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Abstract
Just-in-time compilers offer the biggest achievable payoff
performance-wise, but their implementation is a non-trivial,
time-consuming task—affecting the interpreter’s mainte-
nance for years to come, too. Recent research addresses this
issue by providing ways of leveraging existing just-in-time
compilation infrastructures.

Though there has been considerable research on im-
proving the efficiency of just-in-time compilers, the area
of optimizing interpreters has gotten less attention—as
if the implementation of a dynamic translation system
was the “ultima ratio” for efficiently interpreting program-
ming languages. We present optimization techniques for
improving the efficiency of interpreters without requiring
just-in-time compilation—thereby maintaining the ease-of-
implementation characteristic that brought many people to
implementing an interpreter in the first place.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Interpreters, Optimization, Mem-
ory Management

General Terms Design, Languages, Performance

Keywords Python, interpreter, quickening, reference count-
ing, instruction format

1. Motivation
The implementation and maintenance of just-in-time com-
pilers requires a lot of resources—probably too much for
many projects in their early beginnings, i.e., without finan-
cial resources, or popularity/visibility to get enough atten-
tion from the open source world. Recent research addresses
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this huge impact on resources by trying to leverage ex-
isting virtual machine infrastructures [YWF09, BCFR09],
thus supporting the re-use of existing just-in-time compil-
ers similarly to the front-end/back-end abstraction in tra-
ditional compilers. Increasing the efficiency of interpreters
without violating their main characteristics, ease of imple-
mentation and portability, is an interesting and important
problem. The optimization of interpreters is interesting be-
cause often simple techniques have a huge impact—for
example changing the instruction dispatch from the com-
mon switch-based dispatch technique to the more advanced
threaded-code1 [Bel73] dispatch techniques results in re-
ported speedups of up to 2.02 [EG03b]. Furthermore, we
are convinced that exploring the design space for efficient
interpretation techniques is important, because it provides
language implementers with attractive options to optimize
their interpreters without having to spend their scarce re-
sources on a dynamic translation sub-system. Without hav-
ing their resources committed to implementing a just-in-time
compiler, they are free to focus on continuing innovation on
their programming languages.

In 2003, Ertl and Gregg identified a set of optimization
techniques that achieve significant speedup for virtual ma-
chines [EG03b]. In addition to the aforementioned threaded-
code dispatch optimization, the paper suggests several other
optimization techniques, for example using superinstruc-
tions [EG03a, EG04]. Most of these virtual machine opti-
mization techniques focus on eliminating the overhead in
instruction dispatch, i.e., getting from one bytecode instruc-
tion to its successor. These instruction dispatch costs are
very high for interpreters where the native machine pro-
vides for most of the operation implementation, e.g., by
re-using the native machine integer addition instruction to
implement the virtual machine integer addition. However,
these dispatch costs are disproportionally lower for inter-
preters with a much higher abstraction level than for these
low abstraction-level virtual machines. Therefore, optimiz-

1 Threaded-code should not to be confused with multi-threaded code: We
use threaded-code to identify the optimized interpreter instruction dispatch
technique.



ing away the dispatch costs for interpreters where they do
not constitute the primary bottleneck yields proportion-
ally lower speedups. As demonstrated in 2009 [Bru09], the
virtual machine abstraction-level has considerable effects
on the performance potential of several optimization tech-
niques. Subsequent research on more suitable optimization
techniques for high abstraction-level virtual machines in-
dicates that promising optimizations need to cut down the
costs implied by operation implementation to achieve sig-
nificant speedups. Our previous work focuses on enabling
efficient inline caching in interpreters without just-in-time
compilers [Bru10a, Bru10b], resulting in speedups of up to
1.71.

This paper presents our results of extending this line of
research, specifically our contributions are:

• We describe several advanced quickening-based opti-
mization techniques to improve the performance of an
interpreter (Section 3). Among others, we describe a
technique to cache local variables of the host language in
the stack frame of the executing language (Section 3.4).

• We introduce a novel technique to eliminate reference
count operations in interpreters (Section 4).

• We present results of our careful and detailed evaluation,
demonstrating the effectiveness of our techniques (Sec-
tion 5). We are able to identify and eliminate up to two
thirds of increment, and up to half of the decrement refer-
ence count operations (Section 5.4). We report speedups
of up to 2.18 when combined with the threaded code dis-
patch technique (Section 5.5).

2. Background
Many of our target high abstraction-level virtual machines
feature dynamic typing. Therefore, we investigated the im-
plementation of efficient inline caching techniques for inter-
preters without a dynamic translation sub-system [Bru10a,
Bru10b]. The primary research vehicle we use to demon-
strate our optimizations is the Python 3.1 interpreter. We re-
port our results in the context of the Python 3.1 source code,
however, the techniques themselves are general and can be
applied to many interpreters with similar characteristics.

By using a code generator to generate instruction deriva-
tives at pre-compile time in combination with quickening at
run-time to incorporate the type feedback, we were able to
achieve a speedup of up to 1.71 [Bru10b]. Since this tech-
nique focuses on optimizing the operation implementation
of interpreter instructions, they are orthogonal to optimiza-
tion techniques focusing on instruction dispatch. Thus, when
combined with the threaded-code optimization technique,
the maximum speedup we reported is 1.92 [Bru10b].

In order for the interpreter to be able to use the new opti-
mized instruction derivatives, the instruction format needs to
be changed. This change removes the limit of 255 possible
instructions available to the interpreter. Besides enabling the

use of more than 255 instructions, our new regular instruc-
tion format allows for more efficient instruction decoding.
Instead of using an opcode byte plus optionally two adja-
cent bytes carrying its argument, we encode the instruction
opcode and its argument in one native machine word. To en-
able further optimization, our previous instruction format in-
terleaves these instruction words with additional native ma-
chine words.

The change of the instruction format, requires a separate
dispatch loop with different instruction decoding. We use a
simple profiling technique to decide when to use this opti-
mized interpreter routine [Bru10b]. This profiling technique
involves counting the invocations of each function. Once the
invocation count reaches a pre-definable threshold, we start
using the optimized interpreter dispatch routine. At the be-
ginning of the first optimized execution, we allocate memory
for the new instruction format and re-encode the sequence
of bytecode instructions. We use quickening to rewrite in-
structions from most-generic implementations to their opti-
mized derivatives. This describes our starting point for the
additional optimizations we describe in this paper. Though
most of these techniques can be applied without this basis,
our evaluation builds on the improvements upon this earlier
work.

3. Advanced Quickening-based
Optimizations

Section 2 briefly explains the foundation of our previous
work [Bru10b], whereupon we will subsequently add sev-
eral new optimization techniques in the remaining part
of the paper. First, we provide details for adding inline
caching to the comparison instruction of the Python inter-
preter (COMPARE OP); which our old interpreter did not do
and therefore provides an important link to our previous
work [Bru10b]. Second, we present a simple quickening-
based technique to unfold code (Section 3.2). Next, we in-
troduce a new instruction format together with two new op-
timizations using it (Section 3.3). Finally, we describe a new
technique to cache local variables of the host language in the
stack frame of the executing language (Section 3.4).

3.1 Inline Caching the Comparison Instruction
The regular comparison instruction relies on its argument
to decide which comparison operation to execute. Because
of its rich set of types, and possible ad-hoc polymorphism
using the comparison instruction, most of the invocations
end up invoking a type-dependent comparison function. Fig-
ure 1 shows the changes necessary for constructing an inline
cached version of the comparison instruction: the implemen-
tation on the right side contains the changes necessary to
create an optimized derivative of the standard COMPARE OP

instruction. The optimized derivative provides an inline
cache for Python’s integer type, PyLong Type. The lines
marked with > represent unchanged copies from the stan-



TARGET(COMPARE_OP)

w = POP();

v = TOP();

x = cmp_outcome(

oparg, v, w);

Py_DECREF(v);

Py_DECREF(w);

SET_TOP(x);

if (x == NULL) break;

DISPATCH();

TARGET(INCA_CMP_LONG)

>

>

/* check for misses */

if (v->ob_type

!= w->ob_type)

goto COMPARE_OP_MISS;

if (v->ob_type

!= &PyLong_Type)

goto COMPARE_OP_MISS;

/* inline cached call */

x= PyLong_Type

.tp_richcompare(

v, w, oparg);

>

>

>

>

>

>

Figure 1. Implementation of COMPARE OP on the left, an
optimized derivative on the right.

dard operation implementation on the left side. As we have
briefly described in Section 2, the function resolving the
dynamic types (do richcompare) quickens the instruction
from the generic COMPARE OP instruction to the optimized
INCA CMP LONG instruction.

At this point we introduce some internals of the Python
interpreter. The source code example for the standard COMPARE OP

contains several macros which we explain here for the con-
venience of the reader:

• TARGET: This macro is an auxiliary macro for helping to
weave in the necessary instruction decoding when using
threaded-code dispatch. It defines a label, that can be
used as a jump target on compilers that support the label
as value feature (TARGET COMPARE OP).

• POP/TOP, PUSH/SET TOP: These macros manipulate the
operand stack. The difference between the POP/PUSH and
TOP/SET TOP macros is that the latter do not change the
stack pointer.

• Py DECREF: Decreases the reference count of its argu-
ment, if the reference count drops to zero, this macro in-
vokes the reclamation procedure. Incrementing the refer-
ence count is done via Py INCREF.

• DISPATCH, FAST DISPATCH: These macros take care of
jumping to the next instruction when threaded-code dis-
patch is enabled.

3.2 Unfolding with Quickening
Several instructions within the Python 3.1 interpreter have
different behavior depending on their argument. While it
is convenient to encode multiple behaviors into just one
instruction, it is sub-optimal with respect to the perfor-
mance of this instruction. If we take a look at the follow-
ing BUILD TUPLE instruction, we see that the loop-body
depends on the instruction argument oparg:

TARGET(BUILD_TUPLE)

x = PyTuple_New(oparg);

if (x != NULL) {

for (; --oparg >= 0;) {

w = POP();

PyTuple_SET_ITEM(x, oparg, w);

}

PUSH(x);

DISPATCH();

}

break;

Results of a dynamic bytecode frequency analysis on our
benchmark programs as well as some other Python programs
find that the argument is most often either 2 or 3. Therefore
we construct optimized BUILD TUPLE instructions with their
argument fixed, for example with opcode := 3, the imple-
mentation can be optimized like this:

TARGET(BUILD_TUPLE_THREE)

x= PyTuple_New( 3 );

if (x != NULL) {

PyTuple_SET_ITEM(x, 2, TOP());

PyTuple_SET_ITEM(x, 1, SECOND());

PyTuple_SET_ITEM(x, 0, THIRD());

STACKADJ(-2);

SET_TOP(x);

DISPATCH();

}

break;

This manual unrolling of interpreter instructions enables
the compiler to perform more optimizations on this block.
Further examples for unfolding with quickening are not
limited to loops, but rather to straightening cascaded con-
ditional blocks that solely depend on the instruction ar-
gument. This corresponds directly to an optimization for
Smalltalk 80 interpreters, suggested by Allen Wirfs-Brock
in 1982 [WB82]. We apply this optimization to several in-
structions: BUILD TUPLE, BUILD LIST, UNFOLD SEQUENCE.

3.3 Reduced Instruction Format
Our instruction format of [Bru10b] contains interleaved
words for storing pointers (cf. Figure 2(a)). We use these
pointers to either cache addresses of functions or data ob-
jects. Though we found sufficient uses for justifying these in-
terleaved words, some were always being empty, i.e., NULL,



because there was just no use for them in the instruction im-
plementation. Some of the optimizations we use this pointer
cache for, was to significantly speed up the implementation
of the LOAD GLOBAL instruction [Bru10b].

OPCODEARGUMENT 2n

2n + 1INLINE CACHE PTR

63 31 032

(a) Old instruction format requiring two words [Bru10b].

(b) New instruction format using just one word.

Figure 2. Changing the instruction format.

We propose a new instruction format that removes the in-
terleaved inline cache pointer words, such that the instruc-
tion words are adjacent (cf. Figure 2(b)). Thus we require
only half as much native machine words as before (cf. Fig-
ure 2). However, since we do not want to interpret without
our optimizations, we describe alternative implementation
approaches.

Inlining Data Object References
We evenly divide the native machine word into two sec-
tions, one for the instruction opcode, and another for the
corresponding instruction argument. So, for 64 bit systems,
there are 32 bits for each segment. Many LOAD CONST in-
struction occurrences load objects that have been allocated
in the lower memory area below 32 bits. Consequently, for
all constant objects where this observation holds, we can ac-
tually replace the array indirection by a direct push of the
instruction argument. Figure 3 shows how we implement the
optimized derivative (right side) and which lines remain un-
changed from the standard implementation (left side). Fig-
ure 4 shows the effect of inlining a small object pointer into
an occurrence of the INCA LOAD CONST instruction.

TARGET(LOAD_CONST)

x = GETITEM(

consts, oparg);

Py_INCREF(x);

PUSH(x);

FAST_DISPATCH();

TARGET(INCA_LOAD_CONST)

x= (PyObject*) oparg;

>

>

>

Figure 3. Implementation of LOAD CONST and its optimized
derivative.

OPCODE

63 31 032

PyObject Pointer

Figure 4. Inlining a PyObject pointer.

Figure 5. Inlining a load cache elem t pointer.

A similar optimization applies to the LOAD GLOBAL in-
struction. However, things are not quite as easy as in the
LOAD CONST case: Since there exists a corresponding de-
structive update instruction (STORE GLOBAL), any execution
of that instruction can invalidate the inline cached instruction
argument. Therefore, we have to use another level of indirec-
tion involving a dedicated cache. First, we allocate an array
of n elements of the following data structure in the lower
memory area, below 32 bits.

typedef struct {

bytecode_t *ip;

PyObject *elem;

} load_cache_elem_t;

The ip field in the load cache elem t record holds the
corresponding instruction pointer of the LOAD GLOBAL in-
struction for which the elem field holds the cached data
object pointer. By construction we ensure that this element
fits into the 32 bits length restriction of the instruction ar-
gument section of the instruction word. Therefore, we can
replace the integer argument by the address of one of the n
load cache elem t elements (cf. Figure 5). The following
optimized instruction derivative can be used instead of the
much more complicated LOAD GLOBAL implementation:

TARGET(INCA_LOAD_GLOBAL)

if (PyLoadCache_IsValid(oparg, INSTR_PTR()) {

x= PyLoadCache_GetElem(oparg);

Py_INCREF(x);

PUSH(x);

FAST_DISPATCH();

}

oparg= get_oparg(codeobject, INSTR_PTR());

goto TARGET_LOAD_GLOBAL_SKIP_DECODE;

PyLoadCache IsValid and PyLoadCache GetElem

are auxiliary macros hiding the details of the load cache elem t

definition. Additionally, we see that we need to recover the
original instruction argument from the old list of bytecode
instructions in case we have a cache miss. Whenever we
quicken an instruction from LOAD GLOBAL to INCA LOAD GLOBAL,
we need to use an element from the array of n elements.
A simple and effective strategy is to use this list as a ring



buffer, where we maintain a pointer to the next free element
and reset it to zero whenever it points to n+ 1.

As with any other cache, we have to take care of prop-
erly invalidating it to maintain correctness. Whenever we
execute a STORE GLOBAL instruction, our implementation
clears the ip field of all n load cache elem t records. This
causes cache misses in all sub-sequent INCA LOAD GLOBAL

instructions. These cache misses lead to invocation of the
LOAD GLOBAL instruction, which updates the cache and re-
quickens the instruction back to INCA LOAD GLOBAL.

3.4 Partial Stack Frame Caching of Local Variables
In any stack-based interpreter, load instructions are usually
among the most frequently executed instructions. In Python,
two kinds of load instructions are usually among the most
frequent ones: a) the LOAD CONST instruction for loading
constants, and b) the LOAD FAST instruction for loading local
variables. We already took care of optimizing the first case
in Section 3.3. Now, we turn our attention to the LOAD FAST

instruction:

TARGET(LOAD_FAST)

x = fastlocals[oparg];

if (x != NULL) {

Py_INCREF(x);

PUSH(x);

FAST_DISPATCH();

}

/* omitted rest of implementation */

Fastlocals is a pointer to a field inside the Python stack
frame, where enough memory has been allocated to hold ref-
erences for all local variables. Every LOAD FAST instruction
uses an array indirection, and, while not expensive by itself,
this accrues considerable time during the execution of any
program, because the interpreter executes these load instruc-
tions very frequently. On the other hand, since these instruc-
tions execute that often (early measurements indicate that
about a third of all instructions are loads), even small opti-
mizations will pay off quickly. We propose to partially cache
variables from the Python stack frame in the interpreter’s C
stack frame. The optimization technique requires the follow-
ing steps:

1. Declare additional variables in the C stack frame of the
interpreter.

2. Generate instruction derivatives that use the additional
local variables.

3. Promote contents of the local variables of the Python
stack frame to the local variables of the C stack frame
before entering the interpreter main loop.

4. Write back contents of the local variables after leaving
the main loop.

Our implementation of such an optimized derivative is:

Figure 6. Calculating scores in the presence of multiple
loops.

TARGET(LOAD_FAST_A)

Py_INCREF(fast_slot_a);

PUSH(fast_slot_a);

FAST_DISPATCH();

As we can see, we create a new variable fast slot a,
which holds the contents of some variable of the stack frame.
This directly points us to the next technicality: Which local
Python variables do we cache with fast slot a? A very
naive strategy would be to just allocate the first n of total m
local variables of the Python stack frame to our additional n
caching variables. This only makes sense when the number
of total variables m is actually lower than or equal to the
number of available additional caching variables n. In cases
where the number of local variables of the Python stack
frame exceeds the number of available caching variables,
i.e., n < m, we can surely do better.

An optimal solution to this problem is when we allocate
the most frequently executed LOAD FAST instructions to the
n available additional local caching variables. Therefore, we
want to estimate which LOAD FAST and STORE FAST instruc-
tions will be executed most often. One heuristic is to just
rank LOAD FAST and STORE FAST instructions according to
their number of occurrences within a given sequence of in-
structions. However, we can improve this heuristic signifi-
cantly: In the presence of loops, it is reasonable to assume
that the load and store instructions within the loop-body will
be executed more often. This assumption is recursive, i.e.,
the deeper the loops are nested, the more often we assume
the load and store instructions in their bodies to be executed.
We use this heuristic to select the candidates among the lo-
cal variables of the Python stack frame. In addition to being
reasonable, this heuristic can be efficiently implemented: In
only one linear pass we can calculate a score for each local
variable. Whenever we find an occurrence of a local variable,
we increase its score by the current nesting level (cf. Fig-
ure 6). To give occurrences inside loops higher scores, we
multiply the nesting level by 100 whenever we enter a loop,



and divide it by 100 whenever we leave a loop. Thus, an oc-
currence within a loop equals 100 occurrences outside of that
loop. We arrived at this value by experimentation, for exam-
ple using a nesting level weight of just 10 does not lead to
optimal local variable selection in some of our benchmarks.
Among all scores we select the n highest and rewrite their
occurrences to the optimized instruction derivatives.

4. Reference Counting meets Quickening
Section 3 deals with optimizing various load instructions,
primarily using a combination of caching and quickening.
Unfortunately, the operation implementation of Python 3.1
instructions is still sub-optimal with respect to maximum ef-
ficiency. We find additional overheads in two respects: a) all
operands are objects that require (un-)boxing, and b) refer-
ence counting. Among those two, we choose to optimize ref-
erence counting.

Measurements on the overheads accrued by reference
counting during execution of Smalltalk programs by Ungar
and Patterson [UP82] indicate that a reduction of reference
count operations is highly beneficial for a stack-based in-
terpreter. Further measurements of the Berkeley Smalltalk-
80 system using deferred reference counting as suggested
by Deutsch and Bobrow in 1976 [DB76] indicate that using
this optimization removes up to 90% of reference count op-
erations [Bad82]. Based on these promising prior results, we
expect that focusing on optimizations of reference counting
will be beneficial.

The original problem with reference counting, viz., the
massive amount of reference count operations accrued by
the local operand stack modifications presents a bottleneck.
First, we investigate what the nature of these operand stack
modifications is: whenever a stack-based interpreter exe-
cutes an n-ary operation, it expects its operands to be the
top-most n entries on the operand stack. These operands are
either the results of previous computations or pushed onto
the operand stack by a corresponding load operation.

Instr. Pos. Instruction Operand Stack

LOAD_FAST2 x x1 2

BINARY_MULT3 x3

LOAD_FAST4 x x3 4

BINARY_MULT5 x5

LOAD_FAST1 x1

Figure 7. Sequence of instructions and effect on the
operand stack.

Figure 7 shows a sequence of bytecode instructions and
their effect on the operand stack, i.e., after executing the
LOAD FAST instruction at position 1, the operand stack con-
tains its result—x1—as the top-of-stack element.

TARGET(LOAD_FAST)

x = GETLOCAL(oparg);

Py_INCREF(x); /* A */

PUSH(x);

FAST_DISPATCH();

TARGET(BINARY_MULTIPLY)

w= POP();

v= TOP();

x= PyNumber_Multiply(

v, w);

Py_DECREF(v); /* B */

Py_DECREF(w); /* B */

SET_TOP(x);

if (x != NULL)

DISPATCH();

break;

Figure 8. Implementation of LOAD FAST instruction on the
left and of BINARY MULTIPLY the right.

Figure 8 shows the corresponding implementations of
our sequence of instructions. The mark A in the left imple-
mentation of LOAD FAST in Figure 8 shows the Py INCREF

operation for the object x. The mark B in the right im-
plementation of BINARY MULTIPLY in Figure 8 shows the
corresponding Py DECREF operations for the operands v

and w. In our sequence of bytecode instructions, however,
the first BINARY MULTIPLY—at position 3—is directly ex-
ecuted after two LOAD FAST instructions—at positions 1,
and 2 respectively. Therefore, the two increment reference
count operations of the first and second LOAD FAST result
object—x1, and x2 respectively—are immediately decre-
mented in the first BINARY MULTIPLY occurrence. Exactly
this arrangement of redundant increment-decrement refer-
ence count operations constitutes a big part of the overhead
in local operand stack modifications mentioned by Deutsch
and Bobrow in 1976 [DB76].

Next, we present a way to optimize away these conserva-
tive reference count operations, which consequently allows
us to significantly improve the efficiency of our interpreter.
Our solution consists of two steps:

1. We eliminate the reference count operations from the
operation implementation,

2. We identify sequences of instructions where reference
count operations are too conservative, and can, therefore,
be safely optimized away.

Using systematic pre-generation of optimized derivatives
allows us to remove the redundant reference count opera-
tions from operation implementation. Until now, we have
only described the case where all reference count operations
in a sequence are explicit. But, in fact, only one of the two
operands for the second occurrence of BINARY MULTIPLY

is loaded explicitly by the third LOAD FAST instruction—
x4. The other operand is the result of executing the first
BINARY MULTIPLY instruction—x3. Examining the imple-
mentation of BINARY MULTIPLY again (cf. Figure 8, right
side), we notice that there is no explicit increment reference
count operation for the result object x3. Since there is an



explicit decrement reference count operation in the second
BINARY MULTIPLY instruction—at position 5, this means
that there has to be an implicit increment reference count
operation hidden within PyNumber Multiply. If we want
to eliminate such implicit reference count operations, we
have to provide our own version of PyNumber Multiply,
which eliminates these hidden increment reference count op-
erations. While this is certainly possible, and would allow us
to eliminate such implicit reference count operations, too,
we avoid doing so for illustrative purposes—our basic ap-
proach can be adapted to this scenario as well. Instead, we
focus on the removal of explicit reference count operations
only, which necessitates that we account for reference count
operations being either explicit or implicit. Next, we elimi-
nate redundant reference count operations from a sequence
by quickening its instructions from their most generic imple-
mentations to their optimized derivatives.

/* data type definitions */
typedef struct {

signed char imp; /* implicit rc ops */
signed char exp; /* explicit rc ops */
/* value > 0: no of increment rc ops */
/* value < 0: no of decrement rc ops */

} tuple_t;

typedef struct {
bytecode_t *instrPtr;
tuple_t effect;

} effect_stack_elem_t;

/* local variables */
bytecode_t *instrPtr= codeobject ->co_opt_code;
bytecode_t *cur= instrPtr;
effect_stack_elem_t *stackPtr= stack;
tuple_t effect;
opcode_t opcode;
int i= 0, n= 0, size= Py_SIZE(codeobject ->co_code );

/* simple abstract interpreter */
while (i < size) {

cur= instrPtr;
opcode= decodeInstr ();
i++;

if (basicBlockBorder(opcode ))
clearStack ();

if (rotateInstr(opcode )) {
rotateStackElems(stackPtr , opcode );
continue;

}

if (refcountEffect(opcode , &effect )) {
if (effect.exp < 0) {

n= -effect.exp;
stackPtr -= n;

/* additional quickening , e.g., function calls */
if (n <= 2 && isMarkable(opcode )) {

if (n == 2)
quickenBinaryOp (&cur , &stackPtr );

else if (n == 1)
quickenUnaryOp (&cur , &stackPtr );

}
}
pushOpnds (&cur , &stackPtr , &effect );

}
}

Figure 9. Implementation of our simple abstract interpreter.

To find these redundant reference count operations, it is
necessary that we simulate the operand stack of the actual in-
terpreter by using a simplified abstract interpreter. Similar to
Xavier Leroy’s description of the first step in Java bytecode
verification [Ler03], we use an abstract interpreter over the
reference count operations occurring in operation implemen-
tations. We do this in a linear pass over a sequence of instruc-
tions. Since there is no data-flow analysis involved, our op-
timization is restricted to basic block boundaries. Whenever
our simple abstract interpreter finds matching pairs of redun-
dant reference count operations, it uses quickening to rewrite
the occurrences of these instructions to their more aggressive
derivative. Going back to our previous example, our simple
abstract interpreter would be able to detect that all refer-
ence count operations are conservative, except the implicit
reference count operation from the first BINARY MULTIPLY

instruction to the second BINARY MULTIPLY. Figure 9 con-
tains an illustrative implementation of this simple abstract
interpreter. Therefore, our systematic pre-generation of op-
timized derivatives needs to account for selective generation
of reference count operation optimized derivatives, e.g., for
binary operations the following four optimized derivatives
are possible:

• both reference count operations can be removed,
• the top-of-stack operand’s reference count operations can

be removed,
• the reference count operations of the second element on

the operand stack can be removed,
• no reference count operations can be removed (this cor-

responds to the standard implementation).

The creation of reference count operation optimized deriva-
tives leads to increased requirements for the instruction
cache, because the dispatch loop size increases. While this
holds also true for our approach of [Bru10b], it is much more
expensive when creating the reference count operation op-
timized derivatives: for every case in our previous enumer-
ation, we require a new derivative. This invariably leads to
instruction cache misses and we need to ensure that the im-
plied cache penalties do not over-compensate for our gains
in efficiency. So, we perform an analysis to make informed
decisions. This analysis uses an instrumented interpreter that
prints the current instruction in addition to the results we ob-
tain by running our simple abstract interpreter. We use a
separate program to accumulate the results we obtain when
running our benchmarks on this instrumented interpreter.
Thus we can quantify the dynamic instruction frequency as
well as the number of optimization scenarios for reference
count quickening. According to our results, the first two of
our four cases occur most often, therefore, we create deriva-
tives for almost all operations. Exceptions are infrequently
occurring instructions, such as Python’s floor divide instruc-
tion, and the logical operator instructions. Only for the most
frequent instructions, we provide the optimized derivatives



for our third case, i.e., the elimination of reference count
operations for the second operand on the stack. Our analysis
identifies the BINARY ADD and BINARY MULTIPLY instruc-
tions as candidates here—we omit the generation of opti-
mized derivatives for all other instructions in that scenario.

So far, we only described the situation for interpreter in-
structions for host-level language operations. In addition to
those operations, however, a typical Python program relies
on numerous function calls. Therefore, it is only natural to
apply this optimization to the call instruction of the Python
interpreter, too. Using our dynamic bytecode frequency anal-
ysis together with our simple abstract interpreter over the
amount of reference count operations in an instruction, we
find that the following cases occur most often:

• all reference count operations necessary to load the argu-
ments of a function/method call can be safely eliminated,

• all but the top-most reference count operation can be
safely eliminated.

We can easily add the quickening code for both of the func-
tion/method call optimizations to our simple abstract in-
terpreter: Since we properly simulate the stack behavior,
we just iterate over all arguments for any given occur-
rence of a CALL FUNCTION instruction and check that all
operands have explicit Py INCREF operations. If this holds,
we quicken the instruction and all of its operands to their
optimized derivatives. If it does not hold, we check that for a
function call of n arguments, n−1 have explicit Py INCREF

operations, and only the top-most operand has an implicit
Py INCREF—this indicates quickening potential for our sec-
ond case.

5. Evaluation
5.1 Interpreter Configuration
Since all of our new techniques can be applied together, we
briefly explain how we do this. First, we allocate memory
and re-encode the word-code as previously described in Sec-
tion 2—with the notable exception of using our changed in-
struction format as described in Section 3.3. Because our
new instruction format changes the instruction position, we
have to relocate the jump offsets subsequently. Next, we use
our abstract interpreter over the number of reference count
operations per instruction over the list of bytecodes to find
sequences with redundant reference count operations. Once
we find a such a sequence, we quicken its instructions to
their more aggressive derivatives. We do this before actually
executing any of the instructions, hence, a compiler could
already emit optimized instructions. Finally, we start inter-
preting and quicken instructions to their optimized deriva-
tives based on acquired type feedback. The reason we do
reference count operation quickening before inline caching
is that the reference count operation optimized instruction
set is smaller than the type-dependent instruction set for in-

line caching via quickening, i.e., it is merely a matter of prac-
ticality.

The following two sections of this paper describe tech-
niques in general using variables without giving concrete
values. We use the following configuration:

• Section 3.3: Our load cache in the lower memory area
uses 128 elements.

• Section 3.4: We promote 4 local variables to their dedi-
cated slots.

All in all, our optimized interpreter has 395 instructions.

5.2 Systems
We use several benchmarks from the computer language
benchmark game [Ful]. We would like to give results of pop-
ular real-world Python applications, such as Zope, Django,
and twisted. Unfortunately, however, the adoption of Python
3.x in the community is rather slow, and there are currently2

no ports of these applications available. We ran the bench-
marks on the following system configurations:

• Intel i7 920 with 2.6 GHz, running Linux 2.6.28-15 and
gcc version 4.3.3. (Please note that we have turned off
Intel’s Turbo Boost Technology to have a common hard-
ware baseline performance without the additional vari-
ances immanently introduced by it [Int08].) Instruction
cache size is 32 KB.

• IBM PowerPC 970 with 2.0 GHz, running Linux 2.6.18-4
and gcc version 4.1.2. Instruction cache size is 64 KB.

We used a modified version of the nanobench program
of the computer language benchmark game [Ful] to mea-
sure the running times of each benchmark program. The
nanobench program uses the UNIX getrusage system call
to collect usage data, for example the elapsed user and sys-
tem times as well as memory usage of a process. We use
the sum of both timing results, i.e., elapsed user and system
time as the basis for our benchmarks. In order to account for
proper measurement, cache effects, and unstable timing re-
sults for benchmarks with only little running time, we ran
each program 100 successive times and use arithmetic aver-
ages over these repetitions for our evaluation.

5.3 Code Generator Statistics
We measured the lines of code using the sloccount pro-
gram of David Wheeler [Whe10]. Our code generator pro-
duces 6178 lines of C code that is to be included in the
main interpreter. The Python code of our generator amounts
to 2739 lines of code, however, out of those 2739 lines of
code, 1700 lines of code are consumed by our type-data
file generated by raw-data from gdb. Therefore, the actual
amount of Python code without the master data needed to
generate the C code is 1039 lines of code. In addition to
the generator and its product, we have manually coded 1759

2 As of May 2010.



lines of code. These are 400 lines of code for quickening
the CALL FUNCTION instruction and supplying our own ver-
sion of unicode concatenate, 347 lines of code for our
simple abstract interpreter to rewrite the reference count op-
erations, 272 lines of code for the creating and manipulating
the new instruction format (including the scoring heuristic),
and 87 lines of code that implements the load cache that we
described in Section 3.3. The remaining lines of code are
mostly externalized interpreter macros from the original dis-
patch loop and smaller auxiliary files.

Using ‘cat * | wc -l‘ to calculate the number of C-
code markup inside the Mako templates adds another 1385
lines of code. Here, we cannot use the sloccount program,
since it does not understand the Mako template language.

5.4 Reference Count Operations Eliminated
Figure 10 illustrates the effect of eliminating explicit refer-
ence count operations, broken down by increment (cf. Fig-
ure 10(a)) and decrement (cf. Figure 10(b)) operations. We
notice that for all benchmarks, the number of decrement op-
erations exceed the number of increment operations. This is
due to the fact that we only counted occurrences of explicit
reference count operations, i.e., our figures do not include
the implicit increment reference count operations, such as
those occurring when we allocate new objects, or within op-
eration implementations that do not use these macros to up-
date the reference count for an object.

Regarding the actual results, we notice that for some
benchmarks, such as mandelbrot and spectralnorm, our
technique finds and eliminates substantial amounts of redun-
dant reference count operations. The mandelbrot bench-
mark benefits particularly from this optimization: we elim-
inate more than two thirds of all increment reference count
operations, and about half of all decrement reference count
operations. Our technique achieves good elimination rates
on all other benchmarks—with the fasta benchmark be-
ing the only exception: while we are able to reduce both,
increment and decrement reference count operations, the re-
duction rates are not nearly as impressive as with the other
benchmarks. This is due to the benchmark containing several
occurrences of the BUILD SLICE instruction, for which we
do not provide reference count operation optimized deriva-
tives. As we will see in the next section, this has implications
on the performance, too.

5.5 Benchmarks
We present the results running our benchmarks in Figure 11.
The actual speedups are arithmetic averages over all repe-
titions for one benchmark, and we normalize by the stan-
dard Python 3.1 interpreter without the threaded-code dis-
patch optimization. Because of our previous experience, we
are not surprised to find the spectralnorm benchmark to be
particularly amenable to our optimizations (cf. Figure 11(a)).
Surprisingly, however, we find that the mandelbrot bench-
mark benefits most from our new optimizations—this holds
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Figure 10. Reference count operations occurring per bench-
mark.

true on both architectures (cf. Figure 11(a), and Figure 11(b)
respectively). In addition to the mandelbrot benchmark,
the binarytrees benchmark performs noticeably better us-
ing our new optimizations, too. While our optimizations
fare particularly well on the Intel i7-920 Nehalem architec-
ture, we note that on the PowerPC 970, for the nbody and
spectralnorm benchmarks, our new optimizations actually
reduce the maximum possible speedup by a small amount.
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Figure 11. Benchmark speedups relative to standard Python
3.1 interpreter.

First, we assumed that these results are due to differences in
instruction cache size. It turns out, however, that the Pow-
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Figure 12. Overall speedup relative to standard Python 3.1
interpreter.

erPC 970 has double the amount of resources here, i.e., 64
KB instruction cache size for the PowerPC 970 as compared
to the 32 KB of the Intel i7. Thus, we need further research
to investigate what is actually causing the slowdowns. As
noted in Section 5.4, our technique does not cover some im-
portant parts of the fasta benchmark. In consequence, our
technique is not able to deliver its full potential here.

To further assess the benefits of our optimizations, we
compare all possible speedups using standard box plots in
Figure 12. The upper, middle, and bottom line of the box cor-
respond to the 75th, 50th, and 25th percentile respectively.
The ends of the whiskers represent the maximum and mini-
mum measured results.

Interestingly, we see that the optimized dispatch using
the threaded-code dispatch technique performs considerably



worse on the PowerPC architecture: the median speedup in
our benchmarks is below the factor of 1.1, compared to a me-
dian speedup factor of more than 1.4 on the Intel i7-920. Us-
ing the techniques presented in this paper, we are able to sig-
nificantly improve the performance of the Python interpreter
on Intel architectures (cf. Figure 12(a)): While the median
speedup improves from about 1.7 to about 1.8, the maximum
possible speedup improvement is more impressive: from a
previously possible speedup of about 1.9, we now reach a
maximum speedup of over 2.1. Our performance results for
the PowerPC are not directly comparable. In comparison to
our inline-caching-only work [Bru10b], we already noted
that using the new optimization techniques actually reduces
the maximum possible speedup on some benchmarks. That
notwithstanding, however, applying the new techniques vis-
ibly improves the median speedup. Consequently, we argue
in favor of applying our techniques despite possibly lower
maximum speedups.

Unfortunately, all of our benchmarks measure the im-
pact of combining all optimizations. Yet, we are interested
in how each optimization performs on its own, in order to
allow implementers to choose among them. Therefore, we
did preliminary benchmarks on our first system, i.e., the
Intel i7 920, with our reference counting optimization of
Section 4 turned off, resulting in an interpreter with just
214 instructions. While the interpreter with all optimiza-
tions of Section 3 achieves a higher speedup of almost
2.31 on the spectralnorm benchmark, its overall perfor-
mance is significantly below the interpreter that removes
redundant reference count operations. On three benchmarks
(fannkuch, fasta, nbody) the interpreter without reference
count quickening delivers only negligible performance im-
provements over our previous interpreter [Bru10b], whereas
enabling reference count quickening adds up to 7% on top of
those results. For the remaining benchmarks, the reduced in-
terpreter adds 5% (binarytrees) and 16% (mandelbrot)
performance over our previous interpreter, enabling refer-
ence count quickening adds another 5% on top of those re-
sults.

6. Related Work
The inline caching of the comparison instruction extends
our work on inline caching for high abstraction-level inter-
preters. In 2010, Williams, McCandless, and Gregg from the
Trinity College Dublin presented similar work for optimiz-
ing dynamic typing of the Lua interpreter [WMG10]. The
biggest difference between both our approaches is that we
pre-generate optimized instruction derivatives, while their
work uses a background thread that generates optimized in-
structions on a by-need basis using a separate compiler. This
compiled representation of a typed Lua instruction is then
linked into the running interpreter for future use. Their ap-
proach has an advantage over ours: while our pre-generated
derivatives target only optimizations of types and functions

of the standard library, their by-need compilation approach
is able to optimize code regardless of provenience.

Using quickening to unfold loop bodies is a modern inter-
pretation of a technique mentioned in Allen Wirfs-Brock’s
excellent article on the design decisions of Smalltalk inter-
preters [WB82] in “Smalltalk 80: Bits of History, Words of
Advice” [Kra84]. When we generalize the notion that his
technique eliminates the necessity of instruction argument
decoding, we can basically subsume all of our optimizations
by noting that we increase the amount of information that is
attached to an interpreter instruction jump. For example, af-
ter our technique has finished incorporating type feedback,
every instruction jump from one instruction to another one
not only indicates which operation we want to call, but im-
plicitly contains information for the type we expect and the
amount of reference count operations we need.

There exist several optimizations that rely on changing
the instruction format. In 1982, Pemberton and Daniels [PD82]
describe how the Pascal P4 system uses the 60 bit native
machine words of a CDC 6000 series computer to accom-
modate two 30 bit interpreter instructions with operands. As
a recent example, we refer to the instruction formats avail-
able in Google’s Android Dalvik VM [dal07]. The Dalvik
virtual machines defines multiple instruction formats for
optimized interpretation. Particularly close to our work is
the instruction set of the Inferno virtual machine, called
Dis [WP97]. Dis’ instruction set provides three-operand
memory-to-memory operations, where every instruction can
directly operate on the memory addresses referred to by its
operands. This is reminiscent of register based virtual ma-
chine architecture [SCEG08], with the notable exception of
not using registers. In comparison with our work presented
in Section 3.3, however, we note that our technique does not
change the machine architecture of the Python interpreter,
i.e., it remains a stack-based virtual machine. The use of
quickening allows us to offset any additional complex in-
struction decoding logic machinery that is inherently neces-
sary in the Dis interpreter—since most of the encoded infor-
mation is static, we expect that using our combination with
quickening would be able to eliminate much of the overhead
of the instruction decoding in Dis. We are not aware of any
prior publication of an optimization technique that combines
data object reference inlining with quickening.

Concerning the caching of host language local variables
in the stack frame of the executing language (Section 3.4),
we find that Ertl briefly describes how this could work for
register based virtual machines [Ert95], and notes that this
invariably leads to explosion of specialized instructions for
all possible combinations of instructions and registers. The-
oretically, this corresponds to our optimization when a com-
piler decides to promote our caching variables to dedicated
registers. However, we use this technique to optimize load
instructions of a stack based interpreter architecture and pro-
vide details of choosing which variables to cache for maxi-



mizing payoff. Finally, there are presentational issues: While
Ertl presents his idea in assembly, we show our implementa-
tion in C.

Regarding our second contribution, the elimination of ref-
erence count operations, we cite the following related work.
Introduced by Collins in 1960 [Col60], Deutsch and Bo-
brow found in 1976 [DB76] that while reference counting
has its advantages, the amount of reference count operations
caused by local stack modifications, i.e., load and store op-
erations, have a considerable negative impact on the perfor-
mance of such systems. Hence, Deutsch and Bobrow sug-
gest to remove the immediate processing of reference count
operations from the mutator and defer them to a dedicated
processing phase—similar to the explicit garbage collection
phase of other automatic memory management techniques.
Because of their introduction of deferred reference counting,
the original reference counting approach is often described
as immediate or non-deferred reference counting. As early
as 1977, just a year after the deferred reference counting
approach described by Deutsch and Bobrow [DB76], Barth
described a technique to eliminate reference count opera-
tions using a global data-flow analysis in a compiler [Bar77].
In addition to what we describe, Barth’s description is able
to eliminate more reference count operations than our ap-
proach. While our approach works for stack-based inter-
preters, Barth’s description optimizes a derivative of Pascal
that uses reference counting for automatic memory manage-
ment. Unfortunately, he does not give any evaluation we
could use for comparison purposes. Much of the follow-
ing research on optimizing reference counting focuses on
deferred reference counting as suggested by Deutsch and
Bobrow [DB76]. Ungar and Patterson [UP82] describe a
set of optimization techniques to eliminate redundant refer-
ence count operations from the implementation of standard
Smalltalk instructions, such as eliminating an increment and
decrement reference count operation by directly copying a
value from the callee stack frame to the caller stack frame
and nilling out the source. These optimization techniques
are static and do not take dynamic instruction sequences
into account, which is precisely what allows us to eliminate
large amounts of reference count operations. As recently as
2006, however, Joisha took up the basic idea of Barth—with
much more comprehensive goals [Joi06]. The basic idea is
to use data-flow analysis to optimize a research version of a
C] compiler that generates code with reference counting for
automatic memory management. Joisha uses liveness prop-
erties of objects to remove way more reference count op-
erations than our simple approach is able to recognize. His
work addresses the “coalescing” of reference count opera-
tions that basically corresponds to our approach—but it is
only a minor part in his work. His subsequent work of 2008
describes ways to eliminate reference count operations in
the presence of modern object-oriented constructs, such as
exceptions [Joi08]. While his work achieves a much higher

elimination rate of reference count operations, it is certainly
not easily realizable in our setting. Our approach does not
require any kind of data flow analysis or fix-point compu-
tation, but on the other hand can not possibly eliminate as
many reference count operations. To the best of our knowl-
edge, there is no similar work for elimination of reference
count operations in interpreters.

7. Conclusions
We presented a set of optimization techniques to further im-
prove our maximum speedup up to 2.18, which is an addi-
tional speedup of up to 1.14 from our previous maximum
speedup of 1.92 [Bru10b]. Since our presented optimiza-
tion techniques aim at improving the efficiency of instruction
implementation, they can be freely combined with orthogo-
nal optimization techniques targeting instruction dispatch—
which our combination with threaded-code dispatch clearly
demonstrates. We expect to further improve the efficiency
of our techniques by combining them with the dynamic su-
perinstructions optimization, as described by Ertl and Gregg
[EG03a, EG04].

Another starting point for future work is to use parts of
our optimizations to attack the last remaining part of ineffi-
ciency of the Python interpreter: optimizing the (un-) box-
ing of Python objects. A simple strategy would be to pre-
generate instructions working on native machine integers,
floats, etc. and use a simple abstract interpreter to find se-
quences of instructions that could safely use native machine
primitives instead of the Python objects. We estimate that
such optimizations would have a big performance impact,
particularly on numerical benchmarks.

Finally, our techniques enable a compiler to do further in-
lining, which has consistently shown to be crucial for inter-
preters. Unfortunately, gcc is currently not able to do cross-
module inlining, which prevents this optimization from be-
ing applied. Future work will address this issue to enhance
performance even further.
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