma works as a research scientist at the Austrian Institute of Technology
(AIT). He conducts application-oriented research in the area of computer and infor-
mation security, in which he applies theoretical research work to solve real world
problems as well as identifies and conceptualizes research problems from the prac-
tice. He holds a doctorate degree from University of Ulm, Germany, where he worked
in the area of privacy and security of vehicular communications. Currently he is in-
volved in national and EU projects on critical infrastructure protection, cloud security,

digital identity, and privacy of surveillance infrastructure.

61



Why Model Driven Security will not secure your Web Application Hochreiner, et al.

Peter Kieseberg received a master’s degree in Technical Mathematics in Computer
Science from the Vienna University of Technology with specializations in cryptogra-
phy and numerical mathematics. He worked as a consultant in the telecommunication
sector for several years before joining SBA Research.

Sebastian Schrittwieser is a lecturer and researcher at the University of Applied Sci-
ences St. Pölten, Austria. He received his doctorate degree with distinction from Vi-
enna University of Technology in 2014. Sebastian’s research interests include, among
others, digital forensics, software protection, code obfuscation, and mobile security.

Edgar R. Weippl is Research Director of SBA Research and associate professor (Pri-
vatdozent) at the Vienna University of Technology (CISSP, CISA, CISM, CRISC,
CSSLP, CMC). His research focuses on applied concepts of IT-security; he organizes
the ARES conference and is on the editorial board of Elsevier’s Computers & Security
journal (COSE).

62


	Introduction
	Related work
	Methodology
	Evaluation Scenario
	OWASP Top 10

	Selection of methods
	UML based approaches
	SecureUML
	UMLsec
	Misusecase

	Aspect oriented software development
	Aspect oriented modeling
	Software Architecture Model (SAM)
	Protocol Checker

	Goal driven approaches
	KAOS
	Secure Tropos


	Evaluation
	Secure UML
	UMLsec
	Misusecase
	Aspect oriented modeling
	SAM
	KAOS
	Secure Tropos

	Discussion
	Comparing results
	Current Application and Combination of Methods

	Conclusions

