Faculty of Informatics

FAKULTAT
FUR INFORMATIK

New challenges in digital
forensics: online storage and
anonymous communication

PhD THESIS
submitted in partial fulfillment of the requirements for the degree of
Doctor of Technical Sciences
by

Martin Mulazzani
Registration Number 0225055

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Privatdoz. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Edgar Weippl

The dissertation has been reviewed by:

(Univ.-Prof. Dipl.-Math. Dr. (Univ.-Prof. Dipl.-Ing. DDr.
Stefanie Rinderle-Ma) Gerald Quirchmayr)

Vienna, 30.01.2014
(Martin Mulazzani)

Vienna University of Technology
A-1040 Vienna = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.ac.at






Declaration of Authorship

Martin Mulazzani
Kreutzergasse 5, 3400 Klosterneuburg

I hereby declare that I have written this Doctoral Thesis independently, that I have com-
pletely specified the utilized sources and resources and that I have definitely marked all parts of
the work - including tables, maps and figures - which belong to other works or to the internet,
literally or extracted, by referencing the source as borrowed.

(Vienna, 30.01.2014) (Martin Mulazzani)






Acknowledgements

I’'m very grateful to my advisor Edgar Weippl, who supervised me throughout my studies and
always supported me in my own research ideas. Even in the busiest times, feedback and support
were always available and the discussion of ideas helped me a lot. I would also like to thank
all my colleagues at SBA Research - in particular Markus Huber, Sebastian Schrittwieser and
Sebastian Neuner, whom I have the honor to work with on a regular basis. Besides discussing
ideas and working together numerous late-nights close to paper deadlines, colleagues like them
cannot be taken for granted and are among the reasons why I enjoyed this period in my life as
much as I did. I’'m also thankful for the all the opportunities I received at SBA Research during
these years, in particular teaching skillful students and working with them to develop their own
research ideas. I’'m also grateful that I did get the opportunity to study and work two semesters
at Purdue University, and I would like to thank Prof. Elisa Bertino as well as Prof. Christina
Nita-Rotaru for their supervision and mentoring. Furthermore, this work would not have been
possible without funding from COMET K1 and project number 825747 (INFORM) by the FFG
Austrian Research Agency.

I’m grateful for the support from my family, my parents Eva and Marco Mulazzani as well
as my brothers Matthias, Max and Michael, and above all Kathi and our wonderful children
Ferdinand and Liselotte for their continuous love and help during the creation of my thesis.
Without you I would not be where I am today.

Martin Mulazzani
Vienna, 30.01.2014

iii






Abstract

This thesis is based on seven publications related to the area of digital forensics which were
published at conferences or in journals by ACM, IEEE, USENIX and IFIP. Digital forensics as
research field has received increasing attention in recent years, as more and more crimes are
committed exclusively or with the involvement of computers. At the same time, new challenges
emerge constantly, e.g. the prevalent use of encryption, mobile devices of various nature, online
cloud storage services and readily available tools that facilitate counter-forensics. In particular,
this thesis tries to mitigate current challenges for digital forensics in the areas of online data
storage and anonymous communication.

Regarding anonymous communication we analyzed the well-known online anonymity tool
Tor, which employs onion routing and is expected to be used by hundreds of thousands of users
every day: firstly how it is used, and secondly what can be learnt from the publicly available
server information. We were able to show that the majority of users are not employing Tor as
recommended by the Tor community, and we found many information leaks that can endanger
the users’ anonymity. We also studied how the underlying infrastructure, which is run by vol-
unteers, can be monitored to provide useful metrics of interest. We furthermore derived and
implemented a new attack on online storage systems abusing client-side data deduplication and
analyzed how it can be used to thwart digital forensic investigations which in turn can be used
for forensic investigations. We showed its feasibility on Dropbox, one of the largest cloud stor-
age providers with more than 200 million users worldwide at the time of writing this thesis. We
quantified slack space on numerous Windows systems, assessed it’s stability over time regarding
system updates and found that up to 100 megabytes of slack space are readily available in files
of the operating system. We furthermore implemented a digital alibi framework with a social
interaction component which in our opinion can be easily overlooked in forensic analysis as
conducted today. Finally we analyzed browser artifacts and how they can be used for browser
fingerprinting. We then used browser fingerprinting to enhance HTTP session security by bind-
ing the session on the server to specifics of the particular browser used.






Kurzfassung

Diese Dissertation baut auf sieben Arbeiten auf, die auf Konferenzen und in Journalen von
ACM, IEEE, USENIX und der IFIP veroffentlicht wurden. Digitale Forensik als Forschungs-
disziplin hat sich in den letzten Jahren mehr und mehr etabliert, da kriminelle Handlungen mit-
tlerweile ausschlieBlich mit oder unter Zuhilfenahme von Computern begangen werden. Gle-
ichzeitig werden durch die Verbreitung von starker Verschliisselung, einer Vielzahl an neuen
mobilen Geréten und das stetig steigende Datenvolumen neue Herausforderungen an die digitale
Forensik gestellt. Diese Arbeit beschéftigt sich im Speziellen mit den Problemen der digitalen
Forensik hinsichtlich Speicherdienste im Internet und anonymer Kommunikation.

Im Bereich der anonymen Kommunikation untersucht diese Arbeit Tor, ein sehr weit ver-
breiteter Anonymisierungsdienst im Internet. Es konnte belegt werden, dass Tor meist nicht wie
empfohlen verwendet wird und die Gefahr einer kompletten (unbeabsichtigten) Deanonymisierung
fiir die Anwender hoch ist. Wir haben verschiedene Metriken fiir die dem Tor Netzwerk zugrun-
deliegende Infrastruktur mit derzeit ca. 5.000 Knoten erstellt, da diese von Freiwilligen betrieben
und nicht zentral kontrolliert wird. Im Bereich der digitalen Forensik haben wir eine neue An-
griffsmethode auf Internet-Speicherdienste entwickelt und implementiert. Dieser Angriff niitzt
die Datendeduplizierung auf der Anwenderseite aus, um einen Angreifer unberechtigten Zugriff
auf Daten zu ermoglichen. Die Anwendbarkeit unseres Angriffs wurde anhand von Dropbox
belegt, einem der groften Speicherdienste mit derzeit mehr als 200 Millionen Anwendern. Wir
haben weiters die Gesamtspeicherkapazitit von Fragmentierungsartefakten (“slack space”) von
Microsoft Windows vermessen und iiber einen lingeren Zeitraum die Stabilitdt in Bezug auf
Systemupdates ermittelt. Zusitzlich haben wir ein Framework implementiert, das die Erzeugung
eines digitalen Alibis ermoglicht. Unser Ansatz beinhaltete eine soziale Kommunikationskom-
ponente, die eine forensische Untersuchung tduschen konnte. Im Bereich der sicheren Online-
Kommunikation haben wir Webbrowser untersucht und neuartige Identifizierungsmoglichkeiten
entdeckt. Auf diesen Ergebnissen aufbauend erhohten wir die Sicherheit von Online-Sitzungen,
indem die Sitzung Server-seitig an die Charakteristika des Browsers gebunden wird.
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Introduction

The Internet as it is used today has become broadly fragmented regarding how it is used and
with a multitude of different software protocols. Browsing the web for information, watching
videos and listening to music or communicating using tools like e-mail, instant messaging or
social platforms like Twitter or Facebook are nowadays one of the core use-cases for millions
of people around the world. The “dark side” of the Internet can be observed in everyday news.
Spam, Oday exploits, underground marketplaces, identity theft and many other problems and at-
tack vectors as well as exploitation techniques are used nowadays to conduct mischief on a daily
basis. Users are furthermore lured into giving more and more of their private data to companies
that use them to generate revenue, although many of these companies struggle to adequately
protect their users’ data from a technical point of view. Password breaches with millions of af-
fected users have become mainstream: RockYou lost 32 million passwords in 2009, Adobe lost
150 million passwords in 2013 [[74] and up to 40 million customers’ credit card information has
been stolen in late 2013 [10]. When such incidents occur, methods of digital forensics are used
by law enforcement, forensic investigators and system administrators to reconstruct the timeline
of events, identify possible traces left behind and identify the impact of breaches. Digital foren-
sics, as defined by NIST, is the application of science to the law, in particular “the identification,
collection, examination, and analysis of data while preserving the integrity of the information
and maintaining a strict chain of custody for the data” [71]. The tools and methods used are
definitely not new and have been employed for decades [117)]. However, digital forensics has
recently manifested as a subfield of computer science, and curricula are set up all over the world
to allow students to study in this field.

Digital forensics have received increasing attention in recent years as more and more crimes
are committed exclusively or with the involvement of computers. Digital traces help courts and
law enforcement agencies to capture valuable evidence. Existing research as well as applica-
tions in the area of digital forensics focus on file systems, log files, network traffic, databases
and, more recently, mobile devices like smartphones and tablets [61,84]. The traces that are left
on mobile devices in particular can contain a plethora of information, e.g. pinpoint past com-
munications as well as exact locations due to the use of GPS and wireless networks, regardless
of the exact communication channel used (GSM, instant messaging or e-mail, just to name a
few). The traditional approach of digital forensics is to acquire data from a device in a forensic
lab using special hard- and software. The current approach of analyzing local, residual artifacts
has however two major shortcomings: for one, not only the seizure of a suspect’s device is a re-
quired, but it has also to be accessible to the investigators. Secondly, and even more importantly,



the emergence of new online services extend the traditional means of data storage, information
sharing and communication. These services often do not operate under the same jurisdiction as
the user, which can make it difficult to obtain the data. Law enforcement can ask service op-
erators to release certain information, but they are usually not obliged to answer requests from
other countries. However, there have been documented cases in Austria were this method was
successful [[124]. Furthermore, the more prevalent use of encryption can make data acquisition
and analysis very hard while counter-forensic tools can be readily obtained from the Internet.
As such, digital forensics are often behind the current state of technology.



Background

The forensic process usually starts with the identification and verification of an incident, the
acquisition of the devices affected and the analysis in a forensic lab [71]]. If the device is found
running, the process of data acquisition starts by copying the content of the volatile memory
since it contains important dynamic information that is not stored anywhere else. This is spec-
ified as the “order of volatility”, which dictates that volatile information is a priority during
the acquisition process [[19]]. The content of the RAM is often incredibly useful during investi-
gations as it contains the list of running processes, open network connections, encryption keys
etc. Methods that can be used are for example special software or loadable kernel modules,
a cold boot attack [58] or modular extension cards that support direct memory access (DMA)
like Firewire. The acquisition process has to be done carefully, as many approaches modify
the content of RAM. If a software-based approach is used (running acquisition software on the
machine), this is problematic as it modifies the RAM itself - the process needs to be executed
and thus needs space in RAM that can potentially overwrite other information in RAM. The in-
vestigator furthermore has to trust the underlying operating system and hardware, as they could
be modified to thwart the acquisition process. Hardware-based approaches that rely on DMA
can be problematic too, as the Northbridge that executes DMA can be tricked into seeing dif-
ferent memory content as the CPU [113]]. This leaves the analyst with the cold boot attack, but
it requires an enormous effort compared to the other approaches and as such is expensive and
error-prone. While the cold boot attack was originally derived to extract cryptographic keys
from memory, it is also suitable to acquire an image of the system memory. Even though it was
commonly believed that the content of RAM is deleted once power is shut down - since RAM
cells need to be refreshed periodically by the system bus to store information - the cold boot
attack showed that RAM content is retrievable even 10 minutes after shutdown (and possibly
even more) if the RAM is cooled down [58]. It was shown that this method can even be used
to parse the RAM on the fly and reboot the system into a forensically controlled environment
without service interruption [25]. Recently, the cold boot attack was extended to be used on mo-
bile devices running Android [95]]. The content of RAM is furthermore not reproducible, as the
repetition of the exact steps that were taken by a user to arrive in a particular RAM state can lead
to a different state due to the operating system, background processes or external influence not
under the control of the user, e.g. network connections. A recent paper discusses anti-forensic
capabilities for memory acquisition and presents a new acquisition method based on direct page
table manipulation and PCI hardware introspection [[118]].



The system is then abruptly powered down to prevent the execution of shutdown scripts or
dead man switches that could possibly modify data. Afterwards the hard drives are copied mul-
tiple times using hardware write blockers to prevent unintended data changes and to preserve
the integrity of the information [71l]. This includes at least a working copy and a backup copy.
Every step is fully documented to preserve a full chain of custody [71] and to allow the evi-
dence to be usable in court. Hash values like MDS5 [108] or SHAT1 [42] are commonly used to
guarantee the integrity of the data. Prior to imaging it, a hash value is calculated over the entire
hard drive. This hash value is used after imaging to verify that the newly created image contains
in fact the same data as the original, but also to proof that the imaging process has not altered
any data. Once the working copy has been created, special tools like EnCase by Guidance Soft-
ware!, FTK by AccessData’ or the open source tool The Sleuth Kit’ are used to assist in the
process of analyzing the data, to index the hard drives and process them to extract all possible
information of relevance including file system metadata and the data stored in the files itself.
However, the fundamental change in the computing environment from PCs and local servers
to outsourced services, Web 2.0 applications and cloud computing requires fundamentally new
technology regarding digital forensics.

The worst case for a traditional forensic analysis is, at the time of writing, a computer with-
out a hard drive and turned off on arrival. Readily available boot media can be used to start a
live Linux distribution, whereas all data is exclusively stored online. Without network traces
or a memory dump, there is simply no locally stored information to analyze. Storage providers
like Dropbox, Microsoft’s SkyDrive or Google Drive offer enough storage capacity to store data
online, which can be downloaded to a RAM drive that is in turn deleted upon reboot. This is
similar to a turned-off computer with encrypted hard drives - without further knowledge of the
key or its copy in RAM, it is infeasible to get the data in clear text. This is for example why
the raid on Max Butler (aka Iceman) [103]] was accompanied by a team of forensic experts from
Carnegie Mellon University to acquire the RAM of the running computers, as it was known to
law enforcement that Max Butler was using the software DriveCrypt to encrypt his hard drives.
It is possible to use encryption without storing the key in RAM, e.g. for RSA [55] or full disk
encryption using AES [93]]. This has been shown to be feasible for PCs [94] as well as for mo-
bile platforms using ARM [57]], the key is stored in a CPU register and never written to RAM.
Other artifacts like the list of running processes, open network connections etc. are however
unencrypted in RAM.

Network forensics rely (mostly) on the analysis of network captures. Usually this means that
the upper network layers are analyzed, in particular the application layer as well as the Trans-
port and Internet layer (according to the TCP layering model [101}[102]). While the application
layer contains the actual user communication, including important online protocols like HTTP
for web browsing and POP/IMAP for e-mail, the network layer contains the technical infor-
mation needed for the communication transmission, e.g. IP addresses and port numbers. Both

"nttps://www.encase.com/encase-forensic.htm
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are vital in an investigation, given that either can contain relevant information. If encryption at
the application layer is used, the network layer still reveals metadata and contains information
on who is communicating with whom [30]. Network analyzer software like wireshark* can be
used to extract information from the network capture on all layers. It can also be used to de-
crypt encrypted information if the key is known, for example in case of TLS and HTTPS. More
advanced (open-source) tools like Xplico® can automatically generate statistics and reports of
common interest for a multitude of use-cases. PyFlag is a tool which is able to reconstruct the
target’s view in the browser by parsing HTTP traffic [27]. This is especially useful as the entire
web session can be vividly presented from the targets point of view to persons not familiar with
the technical details of the Internet, e.g. for juries and lawyers, for expert witness presentations
in court. Sometimes it is also possible to find data that contains network data structures [14] on
hard drives, which can happen if RAM content is swapped to disc and has not yet been overwrit-
ten.

Problem Description

The problems of digital forensics are manifold: new devices, operating systems and file sys-
tems (e.g. btrfs [109]), in particular currently on mobile devices and smartphones, can make the
acquisition of data cumbersome. Cloud computing [[11]] and the emergence of cloud services
render the acquisition of hard drives useless, as vital information is often stored in anonymous
data centers around the world - without direct access for law enforcement agencies - and not on
local hard drives anymore. Another problem is that it’s infeasible to acquire an entire data center,
not only logistically but probably also legally. Data formats, operating systems and hardware are
often proprietary and custom-built, and existing software solutions would have to be adapted for
analysis. Comparably, forensic analysis can already be challenging for large systems like e-mail-
or storage servers, as terabytes of data need to be processed and often expensive hardware like
special RAID controllers are needed to obtain access to the information. Large service providers
like Facebook, Google, Yahoo and others thus comply with law enforcement and extract the data
for the requestor, while the agency has to trust the service provider that the methods used are
forensically sound and all the relevant data is extracted. The use of encryption can furthermore
complicate data acquisition, and legal boundaries are often problematic as the Internet by its
very nature is international and knows no boundaries.

Another upcoming problem for digital forensics is the scale of data to analyze and the time
required for conducting a forensic analysis: a commodity 4TB hard drive can be bought nowa-
days for less than US $200, but it takes many hours to simply create an image for analysis or
calculate a hash value over the entire hard drive. The overall amount of information that needs
to be processed is increasing exponentially, therefore automated tools with large throughput will
become more and more important [52]]. bulk_extractor [S3]] by Simson Garfinkel for example is
a tool that can search unstructured data and hard drives for e-mail addresses, credit card num-
bers and more, using recursive scanners. bulk_extractor is designed to extensively build upon

*https://www.wireshark.org/
Shttp://www.xplico.org/
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multithreading, thus yielding a very high overall performance. An anecdotal story tells that the
tool was able to pin a server with 48 CPU cores, thus effectively parallelizing data analysis. An-
other approach to reduce the manual work for the analyst is the use of white listing hash values
of benign files on a hard drive. NIST is quarterly releasing the National Software Reference
Library reference data set (NSRL RDS)® which contains more than 110 million hash values for
files, executables and software libraries of common operating systems and software products.
Another approach that seems promising is the use of sector hashing: instead of hashing files, the
sectors of the hard drives are hashed individually. This has been shown to be a promising ap-
proach [50,[128]], as current use file systems like NTFS or FAT are sector-aligned [21]]. To reduce
the addressing overhead, NTFS, FAT as well as other file systems logically combine several sec-
tors to clusters which would be another vector for hashing since files are split into clusters on the
hard drive. NTFS uses 4 kilobyte clusters as default value for file systems smaller than 16 ter-
abytes, which means that on older hard drives 8 512 byte sectors are combined into a 4 kilobyte
cluster. ATA hard drive sectors used to be 512 bytes in size, but newer hard drives are transition-
ing to 4 kilobytes sectors as the new default value. Even though sector hashing seems promising
in terms of accuracy and precision (many files do not share common sectors [128]]), one of the
limitations of this approach is the size of the hash values and the overhead to query large hash
samples. A hard drive with one terabyte capacity has around 250 million 4 kilobyte sectors,
resulting in 250 million hash values. Even though the use of GPUs [80] or MapReduce [32]
could facilitate large-scale analyses and distributed processing of hash value comparisons, this
has not been evaluated regarding performance and accuracy (precision/recall). False-positives
and false-negatives could have a severe impact in such large data operations, as they could lead
to expensive manual inspections and potential base rate fallacy. Furthermore, multiple different
hash window sizes could be beneficial, as different sources of hash values can then be considered
as sources: Dropbox uses up to 4 megabyte file chunks for hashing, and many P2P file sharing
applications like Gnutella or BitTorrent use variable hashing windows [77] depending on file
size and number of files.

One of the solutions to analyze the ever increasing file numbers and storage capacity are so-
called “approximate hash functions”, also known as fuzzy hashing. Compared to cryptographic
hash functions like MD5 and SHA-1, fuzzy hashing has the benefit that the change of a single
bit in the input does not entirely change the resulting hash value. Instead, they are designed to
calculate a score value between 0 and 100 on how similar two different files are - 100 if two
files are entirely similar, and O if no similarity can be found. The benefit is that related files
can possibly be identified, as well as previous versions of the same file. It is possible to retrieve
files in different versions, for example if the file has been moved across partitions, the file sys-
tem has been defragmented (in the case of a fragmented file), or if it has been extended and
the old clusters have not yet been overwritten. This is also true for copy-on-write file systems
like btrfs [[109], or in SSD hard drives, as they by design update files at different locations than
the original file content. The most important fuzzy hashing tools so far are ssdeep [73] and sd-
hash [[110]. While ssdeep generates a constant 80-byte output for each file, sdhash generates a
similarity digest of variable output size. Both can then be used to calculate the similarity score

®http://www.nsrl.nist.gov/
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between files by comparing the fuzzy hash values of files either by using the edit distance (ss-
deep) or the Hamming distance (sdhash). Numerous comparisons between those two tools have
been published [[111, [18]], and generally both have their advantages. NIST also releases fuzzy
hashes for a subset of the NSRL RDS using sdhash’ and ssdeep® as well as certain blocks of
files like MD5 on the first 4 kilobytes of the corpus files®.

Counter-forensic tools are another front that forensic examiners have to battle. Many differ-
ent approaches can be used to hinder forensic analysis, e.g. encryption, online network traffic
anonymization or file signature analysis. Tools to encrypt hard drives like LUKS, FileVault, Bit-
Locker or TrueCrypt, are readily available for all major operating systems and can render an
analysis something between hard and close to impossible [22]]. Communication content can be
encrypted using protocols like TLS (HTTPS, IMAPS, SMTPS) or OTR [17], and online commu-
nication can be anonymized using Tor [37]], JonDonym or I2P [[107]. Tor is a very active field for
research [120, 69] with regards to online privacy and network censorship resistance, and so far
one of the effective countermeasures against spying according to files revealed by Edward Snow-
den [13]. Steganographic methods can be furthermore used to hide the existence of information
in plain sight [70} 62], for example in pictures or videos, and network traffic can be shaped to
look like something completely different [83} 1211 [123]] if the attacker is using traffic analysis to
infer information about encrypted information content [12} 96]. If not done correctly, however,
these methods can be defeated: very recent approaches like StegoTorus [[123]], SkypeMorph [83]]
and CensorSpoofer [121]] have been shown to be vulnerable to detection [63]. Furthermore,
cryptography, if implemented incorrectly, can considerably harm these tools, which has been
shown recently on CryptoCat!?. While all these problems seem troublesome in regard to digital
forensics, they are essentially troublesome (to say the least) in oppressive regimes where the
lives of dissidents are in danger. As such, this thesis is not judging on the way digital forensic
methods are employed all over the world: just like every coin has two sides, digital forensics can
be easily employed for or against certain interests. Thus, the usage of counter-forensic tools is
nothing that should be considered to be negative per-se.

The discussion about privacy as the “right to be left alone” [[122] is nowadays more prevalent
than ever. In particular the revelations by Edward Snowden about the surveillance conducted by
the NSA as well as other secret services has lead to public discussions on online security and
privacy, as well as mobile phone security and dragnet-surveillance on a global scale in general.
This will also affect research in computer security in the near future, as well as digital forensics.
The average user is unprotected against such powerful adversaries, and often without a chance
to even detect attacks until it is too late to mitigate or reduce the possible impact. Not only is the
NSA actively exploiting software weaknesses on target’s computers (codename Quantum), they
are also collecting unencrypted as well as encrypted communication content of users on a large
scale (codenames Upstream, Tempora and Prism) and between data centers of large Internet

"nttp://www.nsrl.nist.gov/morealgs/sdhash_3.3/sdhash.html
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companies like Google and Yahoo (codename Muscular). The NSA is also accused of weaken-
ing the standardization process of a cryptographic pseudorandom number generator published
by NIST (codename Bullrun) DUAL_EC_DRBG [116]], which was the default PRNG in many
products including RSA’s [56]. The full extent of the NSA’s surveillance programs is still un-
clear, and new revelations are constantly released.

The naive approach to conduct network forensics has several limitations, as simply encrypt-
ing the data in transit is insufficient. Anonymizing networks like Tor, as well as SSL MITM
attack can be used to inspect data, and secret service agencies can be expected to do that on a
regular basis. HTTPS is one of the most important protection mechanisms for data in transit.
It uses the TLS (and SSL) protocol to secure online communication, with TLS 1.2 [34] being
currently the most recent version of TLS. Client and server can authenticate themselves to each
other, use the TLS protocol to derive an encryption key as well as agree on a symmetric en-
cryption algorithm like RC4 or AES [[115]] by using public key cryptography [35]. However, it
is still not commonly used for a large portion of websites, with just a few notably exceptions:
Gmail uses it by default for all users since January 2010 [114], whereas Twitter followed in
February 2012 [119]]. Facebook announced in July 2013 that they enabled HTTPS by default
for all users [[106], while Yahoo announced to follow sometime early 2014 [100]. HTTPS also
has been subject to a plethora of attacks in recent time [26]]: RC4 has been found to be weak
and insecure [[6], CBC as the preferred mode of operation has its problems with attacks named
BEAST [39]] and Lucky13 [[7]]. Numerous attacks targeted compressed plaintexts prior to encryp-
tion, e.g. CRIME [40] and BREACH [104]. TLS errors are hard to understand for users [3} 4],
the trust chain when using commercial certificate authorities can be troublesome [41} 8] and
implementations in mobile apps like Android are often insecure [47, 46]. As such, HTTPS is
not suitable to defend against powerful adversaries. Especially with targeted attacks as well as
broad, Orwellian surveillance manifesting itself as a global, passive adversary, defense in depth
is the only option. Encryption alone is often insufficient, and protection mechanisms are needed
on multiple levels.

To counter these developments, this thesis aims at providing insights into online storage
providers as well as extend the current state of the art in digital forensics for this kind of sce-
narios. The traditional approach to conduct a forensic analysis of online storage systems has
several limitations: for one, the operator is involved in retrieving the information, which is prob-
lematic as it needs to put trust in the operator who is also often not obliged to help due to cross-
country jurisdictions. Furthermore, it can take weeks or even months to obtain information.
The ultimate goal for this thesis is to develop novel information extraction techniques as well
as to critically assess existing processes and methods, in particular for distributed environments.
Counter-forensic methods are evolving, and the increasing prevalence of mobile computers and
online connectivity will further challenge forensic investigations. The ever more pervasive usage
of encryption will furthermore advance the difficulties when analyzing computer systems.



Proposed Solutions

This chapter describes the goals and methods used to obtain the results of my evaluations.

Goals

The goal of this thesis is to tackle current problems of digital forensics in connection to online
services, like anonymizer- and online storage systems, and work towards their solution in a
broader picture. The goals for this dissertation are to enhance the current research on digital
forensics, with special focus on the following areas:

e Information extraction from online- and cloud services as well as the corresponding area
of browser forensics in a sound way, so that the information is usable for examinations
and in court.

e Analysis of anonymization networks, in particular Tor: how they are used as counter-
forensic tools, and what information still leaks from their usage.

e Examining online storage services like Dropbox and how traditional file forensic methods
can be applied.

e Assess the feasibility of fully automated digital alibis with regards to counter-forensics.

e Enhance browser fingerprinting methods to reliably detect a given browser based on its
characteristics.

So far, cloud forensics is conducted mostly in a passive way - a request is sent to the ser-
vice provider, and trust has to be put in the answer to meet forensics requirements, in particular
regarding data completeness, presentation and preservation. In a recent paper, an API-based
approach has been proposed to conduct forensic analysis on social networks [64]. This has the
benefit that no direct involvement of the service operator is required, and data acquisition can
be considered repeatable. The API often allows access to additional information compared to
webpages, like exact timestamps and additional fields of information. Regarding online storage
services, we would like to assess whether a given file is stored at the service or not, and, addi-
tionally (if possible), by which user. This allows us to test a set of possibly critical files, without
the need for dragnet surveillance or passive deep-packet inspection that has to be already set up
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prior to an incident. This approach is successfully used for example by PhotoDNA'! (on Twitter,
Facebook and bing) which uses a form of proprietary image hash to test image similarity to a
known set of images in connection with sexual exploitation of children.

With regards to browser artifacts, the reliable identification of a browser is still non-trivial.
Even though the browser identifies itself via a string (the UserAgent string), this is not a secu-
rity feature - it can be easily spoofed or modified by the user. As such, webservers that log the
UserAgent of users cannot be certain that the browser used was indeed the one proclaimed. We
would like to identify new methods that allow us and others to draw conclusions on the specific
browser of a user by looking at its characteristics. These methods can be either active or passive,
e.g. for the web server or for captured network traffic. In a forensic context this would be of
importance for example in cases where a web server gets hacked, as the access- and error logs
usually contain not only the IP address of the attacker but also the UserAgent. On the other
hand we would like to use our findings to improve the overall security of session management,
as broken session- and authentication management is currently among the most prevalent threats
online (“A2 — Broken Authentication and Session Management” in the OWASP Top 10 from
2013) [99].

Regarding online anonymization services like Tor, many parameters of its usage are in the
dark. It is unknown why people use it and why they donate bandwidth to run Tor relays, even
though many hundreds of thousands of people use it every day and there are currently more than
5,000 Tor relays. Related work found that it is mostly used for browsing the web and download-
ing files using P2P protocol [81], but this work dates back to 2008 when the Tor network was
much smaller. Furthermore, P2P network usage has been found to be possibly dangerous on Tor
as many torrent clients leak identifiable information like the client IP address [16]. We would
like to understand how Tor is used nowadays, and especially if it is used in a secure way as
recommended by the Tor project itself. Furthermore, as Tor could be used as a counter-forensic
tool, we would like to understand the implications of its usage for digital forensics, in particular
network forensics, and if the data transmitted still leaks information that could be used to reduce
online anonymity.

Finally, we would like to draw attention to the fact that traces left on hard drives are not nec-
essarily coming from a user or background processes, but can merely come from a purportedly
fully automated program to thwart analysis. To show this, we will implement a digital alibi en-
gine that incorporates social interactions like chatting, writing e-mails and using local programs
just like a normal user. Traditional forensic processes that rely on file system metadata and net-
work traffic analysis are expected to be easily tricked by such a program into detecting patterns
of user interaction in cases where no user was present. Another goal of our work is to study
slack space, a well known artifact of digital forensics. While current analysis methods target
slack space implicitly instead of explicitly (keyword search on entire hard drives by ignoring file
system metadata), free tools are available to store data in slack space. These tools also allow to
encrypt data prior to storing it in slack space, thus defeating the implicit analysis with keywords.

"http://www.microsoft.com/en-us/news/presskits/photodna/
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There is no existing prior work towards assessing the amount of slack space created by modern
operating systems, with tens of thousands of system files. Given that many of these files are
static and do not change over time, the slack space can be considered persistent and protected
from getting accidently overwritten.

If possible, our methods and obtained results should be quantified and have to be compared
to previous research in this field regarding effectiveness and applicability. If flaws and vulner-
abilities in implementations or protocols are discovered, they have to be communicated to the
creators and developers as soon as possible to improve overall security of the affected products.
Research results in general (papers, data and tools) will be published as openly as possible. Eth-
ical guidelines and codes of conduct from, e.g. ACM [9] and IEEE [68]] are honored as well as
ethical principles that are agreed upon by the majority of the scientific community. Many ideas
discussed in the literature as well as published in the papers presented here have limitations and
restrictive conditions that hinder the general applicability. As such, the goal has always been
to find the most permissive set of preconditions and requirements while making sure that the
prospect and implications are still generally applicable and not restricted to particular technolo-
gies. An example from one of the papers presented here would be the data deduplication attack,
which was demonstrated on the cloud service Dropbox: even though it was specific to the imple-
mentation and particular protocol used by Dropbox, the attack itself is based on the naive use of
client-side hashing for data deduplication [60], compared to more complicated data possession
proofs [[130L159]. We showed that trusting the client to do this faithfully and correctly is not to
be taken for granted and a possible attack vector for unauthorized data access [91]].

Methodology

The following methodology was used:

o Extensive literature review on the current state of forensic research and the identification
of urgent challenges that need to be solved.

e Prototype implementation for proof of concepts like new data extraction techniques or
analyzation methods.

e Empirical analysis of feature predominance and assessment of expected information in-
crease in forensic examinations.

e Prototype dissemination with an open source license like the GPL so that the forensic
community can use the outcomes and enhance their functionality as needed.

The majority of the results are based on quantitative research; a-priori research questions [29]
were typically formulated in this way. This is in particular true for novel attack vectors, as a
proof-of-concept is often needed to not only show the general feasibility of the attack, but also
to assess the possible impact on a larger scale. Most data collections and evaluations are based
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on or built around proof-of-concept implementations. The designs of the experiments are de-
scribed in the corresponding papers in a way that they are reproducible in general; available
data and used tools were openly published to make the results reproducible as well. However,
responsible disclosure was employed: tools that exploit security weaknesses or could potentially
harm users or service operators in any way will not be released until the underlying issues are
communicated to the vendor.

We started our work on the online storage analysis by evaluating the protocol of the most
popular software at the time: Dropbox. Our initial observation was that once a file has been
stored on the Dropbox servers there is in general no need to re-upload it. Even if it was deleted
and re-added to the Dropbox folder, somehow the client software tracked which files were al-
ready stored online. This was also true for cross-account uploads: another client (without any
relation to the first user account but) with the exactly same file was not asked to upload the
files to the servers. It was deduplicated, and the same exact file had to be uploaded only once.
Upon looking at the obfuscated executable we were able to see that files are split into chunks of
4 megabytes of which each was hashed using the SHA-256 cryptographic hash function. The
hash was then sent to the server, and if the chunk was already stored on the servers, retrans-
mission was omitted. As the hash calculation was done locally, we were able to manipulate it
and to obtain unauthorized access to data. Knowing the hash value of a file of interest, it could
be obtained from Dropbox without prior possession of the file. This was of interest for digital
forensics regarding two particular methods: for one, it was possible to assess if a given file was
stored on Dropbox, even though we did not find a way to identify the account that uploaded
it; secondly, data could be hidden online without leaving any local traces, as long as the hash
values are remembered. At a later point in time, this weakness could be used to download it
again. Thus up to 4 megabytes were retrievable by one 256 bit hash sum. To evaluate the file
retrieval attack, we downloaded the most popular files (without any obvious copyright on them)
from The Pirate Bay torrent tracker!? and downloaded the corresponding files from Dropbox.
We also evaluated to what extend files could be hidden using another flaw in the protocol: once
a file is uploaded, it was linked to the user account by a final request. By omitting this final
linking request we were able to upload the files successfully to Dropbox, but without linking
them to our account. Even weeks and months later the data was still retrievable. All in all, these
issues were not only worrying from a security point of view, but also for digital forensics as a
chance and a valid method for counter-forensics. We proposed countermeasures, in particular a
data possession protocol to prevent our attacks while at the same time allowing deduplication.
Dropbox fixed it, however, by preventing deduplication altogether, and every file since is up-
loaded to their servers. We speculate that this was an easy fix for them, given that Amazon, who
is running the underlying infrastructure, is not charging customers for inbound traffic.

Based on browser fingerprinting artifacts we found that it is possible to identify a given
browser by actively probing it with JavaScript. While browser fingerprinting is currently a very
active area of research [43.[127,[86[], we derived novel fingerprinting vectors that are three orders
of magnitude faster than related work [85]. In our work we use fingerprinting of the underly-
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ing JavaScript engine as well as upcoming browser features and standards based on HTMLS5
and CSS3, as these are not yet uniformly implemented in all major browsers and thus very
suitable for identifying the browser currently used by the client. We started by analyzing the
JavaScript engines for different browsers (Firefox, Internet Explorer, Opera, Chrome and Sa-
fari) on multiple operating systems (Windows 7, Windows XP and Mac OS X) and how they
differ in standard accordance to the ECMAScript standard [44]] for JavaScript. We then col-
lected, for each browser/operating system combination (more than 150), the outcome of the
official TC39 test suite, tesz262'3 and stored the results in a database. From that data we derived
two different methods to minimize the computational overhead and runtime on the client. Fur-
thermore we were able to show that UserAgent string modifications are easily detectable by our
method. Based on these results we extended the scope of our browser fingerprinting to include
upcoming web standards, HTMLS5 and CSS3. While some features are already uniformly agreed
upon and implemented by the browser vendors, some are not even yet standardized, but already
implemented in some browsers. We used that additional information to increase the precision
of our active tests and built a framework to increase HTTP session security, by tying a HTTP
session to the specific browser. Session hijacking becomes thus harder, as the attacker has to run
the same exact browser, or needs additional information despite traditional session management
information like session cookies. The framework, which was named SHPF, can thus detect ses-
sion hijacking on the server side and implement proper countermeasures like requesting the user
to re-authenticate or simply terminating the session for that user. We used this framework to
also include additional encryption, as proposed in [2]]. The framework is released under an open
source license and can be easily incorporated in existing websites and frameworks with just a
few lines of code.

Regarding anonymous communication and their (counter-)forensic effects we evaluated the
Tor network in depth. We ran a Tor relay (and in fact are currently still running a non-exit
Tor relay) and analyzed publicly available information like the Tor consensus information'*.
The consensus information contains all necessary information for the clients to build their paths
through the Tor network and is essential to prevent intersection attacks where clients only know
a partial state of the entire network [37]. While the Tor network’s infrastructure is run by vol-
unteers, we found that it is very stable in total numbers and bandwidth. We incorporated our
data collection process into the tor-status website which used a Perl script to connect to a local
Tor relay to periodically extract all information about the Tor network. tor-status is now super-
seded by Tor Metrics!> and Atlas'®. We furthermore designed analysis methods that allow to
present the most relevant information on a first sight, like total number of relay, total number
of exit relays or country-specific numbers. To analyze possible artifacts of user data we ran an
on-the-fly analysis script on a Tor exit relay. We did this to find out if Tor is used in a safe way
and as recommended by the Tor Project, and also to see if users can be deanonymized by merely
looking at the unencrypted network traffic. Our data collection was built to be as least invasive to

Bhttp://test262.ecmascript.org
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user privacy as possible, and we analyzed only the HTTP requests issued over the Tor network
without permanently storing them. Since Tor is used in many countries to circumvent online
censorship, we found many connections to, e.g. Facebook or other social media websites that
directly contain user information and were unencrypted by default at the time of the analysis.
We also found unencrypted file downloads for software with known vulnerabilities (PDF, office
files or executables) which could be piggybacked or exchanged with malware on the fly by an
adversary running the Tor exit node.

To analyze the quantity and persistency of slack space, we installed 18 different versions
of the Windows operating system ranging from Windows XP and Server 2003 R2 to the most
recent Windows 8 RC and Server 2012 RC. Our goal was to analyze how many files are changed
during system updates and how this affects the corresponding slack space. In total, more than
2500 system updates were installed, including 10 service packs. We used virtual machines to
run that many versions of Windows and exported the file system to a raw image prior to analysis.
Slack space is an artifact of clustering file systems like NTFS or FAT [21] and can be used to
hide data in the last sectors of files, as these sectors are allocated to a file, but often unused since
files hardly align exactly in size with the allocated space. Many tools are available to hide infor-
mation in slack space, e.g. bmap or slacker.exe. We then collected the file system metadata using
fiwalk [S1] and estimated total capacity and stability. For all Windows versions we analyzed,
44 megabytes were available on average across all steps in our evaluation. From the initial file
slack 78% were still available at the end of the evaluation process. Creating digital alibis with
social interaction were another research problem we wanted to encounter: currently, in particu-
lar in court or in companies, digital forensic methods are used to find out what happened in what
order of events. However, the traditional analysis processes can be thwartened with automated
processes that manipulate timestamps on disks as well as generate network traffic. We built a
proof-of-concept framework in Python that runs fully automated and is able to interact online
with multiple means of communication (e-mail, chat). Our framework is capable of interacting
with the computer like an actual user by sending key strokes and mouse actions as simulated
input. As such, it can also be used to generate test data for new and upcoming software, not only
hard drive images, but also network traffic of various kinds.

14



Scientific contributions

The scientific contributions of this thesis can be roughly categorized according to for parameters
- they are either active or passive, and work online or offline. The passive contributions work
with data or knowledge that is already there but has not yet been used in this particular fashion.
Instead of modifying, e.g. source code or websites, the tools can work with log data or infor-
mation that are already collected and processed. Active on the other side means that either on
the client- or the server side additional code has to be executed and information collected for
them to work properly, and existing frameworks and source codes need to be extended. Online
solutions refer to contributions that require Internet connection, or work only in online envi-
ronments, whereas offline means that they work without network connection of any kind. A
graphical representation of the contributions according to this scheme can be seen in FigurdT]

The passive online contributions contain the research on Tor - both the paper on infrastruc-
ture monitoring [88]] as well as the paper on Tor usage and information leakage [67]. While the
Tor infrastructure monitoring works with existing data, the network consensus, it can be used of-
fline. However, since the Tor network consensus is updated once every hour, it can be beneficial
to analyze the data as soon as it is published, and for that some form of network connection is
required. For the historical data, which is available online from the beginning of 2006'”, the data
can be analyzed offline. That is why Tor infrastructure monitoring is located in the graph close to
the line between online and offline. The Tor information leakage analysis works only in online
environments, but is completely passive in nature. As such it is located in the upper left corner.
The lower left quarter contains the work on Windows file slack analysis and persistency [89],
as it neither requires network connectivity nor an active component besides the collection tool.
Measuring slack space can be even done on the fly in the running operating system (for most of
the files), which means that it can be calculated passively and offline. The rest of the papers are
located in the upper right quarter, as they are active in nature and require network connectivity.
Automated alibis [[15] can make use of the fact that a computer is online by generating social
interaction with online communication protocols like e-mail, browsing the web or instant mes-
saging. Without Internet connection, only local information is modified and programs that work
on local data are run. The online framework regarding JavaScript engine fingerprinting [90],
online storage deduplication and slack space [91]], as well as the SHPF framework [92]] work
purely online and need modifications of existing code and frameworks. Further distinctions for
these papers would be whether the modifications have to be done on the server- or the client side
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and if the additional code needs to be executed at the client, at the server or at both, but was
omitted for reasons of brevity. SHPF can be added to existing webpages with a few lines of code
to invoke the SHPF framework. JavaScript engine fingerprinting needs to add the required tests
to the webpage’s source code, and online data deduplication with the possibility of online slack
space requires local modifications to the source code, in our case Dropbox.

The papers and in particular their context are discussed in detail in the following, categorized

accordingly to the previously described research fields: online storage, anonymous communica-
tion and digital forensics.

Digital Forensics on Online Storage

The paper Dark Clouds on the Horizon: Using Cloud Storage as Attack Vector and Online
Slack Space, which was published at the USENIX Security Symposium [91] in 2011, describes
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three different attacks against Dropbox'®, a popular cloud storage service. The first attack abuses
the local hash computation on the client side to get unauthorized access to remotely stored files
- if the hash value(s) of the file are known to the attacker. While this scenario can pose as a hen-
and-egg problem, it could be used for file sharing and covert communication as (independently)
implemented by Dan DeFelippi [33, 182]. This attack could further be used for stealth data exfil-
tration, as only a hash value has to be secretly transmitted to the attacker instead of the entire file.
While the underlying problem for this attack has been independently found by Harnik et al. [60]],
our work had a proof-of-concept implementation and showed that the attack is applicable on the
(at the time) largest cloud storage service provider with more than 10 million users. Dropbox
changed their protocol soon after our notification. As of July 2013, Dropbox has 175 million
users [28]] and is still subject of active research [72} 38| [105]. The second attack is based on the
observation that Dropbox did not validate or tie the so-called hostID to the specifics of a system
once it is set - if this somehow becomes known to the adversaries, they can access all files of
the victim. This attack has also been independently discovered by Derek Newton [97]. Both
attacks happen completely transparent to the victim, who cannot detect these attacks as they are
targeting the protocol and the servers only. The third attack abuses the transmission protocol by
up-/downloading files without linking them to a specific account, which usually happens after
uploading files. This can be used to secretly hide files at Dropbox and thus inside the Amazon
cloud [38]]. This attack can furthermore be used to upload files to other peoples’ Dropbox if
the victim’s hostID is known. None of these attacks are specific to Dropbox, but apply to other
cloud storage services with vulnerable implementations or protocols as well. Dropbox fixed
these issues after notification by disabling client-side data deduplication entirely and encrypting
the hostID at rest. Our paper finally proposed to use interactive challenge-based data possession
proofs instead of relying on cryptographic hash functions as sole method to check if a client is
really in possession of a new file which is possibly already stored on the server. Numerous other
methods have been recently proposed in the literature [59, 130, [129]], but our countermeasure
specifically targets the use-case in which two parties (willingly or unwillingly) collaborate to
facilitate file sharing and cryptography alone is not suitable as a sole countermeasure, given that
cryptographic keys can be exchanged between collaborating parties.

The paper Fast and Reliable Browser Identification with JavaScript Engine Finger-
printing, which was published at the Web 2.0 Workshop on Security and Privacy (W2SP) [90]
accompanying the IEEE Symposium on Security & Privacy in 2013, improves previous research
in the area of browser fingerprinting based on the Javascript engine by three orders of magnitude.
While previous research used performance and timing patterns [85] of various benchmarks, our
method uses Javascript conformance tests which are available online, in particular fesr262'°.
These tests assess to what extend the Javascript engine of the browser conforms to the official
ECMAScript standard, and the failed test cases are specific for browsers and particular browser
versions. Recent browser versions failed at something between four and 35 cases, whereas older
browsers were having problems with more than 3,500 cases out of the approximately 11,500
tests. While a full run on all these 11,500 tests only takes about 10 minutes on a modern PC

Bhttps://dropbox.com
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and up to 45 minutes on a smartphone, we also discussed techniques to make our tests as effi-
cient as possible. Our tests to fingerprint a particular browser required only a few hundred lines
of code to be executed on the client side, which reduces the runtime to a fraction of a second.
We evaluated our approach using a plethora of browser versions and operating system combina-
tions, resulting in more than 150 configurations. We derived techniques to build a decision tree
to find the browser of a user without any a-priori knowledge like the UserAgent string. We were
also able to show that the underlying Firefox version used in the Tor browser bundle [37]] can
be identified as it employs a modified UserAgent string to increase the size of the anonymity
set [36]. From the browser bundles that were released between May 2011 and February 2013,
our technique was able to identify 6 out of 9 browser versions correctly and find the modified
UserAgent strings. This is however not an attack on Tor or the Tor browser, but can be used to
decrease the size of anonymity sets. Still, it could be used to conduct forensic analysis on clients
connecting to a webserver using Tor, but also to identify modified UserAgent strings during web
sessions. Unfortunately the dataset we collected was lost due to a hardware failure.

The paper SHPF: Enhancing HTTP(S) Session Security with Browser Fingerprinting,
which was published at the International Conference on Availability, Reliability and Security
(ARES) [92] in 2013, builds upon previous work on browser fingerprinting and presents a frame-
work that allows HTTP session security to be enhanced using browser fingerprinting. Traditional
HTTP session security, as it is used today, has many shortcomings. This was also demonstrated
with the release of numerous tools that allow automatic session hijacking, for example in unen-
crypted wireless networks, e.g. FaceNiff?°, Firesheep?!' or Droidsheep??. SHPF ties the session
of a user to a characteristic set of properties of the underlying browser using browser finger-
printing and is implemented in a modular way. As such it can be extended using upcoming
fingerprinting methods like HTMLS5 rendering differences across browsers [86] quite well. Part
of the implementation were HTMLS5- and CSS feature fingerprinting, as well as binding a ses-
sion to a particular UserAgent string or IP address. Browser fingerprinting has been recently
discussed to be already in use by advertising networks [98] |1], and as such we believe that the
public release of the SHPF source code can help to secure online communications. This is an
extension of the previously discussed idea to identify browsers in forensic investigations and to
prevent session hijacking. While session hijacking can have legitimate use-cases, e.g. to transfer
a web session to an untrusted terminal without entering a password [20]], it is usually an indicator
for hacking attempts.

Insights into Anonymous Communication Methods

The paper Anonymity and Monitoring: How to Monitor the Infrastructure of an Anonymity
System, which was published in the journal /EEE Transactions Systems, Man, and Cybernetics,
Part C: Applications and Reviews [88]] in 2010 describes data collection of public information
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and numerous evaluations on the Tor network [37]. Tor is an anonymizing overlay network, and
the underlying infrastructure (the Tor relays) is run by volunteers. The paper clearly showed
that not only the number of servers is volatile, but also that there are significant country-specific
usage patterns in the type and total number of Tor relays. For example, the number of Tor relays
can be considered rather static in the US during an one week period, while the total number of
relays in Germany had a daily pattern: +/- 10% (out of approximately 350) of the servers were
running only during the evening hours. The same was surprisingly true for exit relays. Even
though we could not find any indication that these patterns are correlated, they clearly showed
that Tor relaqys and how they are operated should be further investigated. The overall number
of Tor relays has tripled since the paper was published, while the number of exit relays has dou-
bled. The paper has been an extension of my master thesis conducted at the Vienna University
of Technology in 2009 [[87]. The Tor project incorporated parts of the results and evaluations
in their official Tor metrics portal (online at https://metrics.torproject.org/) and
independently published results and related methods [[78, [79] similar to ours.

The paper Tor HTTP Usage and Information Leakage, which was published at the IFIP
International Conference on Communications and Multimedia Security [67] in 2010, showed
that Tor users are unwillingly leaking (possibly sensitive) information by browsing the web. It
furthermore showed that Tor users are often vulnerable to MITM-like file replacement attacks,
as a malicious Tor exit relay can easily replace certain requested files. Furthermore, plenty of
social networking information was observable in the clear, which makes user deanonymization
often trivial. Related work from 2008 analyzed [81] how Tor clients use the network in gen-
eral, and a paper from 2011 showed that using Tor for P2P file sharing often leaks identifiable
information that allows user deanonymization [16]. Today, Tor users are often protected by
the Firefox extension HTTPS everywhere, which uses a whitelist of about 10.000 preconfigured
websites?® to encrypt communication content with TLS by default. Websites that use TLS for
all connections, like Gmail (since 2010), Twitter (since 2012) and Facebook (since 2013), are
still a minority, even though anecdotal evidence suggests that the computational overhead is
small [[75)]. This leaves room for novel attacks, e.g. our friend-in-the-middle attack on social
networks [65, [66]. With the release of the NSA files by Edward Snowden, numerous website
operators and e-mail service providers have started to switch to https-by-default, including Ya-
hoo, Microsoft and LinkedIn.

Contributions to Traditional Forensic Techniques

The paper Quantifying Windows File Slack in Size and Stability, which was published at the
IFIP WG 11.9 International Conference on Digital Forensics [89] in 2013, analyzed the quantity
and persistence of file slack space in Windows environments, with special regard to Windows
system updates. The intuition behind this paper was that once Windows is installed, it is likely
that many system files are never touched again, updated or rewritten with regular usage, e.g. font
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files, program libraries, help files or pictures, as well as many other file types. If a file is kept for a
long time without modifications, the slack space behind the file is static. Therefore we analyzed
18 different versions of Windows, ranging from Windows XP to Windows 8 RC, respectively
Server 2003 R2 to Server 2012 RC, and measured slack space capacity and stability. While the
detailed results can be seen in the paper, we observed that tens of megabytes, sometimes even
more than a hundred megabytes of file slack space are available just by inspecting the files of the
operating system itself. This is due to the fact that Windows is a complex system, using tens of
thousands of files, but the results are applicable to any other operating system that users sector
clustering for file system efficiency. Slack space is a well known phenomenon in digital foren-
sics, where fragments of files can be possibly recovered once the cluster was marked deleted,
reused and the old data was not fully overwritten [54]]. Identifying file fragments regarding their
file type or what file they originally belong to is a closely related and very active area of research
at the time of writing [112} [128]].

The paper Towards Fully Automated Digital Alibis With Social Interaction, which was
published at the IFIP WG 11.9 International Conference on Digital Forensics [[15] in 2014, raises
awareness regarding the problem that forensic investigations can be foiled with fully automated,
digital alibis. Digital evidence is often regarded as per-se authentic and tamperproof, at least to
my general impression, in particular in court cases in which the analysis is often done by expert
witnesses. We proposed and released a framework as a proof-of-concept to show that digital
alibis cannot be blindly trusted. Our framework is, among other things, built upon social inter-
actions, whereas chatting in Skype or interacting on Facebook is simulated. A similar technique
to our approach has been previously discussed as an attack vector for fully automated social
engineering [76]. Captured network traffic, as well as hard drive analysis [19], cannot easily tell
the presence of our framework if certain (non-trivial) precautions are met. We suspect however
that advanced analysis techniques as well as statistical analysis are able to detect the usage of the
framework. Compared to previous work in this area, our framework is not dependent on particu-
lar operating systems like Android [S]], OS X [23] or Windows [31124]], as it is written in Python.
However, it was recently announced that the Skype desktop API will be retired by the end of
2013 [45]). Since our implementation uses this API, we will have to change that usage towards
GUI automation. Another potential use-case for this framework is the fully automated genera-
tion of disk images and network captures for educational purposes. While there exist numerous
standardized forensic corpora [49]] that are used to develop new methods and evaluations, all of
them have some form of limitation [[125]]. For one, the real world corpus holds currently in total
approximately 70 TB of disk images [48]], but access to them is tricky - for one, sending and
processing that vast amount of information is non-trivial. Secondly, as the owner’s institution
is located in the US and the hard drives could contain potentially sensitive and personal infor-
mation, a US-based institutional review board (IRB) approval is required. However, many other
countries in the world (and Austria in particular) do not have these form of approval process,
which can as such be considered an obstacle, or at least time-consuming. Our framework allows
the realistic generation of organic disk images, since the operating system and the applications
on top of it are really executed, and as such contain every piece of data and metadata that an
actual user would leave behind. This is different to related work, which creates synthetic hard
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drive images by simulating activities of users using Markov chains [126]. While the synthetic
approach is faster and has more parameters that can be configured, the organic hard drive image
has the benefit that instead of the creation process itself the user is simulated. It could also be
used for the creation of realistic network captures, since an actual browser is used to surf the
web, and real applications are used to communicate. It is extensible and can be easily adapted to
include custom applications, additional features or scripting actions. We released our framework

as open source24 .

Hhttps://github.com/mmulazzani/alibiFramework
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Conclusion

This thesis demonstrates new techniques for forensic investigations and highlights current chal-
lenges, in particular for online environments. With data being ubiquitously stored in the cloud
and web interfaces being used for data access across numerous different devices, the forensic
process as it is conducted today can be easily overwhelmed. Depending on the threat model and
the capabilities of the person to be investigated, counter-forensic methods, its tools and the in-
creasingly present use of encryption can hinder and even prevent forensic analysis. Nevertheless,
this field of research is currently very active, and new methods and data extraction techniques
are direly needed.

The results in particular demonstrate findings with forensic context on the Tor network and
how it is used, how browsers can be fingerprinted and how this fingerprinting can be used to
enhance HTTP session security as it is implemented today. This thesis also adds to traditional
forensics by analyzing the size and stability of file slack space and presenting a framework that
was used to contribute towards automated alibi generation by adding social interactions using
numerous communication channels.
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Overview of Research Contribution

Publications

List of published papers, in chronological order:

Anonymity and Monitoring: How to Monitor the Infrastructure of an Anonymity System,
published in the IEEE Journal on Transactions Systems, Man, and Cybernetics, Part C:
Applications and Reviews in 2010 [88]]

Tor HTTP Usage and Information Leakage, published at the IFIP International Confer-
ence on Communications and Multimedia Security in 2010 [67]]

Dark Clouds on the Horizon: Using Cloud Storage as Attack Vector and Online Slack
Space, published at the USENIX Security Symposium in 2011 [91]

Quantifying Windows File Slack in Size and Stability, published at the IFIP WG 11.9
International Conference on Digital Forensics in 2013 [189]]

Fast and Reliable Browser Identification with JavaScript Engine Fingerprinting, published
at the Web 2.0 Workshop on Security and Privacy (W2SP) in 2013 [90]

SHPF: Enhancing HTTP(S) Session Security with Browser Fingerprinting, published at
the International Conference on Availability, Reliability and Security (ARES) in 2013 [92]

Towards Fully Automated Digital Alibis With Social Interaction, to be published at the
IFIP WG 11.9 International Conference on Digital Forensics in 2014 [15]]

Released Source Code and Tools

Source code of our framework for enhancing HTTP(S) session security with browser fin-
gerprinting at https://github.com/mmulazzani/SHPF

Source code of CSS and HTMLS5 fingerprinting, as part of the SHPF source code

Source code of our digital alibi framework using social interactionat https://githubl
com/mmulazzani/alibiFramework

25


https://github.com/mmulazzani/SHPF
https://github.com/mmulazzani/alibiFramework
https://github.com/mmulazzani/alibiFramework

Released Data Sets

Data set of our NTFS slack space evaluation at http://sba-research.org/wp-
content/uploads/publications/slackspaceDataset.7z

Data set for JavaScript engine fingerprinting has unfortunately been lost due to a hardware
failure

(Co-)Instructed Master Theses
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Stefanie Beyer, master thesis at the Technical University of Vienna: “Towards automated
digital alibis”

Ioannis Kapsalis, master thesis at Aalto University: “Security of QR Codes”

Robert Koch, master thesis at the Technical University of Vienna, funded by Google Sum-
mer of Code: “On WebSockets in Penetration Testing”

Christian Kadluba, master thesis at the University of Applied Sciences Technikum Wien:
“Windows Installer Security”

Reinhard Kugler, master thesis at the University of Applied Sciences Campus Wien:
“Analysis of Android Apps”

Philipp Reschl, master thesis at the University of Applied Sciences Campus Wien: “Iden-
tifizierung der Webbrowser Version anhand des Verhaltens der JavaScript Engine”

Thomas Unger, master thesis at the University of Applied Sciences Campus Wien: “HTTP
Session Hijacking Prevention”

Herbert Brunner, master thesis at the Technical University of Vienna (in progress): “De-
tecting Privacy Leaks in the Private Browsing Mode of Modern Web Browsers through
Process Monitoring”

Andreas Juch, master thesis at the Technical University of Vienna (in progress): “Btrfs
Filesystem Forensics”

Richard Kower, master thesis at the University of Applied Sciences Wien Campus (in
progress): “HoneyConnector - Detecting Eavesdropping Nodes in the Tor Network™

Robert Annessi, master thesis at the Technical University of Vienna (in progress), funded
by Google Summer of Code: “Improvements on path selection in the Tor network”
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Abstract usage of resources, these centralized storage services

During the past few years, a vast number of online file
storage services have been introduced. While several of
these services provide basic functionality such as upload-
ing and retrieving files by a specific user, more advanced
services offer features such as shared folders, real-time
collaboration, minimization of data transfers or unlim-
ited storage space. Within this paper we give an overview
of existing file storage services and examine Dropbox,
an advanced file storage solution, in depth. We analyze
the Dropbox client software as well as its transmission
protocol, show weaknesses and outline possible attack
vectors against users. Based on our results we show that
Dropbox is used to store copyright-protected files from
a popular filesharing network. Furthermore Dropbox can
be exploited to hide files in the cloud with unlimited stor-
age capacity. We define this as online slack space. We
conclude by discussing security improvements for mod-
ern online storage services in general, and Dropbox in
particular. To prevent our attacks cloud storage opera-
tors should employ data possession proofs on clients, a
technique which has been recently discussed only in the
context of assessing trust in cloud storage operators.

1 Introduction

Hosting files on the Internet to make them retrievable
from all over the world was one of the goals when the
Internet was designed. Many new services have been
introduced in recent years to host various type of files
on centralized servers or distributed on client machines.
Most of today’s online storage services follow a very
simple design and offer very basic features to their users.
From the technical point of view, most of these services
are based on existing protocols such as the well known
FTP [28], proprietary protocols or WebDAV [22], an ex-
tension to the HTTP protocol.

With the advent of cloud computing and the shared

have gained momentum in their usage, and the number
of users has increased heavily. In the special case of on-
line cloud storage the shared resource can be disc space
on the provider’s side, as well as network bandwidth
on both the client’s and the provider’s side. An online
storage operator can safely assume that, besides private
files as well as encrypted files that are specific and
different for every user, a lot of files such as setup files
or common media data are stored and used by more than
one user. The operator can thus avoid storing multiple
physical copies of the same file (apart from redundancy
and backups, of course). To the best of our knowledge,
Dropbox is the biggest online storage service so far
that implements such methods for avoiding unnecessary
traffic and storage, with millions of users and billions
of files [24]. From a security perspective, however, the
shared usage of the user’s data raises new challenges.
The clear separation of user data cannot be maintained
to the same extent as with classic file hosting, and
other methods have to be implemented to ensure that
within the pool of shared data only authorized access
is possible. We consider this to be the most important
challenge for efficient and secure “cloud-based” storage
services. However, not much work has been previously
done in this area to prevent unauthorized data access or
information leakage.

We focus our work on Dropbox because it is the
biggest cloud storage provider that implements shared
file storage on a large scale. New services will offer sim-
ilar features with cost and time savings on both the client
and the operators side, which means that our findings are
of importance for all upcoming cloud storage services as
well. Our proposed measurements to prevent unautho-
rized data access and information leakage, exemplarily
demonstrated with Dropbox, are not specific to Dropbox
and should be used for other online storage services as
well. We believe that the number of cloud-based storage
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operators will increase heavily in the near future.
Our contribution in this paper is to:

e Document the functionality of an advanced cloud
storage service with server-side data deduplication
such as Dropbox.

e Show under what circumstances unauthorized ac-
cess to files stored within Dropbox is possible.

e Assess if Dropbox is used to store copyright-
protected material.

e Define online slack space and the unique problems
it creates for the process of a forensic examination.

e Explain countermeasures, both on the client and the
server side, to mitigate the resulting risks from our
attacks for user data.

The remainder of this paper is organized as follows.
Related work and the technical details of Dropbox are
presented in Section 2. In Section 3 we introduce an at-
tack on files stored at Dropbox, leading to information
leakage and unauthorized file access. Section 4 discusses
how Dropbox can be exploited by an adversary in var-
ious other ways while Section 5 evaluates the feasibil-
ity of these attacks. We conclude by proposing various
techniques to reduce the attack surface for online storage
providers in Section 6.

2 Background

This section describes the technical details and imple-
mented security controls of Dropbox, a popular cloud
storage service. Most of the functionality is attributed
to the new cloud-paradigm, and not specific to Dropbox.
In this paper we use the notion of cloud computing as de-
fined in [9], meaning applications that are accessed over
the Internet with the hardware running in a data center
not necessarily under the control of the user:

“Cloud Computing refers to both the applica-
tions delivered as services over the Internet and
the hardware and systems software in the data
centers that provide those services.” ... “The
datacenter hardware and software is what we
will call a Cloud.”

In the following we describe Dropbox and related litera-
ture on cloud storage.

2.1 Dropbox

Since its initial release in September 2008 Dropbox
has become one of the most popular cloud storage
provider on the Internet. It has 10 million users and
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stores more then 100 billion files as of May 2011 [2]
and saves 1 million files every 5 minutes [3]. Dropbox
is mainly an online storage service that can be used
to create online backups of files, and one has access
to files from any computer or similar device that is
connected to the Internet. A desktop client software
available for different operating systems keeps all the
data in a specified directory in sync with the servers, and
synchronizes changes automatically among different
client computers by the same user. Subfolders can be
shared with other Dropbox users, and changes in shared
folders are synced and pushed to every Dropbox account
that has been given access to that shared folder. Large
parts of the Dropbox client are written in Python.

Internally, Dropbox does not use the concept of files,
but every file is split up into chunks of up to 4 megabytes
in size. When a user adds a file to his local Dropbox
folder, the Dropbox client application calculates the hash
values of all the chunks of the file using the SHA-256
algorithm [19]. The hash values are then sent to the
server and compared to the hashes already stored on
the Dropbox servers. If a file does not exist in their
database, the client is requested to upload the chunks.
Otherwise the corresponding chunk is not sent to the
server because a copy is already stored. The existing file
on the server is instead linked to the Dropbox account.
This approach allows Dropbox to save traffic and storage
costs, and users benefit from a faster syncing process
if files are already stored on the Dropbox servers. The
software uses numerous techniques to further enhance
efficiency e.g., delta encoding, to only transfer those
parts of the files that have been modified since the
last synchronization with the server. If by any chance
two distinct files should have the same hash value, the
user would be able to access other users content since
the file stored on the servers is simply linked to the
users Dropbox account. However, the probability of a
coincidental collision in SHA-256 is negligibly small.

The connections between the clients and the Drop-
box servers are secured with SSL. Uploaded data is
encrypted with AES-256 and stored on Amazons S3
storage service that is part of the Amazon Web Services
(AWS) [1]. The AES key is user independent and only
secures the data during storage at Amazon S3, while
transfer security relies on SSL. Our research on the
transmission protocol showed that data is directly sent
to Amazon EC2 servers. Therefore, encryption has to
be done by EC2 services. We do not know where the
keys are stored and if different keys are used for each
file chunk. However, the fact that encryption and storage
is done at the same place seems questionable to us, as



Amazon is most likely able to access decryption keys !.

After uploading the chunks that were not yet in the
Dropbox storage system, Dropbox calculates the hash
values on their servers to validate the correct transmis-
sion of the file, and compares the values with the hash
values sent by the client. If the hash values do not match,
the upload process of the corresponding chunk is re-
peated. The drawback of this approach is that the server
can only calculate the hash values of actually uploaded
chunks; it is not able to validate the hash values of files
that were already on Dropbox and that were provided by
the client. Instead, it trusts the client software and links
the chunk on the server to the Dropbox account. There-
fore, spoofing the hash value of a chunk added to the
local Dropbox folder allows a malicious user to access
files of other Dropbox users, given that the SHA-256
hash values of the file’s chunks are known to the attacker.

Due to the recent buzz in cloud computing many com-
panies compete in the area of cloud storage. Major op-
erating system companies have introduced their services
with integration into their system, while small startups
can compete by offering cross-OS functionality or more
advanced security features. Table 1 compares a selec-
tion of popular file storage providers without any claim
for completeness. Note that “encrypted storage” means
that the file is encrypted locally before it is sent to the
cloud storage provider and shared storage means that it
is possible to share files and folders between users.

2.2 Related Work

Related work on secure cloud storage focuses mainly
on determining if the cloud storage operator is still in
possession of the client’s file, and if it has been modified.
An interesting survey on the security issues of cloud
computing in general can be found in [30]. A summary
of attacks and new security problems that arise with the
usage of cloud computing has been discussed in [17].
In a paper by Shacham et al. [11] it was demonstrated
that it is rather easy to map the internal infrastructure of
a cloud storage operator. Furthermore they introduced
co-location attacks where they have been able to place
a virtual machine under their control on the same
hardware as a target system, resulting in information
leakage and possible side-channel attacks on a virtual
machine.

!Independently found and confirmed by Christopher Soghoian [5]
and Ben Adida [4]
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Early publications on file retrievability [25, 14] check
if a file can be retrieved from an untrusted third party
without retransmitting the whole file. Various papers
propose more advanced protocols [11, 12, 20] to ensure
that an untrusted server has the original file without
retrieving the entire file, while maintaining an overall
overhead of O(1). Extensions have been published
that allow checking of dynamic data, for example
Wang et al. [32] use a Merkle hash tree which allows
a third party auditor to audit for malicious providers
while allowing public verifiability as well as dynamic
data operations. The use of algebraic signatures was
proposed in [29], while a similar approach based on ho-
momorphic tokens has been proposed in [31]. Another
cryptographic tree structure is named “Cryptree” [23]
and is part of the Wuala online storage system. It
allows strong authentication by using encryption and
can be used for P2P networks as well as untrusted
cloud storage. The HAIL system proposed in [13]
can be seen as an implementation of a service-oriented
version of RAID across multiple cloud storage operators.

Harnik et al. describe similar attacks in a recent pa-
per [24] on cloud storage services which use server-side
data deduplication. They recommend using encryption
to stop server-side data deduplication, and propose a ran-
domized threshold in environments where encryption is
undesirable. However, they do not employ client-side
data possession proofs to prevent hash manipulation at-
tacks, and have no practical evaluation for their attacks.

3 Unauthorized File Access

In this section we introduce three different attacks on
Dropbox that enable access to arbitrary files given
that the hash values of the file, respectively the file
chunks, are known. If an arbitrary cloud storage service
relies on the client for hash calculation in server-side
data deduplication implementations, these attacks are
applicable as well.

3.1 Hash Value Manipulation Attack

For the calculation of SHA-256 hash values, Drop-
box does not use the hashlib library which is part
of Python. Instead it delegates the calculation to
OpenSSL [18] by including a wrapper library called
NCrypto [6]. The Dropbox clients for Linux and Mac
OS X dynamically link to libraries such as NCrypto
and do not verify their integrity before using them. We
modified the publicly available source code of NCrypto
so that it replaces the hash value that was calculated by
OpenSSL with our own value (see Figure 1), built it
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Name Protocol Encrypted transmission Encrypted storage Shared storage
Dropbox proprietary yes no yes
Box.net proprietary yes yes (enterprise only) yes
Wuala Cryptree yes yes yes
TeamDrive many yes yes yes
SpiderOak proprietary yes yes yes
Windows Live Skydrive =~ WebDAV yes no yes
Apple iDisk WebDAV no no no
Ubuntu One ulstorage yes no yes

Table 1: Online Storage Providers

and replaced the library that was shipped with Dropbox.
The Dropbox client does not detect this modification
and transmits for any new file in the local Dropbox the
modified hash value to the server. If the transmitted
hash value does not exist in the server’s database, the
server requests the file from the client and tries to verify
the hash value after the transmission. Because of our
manipulation on the client side, the hash values will
not match and the server would detect that. The server
would then re-request the file to overcome an apparent
transmission error.

Dropbox-Client
(Python)

replacing
hash value
i

SHA-256

OpenSSL

(hash value calculation)

Figure 1: Hash Value Manipulation Attack

However, if the hash value is already in the server’s
databases the server trusts the hash value calculation of
the client and does not request the file from the client.
Instead it links the corresponding file/chunk to the
Dropbox account. Due to the manipulation of the hash
value we thus got unauthorized access to arbitrary files.

This attack is completely undetectable to the user. If

the attacker already knows the hash values, he can down-
load files directly from the Dropbox server and no inter-
action with the client is needed which could be logged or
detected on the client side. The victim is unable to notice
this in any way, as no access to his computer is required.
Even for the Dropbox servers this unauthorized access to
arbitrary files is not detectable because they believe the
attacker already owns the files, and simply added them
to their local Dropbox folder.

3.2 Stolen Host ID Attack

During setup of the Dropbox client application on a
computer or smartphone, a unique host ID is created
which links that specific device to the owner’s Dropbox
account. The client software does not store username
and password. Instead, the host ID is used for client
and user authentication. It is a random looking 128-bit
key that is calculated by the Dropbox server from
several seeding values provided by the client (e.g.
username, exact date and time). The algorithm is not
publicly known. This linking requires the user’s account
credentials. When the client on that host is success-
fully linked, no further authentication is required for
that host as long as the Dropbox software is not removed.

If the host ID is stolen by an attacker, extracted by
malware or by social engineering, all the files on that
users accounts can be downloaded by the attacker. He
simply replaces his own host ID with the stolen one, re-
syncs Dropbox and consequently downloads every file.

3.3 Direct Download Attack

Dropbox’s transmission protocol between the client
software and the server is built on HTTPS. The client
software can request file chunks from https:/dl-
clientXX.dropbox.com/retrieve (where XX is replaced
by consecutive numbers) by submitting the SHA-256
hash value of the file chunk and a valid host ID as
HTTPS POST data. Surprisingly, the host ID doesn’t
even need to be linked to a Dropbox account that owns



the corresponding file. Any valid host ID can be used
to request a file chunk as long as the hash value of the
chunk is known and the file is stored at Dropbox. As
we will see later, Dropbox hardly deletes any data. It
is even possible to just create an HTTPS request with
any valid host ID, and the hash value of the chunk to
be downloaded. This approach could be easily detected
by Dropbox because a host ID that was not used to
upload a chunk or is known to be in possession of the
chunk would try to download it. By contrast the hash
manipulation attack described above is undetectable for
the Dropbox server, and (minor) changes to the core
communication protocol would be needed to detect it.

3.4 Attack Detection

To sum up, when an attacker is able to get access to the
content of the client database, he is able to download all
the files of the corresponding Dropbox account directly
from the Dropbox servers. No further access to the vic-
tim’s system is needed, and in the simplest case only the
host ID needs to be sent to the attacker. An alternative
approach for the attacker is to access only specific files,
by obtaining only the hash values of the file. The owner
of the files is unable to detect that the attacker accessed
the files, for all three attacks. From the cloud storage ser-
vice operators point of view, the stolen host-ID attack as
well as the direct download attack are detectable to some
extent. We discuss some countermeasures in section 6.
However, by using the hash manipulation attack the at-
tacker can avoid detection completely, as this form of
unauthorized access looks like the attacker already owns
the file to Dropbox. Table 2 gives an overview of all of
the different attacks that can lead to unauthorized file ac-
cess and information leakage 2.

4 Attack Vectors and Online Slack Space

This section discusses known attack techniques to exploit
cloud storage and Dropbox on a large scale. It outlines
already known attack vectors, and how they could be
used with the help of Dropbox, or any other cloud stor-
age service with weak security. Most of them can have
a severe impact and should be considered in the threat
model of such services.

2We communicated with Dropbox and reported our findings prior
to publishing this paper. They implemented a temporary fix to prevent
these types of attacks and will include a permanent solution in future
versions.
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4.1 Hidden Channel, Data Leakage

The attacks discussed above can be used in numerous
ways to attack clients, for example by using Dropbox
as a drop zone for important and possibly sensitive data.
If the victim is using Dropbox (or any other cloud stor-
age services which is vulnerable to our discovered at-
tack) these services might be used to exfiltrate data a lot
stealthier and faster with a covert channel than using reg-
ular covert channels [16]. The amount of data that needs
to be sent over the covert channel would be reduced to a
single host ID or the hash values of specific files instead
of the full file. Furthermore the attacker could copy im-
portant files to the Dropbox folder, wait until they are
stored on the cloud service and delete them again. After-
wards he transmits the hash values to the attacker and the
attacker then downloads these files directly from Drop-
box. This attack requires that the attacker is able to exe-
cute code and has access to the victim’s file system e.g.
by using malware. One might argue that these are tough
preconditions for this scenario to work. However, as in
example, in the case of corporate firewalls this kind of
data leakage is much harder to detect as all traffic with
Dropbox is encrypted with SSL and the transfers would
blend in perfectly with regular Dropbox activity, since
Dropbox itself is used for transmitting the data. Cur-
rently the client has no control measures to decide upon
which data might get stored in the Dropbox folder. The
scheme for leaking information and transmitting data to
an attacker is depicted in Figure 2.

¥

A
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1. Steal hashes 2 cend nes'

Victim using Dropbox

Figure 2: Covert Channel with Dropbox

4.2 Online Slack Space

Uploading a file works very similarly to downloading
with HTTPS (as described above, see section 3.3). The
client software uploads a chunk to Dropbox by calling
https://dl-clientXX.dropbox.com/store with the hash
value and the host ID as HTTPS POST data along with
the actual data. After the upload is finished, the client
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Method Detectability Consequences
Hash Value Manipulation Attack ~ Undetectable =~ Unauthorized file access
Direct Download Attack Dropbox only  Unauthorized file access
Stolen Host ID Attack Dropbox only Get all user files

Table 2: Variants of the Attack

software links the uploaded files to the host ID with
another HTTPS request. The updated or newly added
files are now pushed to all computers of the user, and to
all other user accounts if the folder is a shared folder.

A modified client software can upload files without
limitation, if the linking step is omitted. Dropbox can
thus be used to store data without decreasing the avail-
able amount of data. We define this as online slack space
as it is similar to regular slack space [21] from the per-
spective of a forensic examiner where information is hid-
den in the last block of files on the filesystem that are not
using the entire block. Instead of hiding information in
the last block of a file, data is hidden in Dropbox chunks
that are not linked to the attackers account. If used in
combination with a live CD operating system, no traces
are left on the computer that could be used in the foren-
sic process to infer the existence of that data once the
computer is powered down. We believe that there is no
limitation on how much information could be hidden, as
the exploited mechanisms are the same as those which
are used by the Dropbox application.

4.3 Attack Vector

If the host ID is known to an attacker, he can upload
and link arbitrary files to the victim’s Dropbox account.
Instead of linking the file to his account with the second
HTTPS request, he can use an arbitrary host ID with
which to link the file. In combination with an exploit
of the operating system file preview functions, e.g. on
one of the recent vulnerabilities in Windows 3, Linux 4,
or MacOS 3, this becomes a powerful exploitation
technique. An attacker could use any 0-day weakness
in the file preview of supported operating systems to
execute code on the victim’s computer, by pushing a
manipulated file into his Dropbox folder and waiting for
the user to open that directory. Social engineering could
additionally be used to trick the victim into executing a
file with a promising filename.

To get access to the host ID in the first place is tricky,
and in any case access to the filesystem is needed in
the first place. This however does not reduce the conse-

3Windows Explorer: CVE-2010-2568 or CVE-2010-3970
“*Evince in Nautilus: CVE-2010-2640
SFinder: CVE-2006-2277

quences, as it is possible to store files remotely in other
peoples Dropbox. A large scale infection using Drop-
box is however very unlikely, and if an attacker is able to
retrieve the host ID he already owns the system.

5 Evaluation

This section studies some of the attacks introduced. We
evaluate whether Dropbox is used to store popular files
from the filesharing network thepiratebay.org © as well as
how long data is stored in the previously defined online
slack space.

5.1 Stored files on Dropbox

With the hash manipulation attack and the direct down-
load attack described above it becomes possible to test
if a given file is already stored on Dropbox. We used
that to evaluate if Dropbox is used for storing filesharing
files, as filesharing protocols like BitTorrent rely heavily
on hashing for file identification. We downloaded the top
100 torrents from thepiratebay.org [7] as of the middle of
September 2010. Unfortunately, BitTorrent uses SHA-1
hashes to identify files and their chunks, so the informa-
tion in the .torrent file itself is not sufficient and we had
to download parts of the content. As most of the files
on BitTorrent are protected by copyright, we decided to
download every file from the .torrent that lacks copyright
protection to protect us from legal complaints, but are
still sufficient to prove that Dropbox is used to store these
kind of files. To further proctect us against complaints
based on our IP address, our BitTorrent client was modi-
fied to prevent upload of any data, as described similarly
in [27]. We downloaded only the first 4 megabytes of any
file that exceeds this size, as the first chunk is already suf-
ficient to tell if a given file is stored on Dropbox or not
using the hash manipulation attack.

We observed the following different types of files that
were identified by the .torrent files:

e Copyright protected content such as movies, songs
or episodes of popular series.

e “Identifying files” that are specific to the copyright
protected material, such as sample files, screen cap-
tures or checksum files, but without copyright.

%Online at http://thepiratebay.org



e Static files that are part of many torrents, such as
release group information files or links to websites.

Those “identifying files” we observed had the follow-
ing extensions and information:

o .nfo: Contains information from the release group
that created the .torrent e.g., list of files, installation
instructions or detailed information and ratings for
movies.

e _srt: Contains subtitles for video files.

o .sfv: Contains CRC32 checksums for every file
within the .torrent.

e jpg: Contains screenshots of movies or album cov-
ers.

e .torrent: The torrent itself contains the hash values
of all the files, chunks as well as necessary tracker
information for the clients.

In total from those top 100 torrent archives, 98 con-
tained identifying files. We removed the two .torrents
from our test set that did not contain such identifying
files. 24 hours later we downloaded the newest entries
from the top 100 list, to check how long it takes from the
publication of a torrent until it is stored on Dropbox. 9
new torrents, mostly series, were added to the test set. In
Table 3 we show in which categories they where catego-
rized by thepiratebay.org.

Category | Quantity
Application 3
Game 5
Movie 64
Music 6
Series 29
Sum \ 107

Table 3: Distribution of tested .torrents

When we downloaded the “identifying files” from
these 107 .torrent, they had in total approximately 460k
seeders and 360k leechers connected (not necessarily
disjoint), with the total number of complete downloads
possibly much higher. For every .torrent file and every
identifying file from the .torrent’s content we generated
the sha256 hash value and checked if the files were stored
on Dropbox, in total 368 hashes. If the file was bigger
then 4 megabytes, we only generated the hash of the first
chunk. Our script did not use the completely stealthy ap-
proach described above, but the less stealthy approach
by creating an HTTPS request with a valid host ID as the
overall stealthiness was in our case not an issue.
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From those 368 hashes, 356 files were retrievable,
only 12 hashes were unknown to Dropbox and the cor-
responding files were not stored on Dropbox. Those 12
files were linked to 8 .torrent files. The details:

e In one case the identifying file of the .torrent was
not on Dropbox, but the .torrent file was.

e In three cases the .torrent file was not on Dropbox,
but the identifying files were.

e In four cases the .nfo file was not on Dropbox, but
other iln fact, it might be the case that only one per-
son uses Dropbox to store these files. dentifying
files from the same .torrent were.

This means that for every .torrent either the .torrent
file, the content or both are easily retrievable from Drop-
box once the hashes are known. Table 4 shows the num-
bers in details, where hit rate describes how many of
them were retrievable from Dropbox.

File Quantity Hitrate Hitrate rel.

.torrent: 107 106 99%
.nfo: 53 49 92%
others: 208 201 97%
In total: 368 356 97%

Table 4: Hit rate for filesharing

Furthermore we analyzed the age of the .torrents to
see how quick Dropbox users are to download the .tor-
rents and the corresponding content, and to upload ev-
erything to Dropbox. Most of the .torrent files were rela-
tively young, as approximately 20 % of the top 100 .tor-
rent files were less than 24 hours on piratebay before we
were able to retrieve them from Dropbox. Figure 3 shows
the distribution of age from all the .torrents:

5.2 Online Slack Space Evaluation

To assess if Dropbox could be used to hide files by
uploading without linking them to any user account, we
generated a set of 30 files with random data and uploaded
them with the HTTPS request method. Furthermore we
uploaded 55 files with a regular Dropbox account and
deleted them right afterwards, to assess if Dropbox ever
deletes old user data. We furthermore evaluated if there
is some kind of garbage collection that removes files
after a given threshold of time since the upload. The
files were then downloaded every 24 hours and checked
for consistency by calculating multiple hash functions
and comparing the hashvalues. By using multiple files
with various sizes and random content we minimized the
likelihood of an unintended hash collision and avoided
testing for a file that is stored by another user and thus
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Figure 3: Age of .torrents

always retrievable. Table 5 summarizes the setup.

Method of upload #  Testduration Hitrate
Regular folder 25 6 months 100%
Shared folder 30 6 months 100%

HTTPS request 30 >3 months 50%
In total: 85 — 100 %

Table 5: Online slack experiments

Long term undelete: With the free account users
can undo file modifications or undelete files through
the webinterface from the last 30 days. With a so
called “Pro” account (where the users pay for additional
storage space and other features) undelete is available
for all files and all times. We uploaded 55 files in total
on October 7th 2010, 30 files in a shared folder with
another Dropbox account and 25 files in an unshared
folder. Until Dropbox fixed the HTTPS download attack
at the end of April 2011, 100% have been constantly
available. More then 6 months after uploading, all files
were still retrievable, without exception.

Online slack: We uploaded 30 files of various sizes
without linking them to any account with the HTTPS
method at the beginning of January 2011. More then 4
weeks later, all files were still retrievable. When Drop-
box fixed the HTTPS download attack in late April 2011,
50% of the files were still available. See Figure 4 for de-
tails.

5.3 Discussion

It surprised us that from every .torrent file, either the
torrent, the content or both could be retrieved from
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Figure 4: Online slack without linking over time

Dropbox, especially considering that some of the
.torrent files were only a few hours created before we
retrieved them. 97% means that Dropbox is heavily
used for storing files from filesharing networks. It is
also interesting to note that some of the .torrent files
contained more content regarding storage space than
the free Dropbox account currently offers (2 gigabytes
at the time of writing). 11 out of the set of tested 107
.torrents contained more then 2 gigabytes as they were
DVD images, the biggest with 7.2 gigabytes in total size.
This means that whoever stored those files on Dropbox
has either a Dropbox Pro account (for which he or she
pays a monthly fee), or that he invited a lot of friends to
get additional storage space from the Dropbox referral
program.

However, we could only infer the existence of these
files. With the approach we used it is not possible to
quantify to what extent Dropbox is used for filesharing
among multiple users. Our results only show that within
the last three to six months at least one Bittorrent user
saved his downloads in Dropbox, respectively that since
the .torrent has been created. No conclusions can be
drawn as to whether they are saved in shared folders, or
if only one person or possibly thousands of people uses
Dropbox in that way. In fact, it is equally likely that a
single person uses Dropbox to store these files.

With our experiments regarding online slack space we
showed that it is very easy to hide data on Dropbox with
low accountability. It becomes rather trivial to get some
of the advanced features of Dropbox like unlimited un-
delete and versioning, without costs. Furthermore a ma-
licious user can upload files without linking them to his
account, resulting in possibly unlimited storage space



while at the same time possibly causing problems in a
standard forensic examination. In an advanced setup, the
examinator might be confronted with a computer that has
no harddrive, booting from read only media such as a
Linux live CD and saving all files in online slack space.
No traces or local evidence would be extractable from the
computer [15], which will be an issue in future forensic
examinations. This is similar to using the private mode
in modern browsers which do not save information lo-
cally [8].

6 Keeping the cloud white

To ensure trust in cloud storage operators it is vital to not
only make sure that the untrusted cloud storage operator
keeps the files secure with regards to availability [25],
but also to ensure that the client cannot get attacked with
these services. We provide generic security recommen-
dations for all storage providers to prevent our attacks,
and propose changes to the communication protocol of
Dropbox to include data possession proofs that can be
precalculated on the cloud storage operato’rs side and
implemented efficiently as database lookups.

6.1 Basic security primitives

Our attacks are not only applicable to Dropbox, but
to all cloud storage services where a server-side data
deduplication scheme is used to prevent retransmission
of files that are already stored at the provider. Current
implementations are based on simple hashing. However,
the client software cannot be trusted to calculate the
hash value correctly and a stronger proof of ownership
is needed. This is a new security aspect of cloud
computing, as up till now mostly trust in the service
operator was an issue, and not the client.

To ensure that the client is in possession of a file, a
strong protocol for provable data possession is needed,
based on either cryptography or probabilistic proofs or
both. This can be done by using a recent provable data
possession algorithm such as [11], where the cloud stor-
age operator selects which challenges the client has to
answer to get access to the file on the server and thus
omit the retransmission which is costly for both the client
and the operator. Recent publications proposed different
approaches with varying storage and computational over-
head [12, 20, 10]. Furthermore every service should use
SSL for all communication and data transfers, something
which we observed was not the case with every service.
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6.2 Secure Dropbox

To fix the discovered security issues in Dropbox we
propose several steps to mitigate the risk of abuse.
First of all, a secure data possession protocol should
be used to prevent the clients to get access to files
only by knowing the hash value of a file. Eventually
every cloud storage operator should employ such a
protocol if the client is not part of a trusted environment.
We therefore propose the implementation of a simple
challenge-response mechanism as outlined in Fig. 5.
In essence: If the client transmits a hash value already
known to the storage operator, the server has to verify
if the client is in possession of the entire file or only
the hash value. The server could do so by requesting
randomly chosen bytes from the data during the upload
process. Let H be a cryptographic hash function which
maps data D of arbitrary length to fixed length hash
value.
Pushinit(U,p(U), H(D)) is a function that initiates the
upload of data D from the client to the server. The user
U and an authentication token p(U) are sent along with
the hash value H (D) of data D. Push(U,p(U), D) is
the actual uploading process of data D to the server.
Req(U,p(U), H(D)) is a function that requests data D
from the server.
Ver(Verqrs, H(D)) is a function that requests ran-
domly chosen bytes from data D by specifying their
offsets in the array Ver,y .

Uploading chunks without linking them to a users

client:machine

server:machine
i

push;(U.p(U),H(D))

storage management:process
i
I

|
sendHashvalue(H(D)) | /D)

retumCRPairs(Verg, s, VerofpH(D)

ver(Ver g H(D)

sendBytes(Verg,gs H(D)

sendLinkingRequest(U,H(D))

:
1
!linkUserToData(U,D)

X

Figure 5: Data verification during upload

Dropbox should not be allowed, on the one hand to
prevent clients to have unlimited storage capacity, on
the other hand to make online slack space on Dropbox
infeasible. In many scenarios it is still cheaper to just
add storage capacity instead of finding a reliable metric
on what data to delete - however, to prevent misuse of
historic data and online slackspace, all chunks that are
not linked to a file that is retrievable by a client should
be deleted.

To further enhance security several behavioral aspects
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Security Measure

Consequences

1. Data possession protocol

2. No chunks without linking

3. Check for host ID activity

4. Dynamic host ID

5. Enforcement of data ownership

Prevent hash manipulation attacks
Defy online slack space

Prevent access if host is not online
Smaller window of opportunity
No unauthorized data access

Table 6: Security Improvements for Dropbox

can be leveraged, for example to check for host ID
activity - if a client turns on his computer he connects
to Dropbox to see if any file has been updated or new
files were added. Afterwards, only that IP address
should be allowed to download files from that host IDs
Dropbox. If the user changes IP e.g., by using a VPN
or changing location, Dropbox needs to rebuild the
connection anyway and could use that to link that host
ID to that specific IP. In fact, the host ID should be used
like a cookie [26] if used for authentication, dynamic
in nature and changeable. A dynamic host ID would
reduce the window of opportunity that an attacker could
use to clone a victim’s Dropbox by stealing the host ID.
Most importantly, Dropbox should keep track of which
files are in which Dropboxes (enforcement of data
ownership). If a client downloads a chunk that has not
been in his or her Dropbox, this is easily detectable for
Dropbox.

Unfortunately we are unable to assess the performance
impact and communication overhead of our mitigation
strategies, but we believe that most of them can be im-
plemented as simple database lookups. Different data
possession algorithms have already been studied for their
overhead, for example S-PDP and E-PDP from [11] are
bounded by O(1). Table 6 summarizes all needed miti-
gation steps to prevent our attacks.

7 Conclusion

In this paper we presented specific attacks on cloud stor-
age operators where the attacker can download arbitrary
files under certain conditions. We proved the feasibil-
ity on the online storage provider Dropbox and showed
that Dropbox is used heavily to store data from thepi-
ratebay.org, a popular BitTorrent website. Furthermore
we defined and evaluated online slack space and demon-
strated that it can be used to hide files. We believe that
these vulnerabilities are not specific to Dropbox, as the
underlying communication protocol is straightforward
and very likely to be adopted by other cloud storage op-
erators to save bandwidth and storage overhead. The dis-
cussed countermeasures, especially the data possession
proof on the client side, should be included by all cloud
storage operators.
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Abstract—Web browsers are crucial software components
in today’s usage of the Internet, but the reliable detection
of whether a client is using a specific browser can still be
considered a nontrivial problem. Reliable browser identification
is crucial for online security and privacy e.g., regarding drive-by
downloads and user tracking, and can be used to enhance the
user’s security. So far the UserAgent string is often used to
identify a given browser, but it is a self-reported string provided
by the client and can be changed arbitrarily.

In this paper we propose a new method for identifying web
browsers based on the underlying Javascript engine, which can
be executed on the client side within a fraction of a second. Our
method is three orders of magnitude faster than previous work
on Javascript engine fingerprinting, and can be implemented with
well below a few hundred lines of code. We show the feasibility of
our method with a survey and discuss the consequences for user
privacy and browser security. Furthermore, we collected data for
more than 150 browser and operating system combinations, and
present algorithms to make browser identification as fast as possi-
ble. UserAgent string modifications become easily detectable with
JavaScript engine fingerprinting, which is shown exemplarily on
the Tor browser bundle as it uses a uniform UserAgent string
across different browser versions. Finally, we propose to use our
results for enhancing state-of-the-art session management (with
or without SSL), as reliable browser identification can be used to
increase the complexity of session hijacking attacks considerably.

Keywords-Browser Fingerprinting, Privacy, Security

I. INTRODUCTION

With the rise of ever more sophisticated Web applications
that nowadays even compete with native software, the web
browser became the dominant interface connecting the user to
a computing system. Platforms such as Gmail or Zoho.com
were designed from the ground up to be primarily accessed
via web browser, replacing their native counterparts (email
client and office suite). Due to the immense importance of
the web browser for the interaction with the user, it became
a central component of almost every modern operating
system: Microsoft has Internet Explorer, Apple has Safari,
and Google is building ChromeOS, an operating system
based entirely on its web browser Chrome. Furthermore,
system-independent browsers such as Opera also contribute
to the highly competitive and diverse browser market.

While today’s browsers interpret a website’s code in
similar ways (based on standards), the actual implementations
of these standards differ. This diversity of browsers has
always caused headaches for Web developers, as the same
website can vary across different browsers with respect to
functionality or appearance, requiring additional testing and
debugging of a website’s code in order to ensure correct
functionality in relevant browsers. However, this can also
have severe implications on privacy and security. In this
paper, we propose a novel concept for browser identification,
which exploits exactly these imperfect implementations of
standards in the different browsers. Our work was originally
motivated by the security scanner nmap, which uses TCP/IP
stack fingerprinting to determine the operating system of a
remote host. In a very similar way, we use the browser’s
underlying JavaScript engine for browser identification.
While implementation differences in HTMLS or CSS could
also be used for fingerprinting, we decided to base our
approach on JavaScript as it is well established, supported
by all major browsers, and works on mobile devices such as
smartphones and tablets. JavaScript is furthermore used by
a very high percentage of websites, and enabled by default
on all major browsers. While other methods for server-side
browser identification exist (in particular and by design, the
User-Agent string), our approach can be considered more
robust. While the User-Agent string can be set to an arbitrary
value by the user, the JavaScript fingerprint is authentic
for each browser and cannot be easily ported to a different
browser. It is not easily possible to use a modified version
of e.g., Internet Explorer with SpiderMonkey, the JavaScript
engine of Mozilla’s Firefox in order to obfuscate the actual
browser in use.

In particular, the contributions of this paper are as follows:

o We propose a new method to reliably identify a browser
based on the underlying JavaScript engine. Our method is
more than three orders of magnitude faster than previous
work.

o We show the feasibility and reliability of our method with
a survey.
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« We show how this can be used to detect modified UserA-
gent strings, used, for example, by the Tor browser bundle
to increase the size of the anonymity set of its users.

o We propose an iterative protocol for server-side detection
of session hijacking using browser fingerprinting.

o Raise awareness for such advanced fingerprinting meth-
ods, and discuss measures to protect users.

The rest of the paper is organized as follows: Section II
gives the technical background. Our method for browser
identification based on fingerprinting the JavaScript engine
is introduced in Section III. We show the feasibility of
browser identification with JavaScript engine fingerprinting
in Section IV and discuss our results as well as possible
countermeasures in Section V. Related work is presented in
Section VI before we conclude in Section VII.

II. BACKGROUND

Today’s browser market is highly competitive. Browser
vendors publish new versions in ever-shorter time spans
and regularly add new features, with especially mobile
browsers for smartphones and tablets on the rise. Many
of these updates increase the overall performance of the
browser in order to enhance the user experience and reduce
loading times: just-in-time compilation (JIT) of Javascript,
for example, allows dynamic compilation of Javascript and
became part of the Javascript engines in Firefox and Google
Chrome’s V8 quite recently, among others. Using the GPU
for rendering in Internet Explorer’s Chakra engine is yet
another feature that was introduced recently and increased
browser performance considerably. Sandboxing the browser
or specific parts, like the Flash plugin, was introduced to
increase the overall browser security and to combat the
widespread use of Flash-based security exploits.

Javascript has been standardized as ECMAScript [8],
and all major browsers implement it in order to allow
client-side scripting and dynamic websites. Traditionally,
Web developers use the UserAgent string or the navigator
object (i.e., navigator.UserAgent) to identify the client’s
Web browser, and load corresponding features or CSS files.
The UserAgent string is defined in RFC2616 [11] as a
sequence of product tokens and identifies the software as
well as significant subparts. Tokens are listed in order of their
significance by convention. The navigator object contains the
same string as the UserAgent string. However, both are by
no means security features, and can be set arbitrarily by the
user.

Mowery et al. [22] recently implemented and evaluated
browser identification with Javascript fingerprinting based
on timing and performance patterns. In their paper, the
authors used a combination of 39 different well-established
Javascript benchmarks, like the SunSpider Suite 0.9 and
the V8 Benchmark Suite v5, and generated a normalized
fingerprint from runtime patterns. Even though these artificial
Javascript benchmarks, such as SunSpider, do not necessarily

reflect real-world Web applications [28], using their patterns
for fingerprint generation is a convenient approach. In total,
the runtime for fingerprinting was relatively high, with 190
seconds per user on average (caused partly by an intentional
delay of 800ms between tests). Our approach is superior in
multiple ways: (1) It’s runtime is more than three orders
of magnitude faster (less than 200ms on average compared
to 190s), while having a comparable overhead for creating
and collecting fingerprint samples. (2) It can be implemented
in just a few hundred lines of Javascript and is undetectable
for the user, as the CPU is not stalled noticeably. (3) Many
recent browser versions stall the execution of Javascript from
tabs and browser windows that are currently not visible to
the user to increase the responsiveness of the currently active
windows. This, however, could severely distort the timing
patterns generated from [22] and was not addressed in the

paper.

For the rest of the paper we will use the following terminol-
ogy due to sometimes ambiguous usage of the term browser
fingerprinting in the literature: the fingerprinting in our ap-
proach refers to Javascript fingerprinting, not the browser. We
use Javascript engine fingerprinting to reliably identify a given
browser, and for identifying the browser itself as well as the
major version number. Related work (like Panopticlick [7])
uses the term browser fingerprinting for identifying a particular
browser instance.

III. DESIGN

For our fingerprinting method, we compared test results
from openly available Javascript conformance tests and col-
lected results from different browsers and browser versions
for fingerprint generation. These tests cover the ECMAScript
standard in version 5.1 and assess to what extent the browser
complies with the standard, what features are supported and
specifically which parts of the standard are implemented
incorrectly or not at all. In essence, our initial observation was
that the test cases that fail in, e.g., Firefox, are completely
different from the test cases that fail in Safari. We started
working with Google’s Sputnik test cases, but later switched
to test262'. test262 is the official TC39 test suite for EC-
MAScript, it is still improved regularly and is a superset of
the Sputnik test cases. For ensuring comparability within our
results from the experiments in Section IV we used test262
from mid-January 2012, which includes 11,148 unique test
cases for desktop browsers, while for the mobile browsers we
used an updated version of fesr262 with 11,570 test cases.
However, the ECMAScript standard as well as the test suite are
constantly updated, leaving enough future testing capabilities
for Javascript engine fingerprinting. Running the full test262
suite takes approximately 10 minutes on a desktop PC, while
on smartphones and tablets it takes between 45 minutes and
an hour, depending on the underlying hardware.

Uhttp://test262.ecmascript.org



A. Efficient Javascript Fingerprinting

While Javascript conformance tests like Sputnik or test262
consist of thousands of independent test cases, not all of
them are necessary for browser identification. In fact, a single
test case may be sufficient, e.g., to distinguish two specific
browsers - if one of the browsers fails in a particular test
case, while the other one does not, and assuming a priori that
only these two browsers are within the set of browsers to test,
this single test case is already enough to distinguish them. An
example: Opera 11.64 only fails in 4 out of more than 10,000
tests cases from mid-January, while the most recent version
of Internet Explorer 9 at that time failed in almost 400 test
cases. If the test set contains only those two browsers, and
the goal is to distinguish whether the client is using Opera
11.61 or Internet Explorer 9, a single test from the 400 failed
test cases of Internet Explorer 9 (that are not within the set
of 4 failed test cases from Opera) is sufficient to reliably
distinguish those two browsers, and can be executed within a
fraction of a second.

To formalize this approach: the test set of browsers is
the set of browsers and browser versions that a given entity
wants to make reliably distinguishable, in our case with
Javascript engine fingerprinting. First, each browser is tested
with zest262. The results are then compared, and a minimal
fingerprint is calculated for each browser (in relation to the
other browsers in the test set). The use case for the minimal
fingerprint is a web server that wants to assess whether a
UserAgent string from the client is forged with respect to
the other browsers in the test set. The web server can verify
the browser. For efficiency, one of the requirements is that
the fingerprint for each browser is as small as possible. The
details of our implementation and the algorithm for generating
the minimal fingerprints can be found in Section III-B.

Another use case of our method is to calculate a decision
tree: instead of fingerprinting a particular browser with respect
to the test set, we propose to build a binary decision tree to
iteratively identify the browser in multiple rounds. The use
case for this method is that the web server wants to identify
the browser used under the assumption that the UserAgent
might be forged. This method allows a larger test set than
using minimal fingerprints while reducing the execution time
on the client side. The pseudocode for calculating a minimal
decision tree can be found in Section III-C.

B. Minimal Fingerprint

We use a greedy algorithm to find a (possibly minimal)
fingerprint for a given test set: We start by running test262
for each of the browsers in the test set, and calculate the
number of browsers that fail for each test case. As the
JavaScript engine is a static part of the browser, this needs
to be done only once per browser. We then compare the
results of test262 for the browsers within the test set and
calculate for each failed test case the number of browsers
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that fail. We call the total number of browsers that fail a
particular test case the uniqueness u (with respect to the test
set). We then select a test case with « = 1 at random and
remove the browser from the test set, as this test uniquely
identifies this browser. The uniqueness « is then recalculated
for the remaining test cases. The process is repeated until
either a unique fingerprint has been found for every browser,
or no test case with v = 1 is found. In the latter case, we
change our selection and choose a different test case until
either a minimal test set is found or no solution can be
found. An alternative approach would be to use some form of
machine learning to find minimal fingerprints, but our results
indicate that this is not (yet) necessary and our simplistic,
greedy algorithm works well in practice. With the resulting
set of fingerprints it becomes possible to assess whether a
browser is what it claims to be: if all the tests of the minimal
fingerprint for that browser fail, and no minimal fingerprints
for the other browsers from the test set do, the browser is
uniquely identifiable with respect to the test set. To make
the algorithm and, in consequence, browser fingerprinting
more resilient against errors, multiple tests could be used per
browser (in case the user’s browser is not part of the test set
and the UserAgent string is not used to check this beforehand).

However, a basic assumption here is that the browser is
included in the test set during fingerprint calculation in the
first place. If the browser is not in the test set, false positives
could occur if the engine is similar to one of the fingerprints
(with respect to the minimal fingerprint). It is also possible
to dynamically extend the test set: If a new UserAgent string
is encountered that was not part of the test set, fingerprints
could be recalculated on the fly to determine whether the
UserAgent correctly identifies the browser: Instead of using
the precalculated fingerprints, the browser is added to the test
set, fingerprints are recalculated, and the identification process
starts again with new minimal fingerprints for all browsers
in the test set. This would allow relative fingerprinting over
time and could be used to verify only the, e.g., five most
popular browser versions for the previous month or day.

The minimal set of failed test cases for the four common
browsers from 2012 shown in Table I to illustrate minimal
fingerprints. The browsers in the test set are Firefox 12,
Opera 11.64, Internet Explorer 9 and Chrome 20, with a
resulting minimal fingerprint consisting of only 4 tests. With
the algorithm explained above, we calculate the minimal
fingerprints as follows: For every test case, the uniqueness in
the test set is calculated. If a test fails for a specific browser,
it receives a check mark in the table, and if the browser
does not fail that test, it is crossed out. While this seems
counter-intuitive, the check mark highlights the potential to
use this particular test case for fingerprinting, as the number
of failed test cases is much smaller than the number of
tests passed. One of the test cases with u = 1 is selected
at random, in the example this is 13.0-13-s. This test then
becomes the minimal fingerprint for Internet Explorer 9, and
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Internet Explorer is removed from the set of browsers that
do not yet have a fingerprint. The uniqueness is recalculated,
and another test case is selected at random with u = 1,
e.g., 10.6-7-1, which becomes the minimal fingerprint for
Firefox 12. Next, Opera gets 15.4.4.4-5-c-i-1 as fingerprint,
and Chrome S15.8.2.16_A7. If a web server now tries to
verify a given UserAgent, all 4 tests are sent for execution to
the client, and the web server can verify the UserAgent with
respect to the test set if only one test fails (in this example).

C. Building a Decision Tree

To identify a user’s browser without relying a priori on
the UserAgent, we build a binary decision tree for a given
test set and assess if the browser is included in it by running
multiple test rounds. For every test, we step down one level
of the decision tree until we finally reach a leaf node. Inner
nodes in this decision tree are test cases, while the edges
show whether the browser fails that test or not. Instead of
calculating a unique fingerprint for each browser in the test
set, we need to identify the test cases that can be used to
split the number of browsers that fail (respectively pass)
equally. Multiple rounds of discriminating test cases can thus
be used instead of calculating the minimal fingerprints for
large test sets. The decision tree can reduce the total number
of executed test cases considerably for such large test sets,
making browser identification much faster. The decision tree
is especially useful if the test set and the total number of test
cases for the minimal fingerprints are rather large.

—
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Fig. 1. Decision tree for Table I

To calculate a decision tree, we adapt the algorithm above
slightly. We start again by calculating the uniqueness u for
each test262 test case that fails, sort the list and pick the test
that splits the set into halves as the first test in our tree. If
there is no such test, we select the statistical mode. We then

continue to split the array of browsers into two parts, and
recursively repeat this until we have built a complete decision
tree with all the browsers from the test set. No assumptions
can be made for the distribution of failed test cases, which
means that in the worst case the tree can become a linear list
instead of a tree if all failed tests have uniqueness v = 1.
Again, if no tree can be found using the statistical mode, we
can slightly vary the choice of test cases for the inner nodes
and rerun the algorithm. In the ideal case, every inner node in
the tree splits the subset of browsers in the test set in half, and
the total number of tests that need to be executed at the client
is only O(logn) compared to O(n) for executing the minimal
fingerprints. Referring to the example from Section III-B, we
can construct a decision tree as follows (cf. Table I): We start
again by calculating the uniqueness for every test case of every
browser that fails. We sort the results, and pick test 15.4.4.4-
5-c-i-1 as our root note, because it splits the test set perfectly
into halves. We then select the tests 10.6-7-1 and 13.0-13-s as
the child nodes, and can identify the browser by running only
two test cases, instead of four with the minimal fingerprinting
approach. The resulting decision tree is shown in Figure 1.
As with the algorithm for calculating minimal fingerprints, the
algorithm is straightforward and fast to implement and execute
on the client as well as on the server - it works well across
different browsers and versions, thus negating the need for a
more complex algorithm.

D. Implications on Security and Privacy

While the UserAgent string is traditionally used to report
the web browser and version to a server, this is often
not sufficient as the user can change it arbitrarily. In the
context of browser security, current malware often relies on
vulnerabilities in browsers (besides plugins like Flash) for
launching exploits. Especially exploit kits like Blackhole [16]
have been shown to use the UserAgent String to exploit
client-side vulnerabilities. It is furthermore well known
in the security community that Javascript and drive-by-
download attacks can be used to endanger client security
and privacy [3], [32], [4]. For the implications to privacy
we use the security model of Tor [6] and the definition
of an anonymity set [27], which could be decreased by a
malicious website using JavaScript engine fingerprinting.
Section VI discusses numerous recent papers that have been
using browser fingerprinting to endanger user’s online privacy.

In our threat model we assume that an attacker has the
capabilities to host a website and direct users to it. The
victim then fetches and executes Javascript code on the client
side. This can be done e.g., by renting advertisement space,
or with social engineering attacks where the user is tricked
into opening a malicious website. This is already happening
with malware on a large scale, and everything necessary to
conduct such attacks can be purchased relatively easily. This
is of relevance for our work, as malware authors could use
browser fingerprinting to use it for increasing reliability of
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Web browser 15.4.4.4-5-c-1-1 13.0-13-s | S15.8.2.16_A7 | 10.6-7-1 15.2.3.6-4-410

Opera 11.64 v X X X X

Firefox 12.0 v X X v X

Internet Explorer 9 X v X X X

Chrome 20 X X v X v

Uniqueness u 2 1 1 1 1
TABLE I

TESTS FROM test262 AND THEIR USABILITY FOR BROWSER IDENTIFICATION

their exploits, thwart sandboxed environments like Wepawet?
and to increase the stealthiness of their malware: instead
of relying on the UserAgent string to find out if a victim
is exploitable, Javascript fingerprinting could be used. The
bar to incorporate this is low, and could be of significance
for the arms race between malware authors and security
research in the future. Detection of such malicious code
would be considerably harder, and we aim to increase
awareness for security researchers of such sophisticated
browser fingerprinting methods. More work is needed to
assess if this or similar fingerprinting is already used by
malware in the wild.

E. Benign Uses of Fingerprinting

Here we discuss some benign use cases in addition to the
sections discussing the framework and our results, respectively.
To protect against session hijacking, web servers could use
JavaScript engine fingerprinting to verify or refute validity of
HTTP sessions, as session hijackers usually clone all possibly
identifying plaintext information like session cookies (e.g.,
Firesheep® or FaceNiff* do) or the complete HTTP header.
With JavaScript engine fingerprinting such attacks become
detectable at the server side, as modified UserAgents can
be detected. Another way to secure HTTP sessions would
be to constantly challenge the browser and add Javascript
engine fingerprinting as an additional security layer: At the
beginning of a session the browser is identified with minimal
fingerprinting. For every latter request the webserver chooses a
subset of random test cases and includes them in the JavaScript
code, thus challenging the client. The overhead would be
minimal and not noticeable to the client. If the responses
do not correlate with the expected outcome, the session is
terminated. While the attacker is able to see the challenges, he
might not know the correct responses - the attacker is forced
to (1) either use the same browser down to the very same
version (which may be not possible, e.g., to run an Internet
Explorer on Android), or (2) collect the fingerprints for his
victim beforehand to fake the replies, which would be very
time consuming. Thus Javascript fingerprinting can be used to
raise the bar for session hijacking in the arms race against
attackers. This method could also be used for connections
that are secured with HTTPS to prevent HTTPS MITM

Zhttps://wepawet.iseclab.org
3http://codebutler.com/firesheep
“http://faceniff.ponury.net

attacks. Recently hacked CAs like DigiNotar or Comodo and
“Operation Black Tulip” have shown that HTTPS alone is
simply not enough to secure online communication anymore.
However, it cannot completely defy session hijacking as the
attacker might for example simply relay the challenges to the
actual client. We believe though that this would be a valid
countermeasure against session hijacking as this can be added
easily to existing web applications.

IV. RESULTS AND EVALUATION

To evaluate the possibility and power of Javascript fin-
gerprinting, we implemented the methods outlined above.
We collected different browser version and operating system
combinations for desktop browsers as well as for mobile
browser versions on smartphones and tablets for fingerprint
generation in a database. An excerpt of the data can be seen in
Table I1°. To evaluate our method with respect to the security
and privacy implications discussed in Section III-D, we first
evaluate if it is possible to determine the actual browser behind
a modified UserAgent as used by the Tor Browser Bundle on
a large scale. We also conducted a survey and measure the
performance impact of our method on the client side.

A. Destkop and Mobile Browsers

In total, we stored the test262 results for more than 150
different browser version and operating system combinations,
ignoring minor version upgrades of browsers that contained
no changes in the underlying Javascript engine. While this
may not sound like much, it includes all major browser
releases from the last three years, which accumulates to
approximately 98% of browser market share since 2008’.
For desktop browsers we collected test results for fingerprint
generation from the five most popular browsers on three
different operating systems: Windows, OS X and Linux.
Different mobile browser versions and their test results can be
seen in Table III. Results for mobile browsers are focused on
Android and iOS devices. While the setup files for desktop
browsers are often freely available and were easy to collect,
it was much more difficult for us to get access to a broad
spectrum of older mobile browsers as it is not possible to
revert the running operating system of a smartphone or a
tablet to an older software version, among other reasons as

Shttp://www.enisa.europa.eu/media/news-items/operation-black-tulip/
6Please see the author’s homepage for the full data set
Thttp://www.w3schools.com/browsers/browsers_stats.asp
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Browser Win 7 | WinXP | Mac OS X Browser Win 7 | WinXP | Mac OS X
Firefox 3.6.26 3955 3955 3955 Chrome 8 1022 1022 1022
Firefox 4 290 290 290 Chrome 10 715 715 715
Firefox 5 264 264 264 Chrome 11 489 489 489
Firefox 6 214 214 214 Chrome 12 449 449 —
Firefox 7 190 190 190 Chrome 13 427 427 —
Firefox 12 165 165 165 Chrome 14 430 430 430
Firefox 15 161 161 161 Chrome 16 420 420 420
Firefox 17 171 171 171 Chrome 17 210 210 210
Firefox 19 191 191 191 Chrome 18 35 35 35

Chrome 19 18 18 18
IE 6 (Sputnik) — 468 — Chrome 21 9 9 9
IE 8 (Sputnik) — 473 — Chrome 23 10 10 10
1IE 9 611 — — Chrome 25 17 17 17
1IE 10 7 — —

Safari 5.0.5 777 1585 1513
Opera 11.52 3827 3827 3827 Safari 5.1 777 853 —
Opera 11.64 4 4 4 Safari 5.1.2 777 777 776
Opera 12.02 4 4 4 Safari 5.1.7 548 548 547
Opera 12.14 9 9 9

TABLE II

SELECTION OF BROWSERS AND THEIR FAILED TEST CASES FROM fest262 (AND Sputnik)

Browser OS Device # of fails
Safari iO0S 5.1.1 iPhone 4S 988
Safari i0S 6.1.2 iPhone 4 28

Browser Android 2.2 GalaxyTab 2130

Browser Android 2.3.7 | HTC Desire 1328

Browser Android 4.0.3 | GalaxyTab2 588

Browser Android 4.0.4 Nexus S 591

Browser Android 4.1.2 Nexus S 23

Chrome 18 | Android 4.0.3 | GalaxyTab2 46
Firefox 19 | Android 4.0.3 | GalaxyTab2 191
TABLE III

NUMBER OF FAILED TEST CASES FOR MOBILE BROWSERS

protection against jailbreaking.

As the Javascript engines are not as dynamic as the num-
bering scheme of browser vendors, equal results are obtained
with consecutive browser versions if the underlying Javascript
engine has not been changed. For example, the major Firefox
version numbers often indicate changes in the underlying
principles, while the minor numbers are used for, e.g., security
updates: Updates 6.0.1 and 6.0.2, for example, were used to
solely remove the Dutch certificate authority Diginotar, which
got hacked and was used for issuing rogue certificates [25].
The results are discussed in detail in Section V.

B. Tor Browser Bundle

While modifying the UserAgent can be used to hide a
user’s browser and version, JavaScript engine fingerprinting
can be used to reliably identify the web browser of a user. The
Tor Browser Bundle is using modified UserAgent strings on a
large scale, and we will show how these modified UserAgents
can be detected by web servers. The Tor network [6] is an
overlay network that provides online anonymity to its users
by hiding the user’s IP address. At the time of writing it
is estimated to be used by more than 500,000 users every

day®. It has been previously shown that the majority of Tor
users do not browse the Web securely [15], and Javascript
engine fingerprinting can be used to further increase the
attack surface for sophisticated de-anonymization attacks.
The Tor Browser Bundle (TBB) is a convenient way to
use the Tor anonymization network with a known, secure
configuration and without the need for the user to install any
software. It is available for Windows, Linux and OS X and
has many important privacy-enhancing features enabled by
default, e.g., TorButton or HTTPS Everywhere, prepackaged
and preconfigured, making it the recommended way to use
the Tor network securely at the time of writing. By default,
the Tor Browser Bundle changes the UserAgent string to
increase the size of the anonymity set [5]. In the Tor Browser
Bundle the UserAgent is uniformly changed to Firefox 5.0
while the shipped browser often uses a more recent version.
Mozilla releases new versions of Firefox every six weeks.
The numbers of the actual and the expected results from
test262 running on Windows 7 can be seen in Table IV. A
decision tree similar to the example in Section III-C can
be constructed to minimize the number of tests needed to

8https://metrics.torproject.org/users.html



accurately identify the browser used with the Tor Browser
Bundle. In the most recent versions of TBB the browser
was changed to Firefox 17 with long-term support, and the
UserAgent is correctly identifying the browser as Firefox 17.

Care has to be taken when interpreting the implications
of Javascript engine fingerprinting on the Tor network: Even
though Javascript is not disabled by default in the Tor Browser
Bundle [1], the only information the malicious website opera-
tor obtains is that the user is, in fact, using a different version
of Firefox than indicated. The web server can already easily
determine that the user is using the Tor network by comparing
the client’s IP address to the public list of Tor exit relays.
However, Javascript fingerprinting can reduce the size of the
anonymity set of all Tor users, and can harm anonymity to a
yet unknown extent.

C. Experimental Survey

To evaluate the performance and practicability of our
fingerprinting method, we conducted a survey among
colleagues, students and friends for a duration of several
weeks in 2011 to find out (1) whether our method was
working reliably, and (2) to measure the time and bandwidth
needed for fingerprinting. The test set consisted of Firefox 4,
Chrome 10 and Internet Explorer 8 & 9, which were the top
browsers at that time and had a cumulative worldwide market
share of approx. 66% at that time. For each of the browsers
in our test set, we manually selected 10 failed test cases
from the Sputnik test suite to be run on the client instead of
the minimal fingerprint, to increase accuracy and decrease
the possibility of false positives. As a result, every client
executed 40 test cases in total, and the failed test cases were
then used to determine the user’s Javascript engine. Due to
the automatic update function of Google Chrome, the version
number changed from 10 to 12 during the testing period, but
the 10 test cases we had selected for Chrome did not change,
so the updates did not skew our results and Chrome was still
correctly identified even though the Javascript engine changed
with the updates (see Table II). Users were directed to a
webpage where they were asked to identify their web browser
manually using a dropdown menu and to start the test. As a
ground truth to evaluate our fingerprinting, we relied on the
UserAgent string in combination with the manual browser
classification by the users. The Javascript file containing the
40 tests as well as the testing framework had a size of 24
kilobytes, while each of the 10 tests per browser were only
between 2,500 and 3,000 bytes in size. The results were
written to a database. We used a cookie to prevent multiple
test runs by the same browser, and also blocked submissions
with the same UserAgent string and IP address that originated
in close temporal vicinity in case the browser was configured
to ignore cookies.

In total, we were able to collect 189 completed tests. From
those 189 submissions, 175 were submitted by one of the four
browsers covered by the test set, resulting in an overall relative
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coverage of more than 90%. 14 submissions were made with
browsers not in the test set, mainly smartphone web browsers.
We compared the results of Javascript fingerprinting with
the UserAgent string as well as the user choice from the
dropdown menu, and Javascript fingerprinting had the correct
result for all browsers in the test set. In one case our method
identified a UserAgent string manipulation, as it was set to
a nonexistent UserAgent. In 15 cases, the users made an
error identifying their browser manually from the dropdown
menu, but the UserAgent and the results from fingerprinting
matched. There were no false positives for the browsers
within the test set; the algorithm for fingerprinting identified
browsers if and only if all the test cases for that browser
failed and all tests for the other browsers did not fail. The
runtime for the entire test was short, with 90ms on average
for PCs and 200ms on average for smartphones (even though
smartphones were not part of the test set).

V. DISCUSSION

The results above show that JavaScript engine fingerprinting
is a feasible approach to identify or verify a given browser,
even for mobile devices like smartphones, with only
small overhead regarding execution time on the client and
bandwidth. On the server side the impact is negligible,
as it can be implemented as a small number of database
lookups. The “best” browser regarding Javascript standard
conformance in our set of tested browsers was Opera, with
only 4 failed tests in its most recent versions. Firefox and
Chrome improved the engine constantly between releases,
which happen at a much higher pace. Internet Explorer used a
different XMLHttpRequest method before version 8 and thus
did not work with fest262, so we relied on the Sputnik tests
and test numbers for fingerprint generation in Section I'V-C.
Please note that it is not the total number of failed test cases
that is of importance, but if there is a difference between the
browsers in the test set. For browser identification and with
respect to the chosen test set, a single test case per browser is
often sufficient to distinguish between two or more browsers.
Also, these results and the number of failed tests are not
static in nature: browsers, ECMAscript and the test suites are
under active development and are constantly improved, with
ECMAscript currently preparing version 6 of the standard
(codename “Harmony”).

While it is possible to detect a specific browser version with
the algorithms discussed above, our method cannot be used
to detect the underlying operating system (compared to the
approach used in [22]). Other means are necessary to identify
it as well as the underlying computing architecture (x86, x64,
...). Due to their complexity, JavaScript engines reuse their
engine across different operating systems, as it nowadays
takes multiple man-years to develop a modern JavaScript
engine. All the latest browser versions at the time of writing
that run on different operating systems and platforms seem
to use the same Javascript engine. The only exception we
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Version TBB Browser UserAgent | test262 | exp. test262 | Detectable
2.3.25-4 Firefox 17esr Firefox 17 171 171 X
2.3.25-2 Firefox 10esr Firefox 10 172 172 X
2.2.35-9 Firefox 12.0 | Firefox 5.0 165 264 v
2.2.35-8 Firefox 11.0 Firefox 5.0 164 264 v
2.2.35-3 Firefox 9.0.1 Firefox 5.0 167 264 v
2.2.33-2 Firefox 7.0.1 Firefox 5.0 190 264 v
2.2.32-3 Firefox 6.0.2 | Firefox 5.0 214 264 v
2.2.30-2 Firefox 5.0.1 Firefox 5.0 264 264 X
2.2.24-1 Firefox 4.0 Firefox 3.6.3 290 3956 v

TABLE IV

DETECTABILITY OF USERAGENT STRING MANIPULATIONS IN TBB

could find were (mostly historic) versions of Safari, where
the same version number on different operating systems used
different versions of the Javascript engine (see Table II). For all
the other browsers we tested, the version number convention
across operating systems seems to correlate with the Javascript
engine. We could show on the other hand that operating system
detection for smartphones and tablet PCs is possible, and that
we can easily distinguish between e.g., Android or iOS with
our method. Due to the larger update cycles compared to
desktop browsers, and due to the fact that there are still a lot of
old Android versions in use, JavaScript engine fingerprinting is
thus especially dangerous for mobile devices. It is furthermore
possible to distinguish between a mobile browser and one
running on a regular computer easily, if both are included in a
test set. However, our sample size for mobile devices is much
smaller compared to our desktop browser dataset - more work
is needed in this area.

A. Countermeasures

It is naive to believe that Javascript engines across different
browsers will conform uniformly with the standard in the
future due to the complexity of the Javascript engines. As
this is unlikely to happen in the near future, we propose
preventing or detecting fingerprinting on the client side. Client-
side protection could be done either by the browser itself [4],
a browser extensions looking for fingerprinting of any kind, or
by using a proxy server that can detect and block fingerprinting
patterns similar to TCP/IP stack fingerprinting prevention
methods [30]. We are currently working on a browser exten-
sion that can detect Javascript fingerprinting, and hope to work
on a proxy solution in the near future as well.

B. Future Work

Future work towards browser fingerprinting includes
other core features of browsers that are not yet uniformly
implemented, such as HTML5 or CSS3. We plan to add
these to the fingerprint generation process, to decrease overall
runtime and the computational overhead even further, and to
make our approach work with browsers that have Javascript
disabled. We also plan to assess whether current advertising
networks [29] are already using Javascript fingerprinting,

just as they were recently found to already use tricks to
spawn almost undeletable cookies like evercookie [18], Flash
cookies [31] or ETag respawning [2]. We are also working on
a framework that can detect and prevent session hijacking on
insecure connections (with or without SSL alike), as proposed
in Section III-E.

VI. RELATED WORK

Javascript has recently received a lot of attention with the
rise of AJAX as a new programming paradigm and especially
with respect to client-side security [3], [13] and privacy [17].
Cross-site scripting (XSS) as one of the most prevalent online
security vulnerability in fact only works when a browser has
Javascript enabled.

Fingerprinting in general has been applied to a broad and
diverse set of software, protocols and hardware over the
years. Many implementations try to attack either the security
or the privacy aspect of the test subject, mostly by accurately
identifying the exact software version in use. One of the
oldest security-related fingerprinting software is nmap [12],
which is still used today and uses slight differences in the
implementation of network stacks to identify the underlying
operating systems and services. OS fingerprinting is often a
crucial stepping stone for an attacker, as remote exploits are
not uniformly applicable to all versions of a given operating
system or software. Another passive fingerprinting tool, p0f°,
uses fingerprinting to identify communicating hosts from
recorded traffic. Physical fingerprinting, on the other hand,
allows an attacker to identify (or track) a given device, e.g.,
using specific clock skew patterns, which has been shown
to be feasible in practice to measure the number of hosts
behind a NAT [19], [24]. History stealing [26], [33] has been
shown to be another, effective attack vector to de-anonymize
users and could be used for browser fingerprinting as well.
User tracking is yet another threat to the privacy of users,
which is, e.g., used heavily by advertising networks [29], [21].

9http://lcamtuf.coredump.cx/p0f3



In recent years, the focus shifted from operating system
fingerprinting towards browser and HTTP traffic fingerprinting
in the area of security and privacy research. On the one
hand, this was caused by the widespread use of firewalls as
well as normalized network stacks and increased awareness
of administrators to close unused ports. On the other hand,
the browser has become the most prevalent attack vector for
malware by far. This trend has been further boosted by the
advent of cloud computing (where the browser has to mimic
or control operating system functionality), online banking and
e-commerce, which use a web browser as the user interface.
Recent malware relies on fingerprinting to detect if the victim’s
browser is vulnerable to a set of drive-by-download attacks [9],
[3]. For encrypted data, Web-based fingerprinting methods
rely on timing patterns [10], [14], but at higher expenses
in terms of accuracy, performance, bandwidth and time. The
EFF’s Panopticlick project'® does browser fingerprinting by
calculating the combined entropy of various browser features,
such as screen size, screen resolution, UserAgent string, and
supported plugins and system fonts [7]. Mayer was among the
first to discuss technical features that can be used for browser
fingerprinting [20]. In recent work, browser fingerprinting with
the aim of harming the user’s privacy has been used effectively
solely by using the UserAgent string [34]. Another recent
paper uses novel HTMLS features and WebGL to accurately
fingerprint browsers [23] and the underlying hardware (GPU).

VII. CONCLUSION

In this paper, we introduced a method for reliable browser
identification based on the underlying Javascript engine, and
evaluated its feasibility in multiple ways. In a survey with
189 participants, our method identified all browsers within the
test set correctly. We also evaluated the impact on systems
like the Tor Browser Bundle that use a modified UserAgent
string on purpose to increase the anonymity of users, and
collected data for generating fingerprints for more than 150
browser and operating system combinations. We showed that
this method can be used efficiently in terms of bandwidth and
computational overhead, takes less than a second to run on the
client, and can reliably identify a web browser without relying
on the UserAgent string provided by the client.
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Abstract—Session hijacking has become a major problem

in today’s Web services, especially with the availability of free
off-the-shelf tools. As major websites like Facebook, Youtube
and Yahoo still do not use HTTPS for all users by default,
new methods are needed to protect the users’ sessions if
session tokens are transmitted in the clear.
In this paper we propose the use of browser fingerprinting for
enhancing current state-of-the-art HTTP(S) session manage-
ment. Monitoring a wide set of features of the user’s current
browser makes session hijacking detectable at the server
and raises the bar for attackers considerably. This paper
furthermore identifies HTMLS and CSS features that can be
used for browser fingerprinting and to identify or verify a
browser without the need to rely on the UserAgent string. We
implemented our approach in a framework that is highly con-
figurable and can be added to existing Web applications and
server-side session management with ease. To enhance Web
session security, we use baseline monitoring of basic HTTP
primitives such as the IP address and UserAgent string, as
well as complex fingerprinting methods like CSS or HTMLS5
fingerprinting. Our framework can be used with HTTP and
HTTPS alike, with low configurational and computational
overhead. In addition to our contributions regarding browser
fingerprinting, we extended and implemented previous work
regarding session-based shared secrets between client and
server in our framework.

Keywords-Session Hijacking, Browser Fingerprinting, Se-
curity

I. INTRODUCTION

Social networks and personalized online services have
an enormous daily user base. However, Internet users
are constantly at risk. Popular websites like Facebook
or Yahoo, along with many others, use HTTPS-secured
communication only for user authentication, while the
rest of the session is usually transmitted in the clear.
This allows an attacker to steal or copy the session
cookies, identifiers or tokens, and to take over the
session of the victim. Unencrypted Wi-Fi and nation-wide
interceptors have used this as an attack vector multiple
times recently, proving that session hijacking is indeed a
problem for today’s Internet security. A recent prominent
example includes the hacked Twitter account of Ashton
Kutcher [20], who used an unencrypted Wi-Fi and got
hacked— at that time, he had more than six million
followers. Tunisia on the other hand was accused of
malicious JavaScript injection on websites like Facebook,
Gmail and Yahoo, to harvest login credentials and
sabotage dissidents online activities [11].

To protect the session of a user, we implemented a
framework that ties the session to the current browser by
fingerprinting and monitoring the underlying browser, its
capabilities, and detecting browser changes at the server
side. Our framework, the Session Hijacking Prevention
Framework (SHPF), offers a set of multiple detection
mechanisms which can be used independently of each
other. SHPF protects especially against session hijacking
of local adversaries, as well as against cross-site scripting
(XSS). The underlying idea of our novel framework: If
the user’s browser suddenly changes from, e.g., Firefox
on Windows 7 64 bit to an Android 4-based Webkit
browser in a totally different IP range, we assume that
some form of mischief is happening.

Our framework uses a diverse set of inputs and allows
the website administrator to add SHPF with just a few
additional lines of code in existing applications. There is
no need to change the underlying Web application, and
we can use the initial authentication process which is
already part of many applications to build further security
measurements on top. As part of the authentication
process at the beginning of a session, the server asks the
browser for an exact set of features and then monitors
constantly whether the browser still behaves as expected
over the entire session. While an attacker can easily steal
unencrypted session information, e.g., on unencrypted
Wi-Fi, it is hard to identify the exact responses needed
to satisfy the server without access to the same exact
browser version. Furthermore, we use a shared secret that
is negotiated during the authentication, which is used to
sign requests with an HMAC and a timestamp, building
and improving on previous work in this direction. Recent
attacks against HTTPS in general and the certificate
authorities Diginotar and Comodo [22] in particular have
shown that even the widespread use of SSL. and HTTPS
are not sufficient to protect against active adversaries
and session hijacking. Previous work in the area of
server-side session hijacking prevention relied, e.g.,
on a shared secret that is only known to the client’s
browser [1] and never transmitted in the clear. While this
is a feasible approach and can protect a session even for
unencrypted connections, our system extends this method
by employing browser fingerprinting for session security,
thus allowing us to incorporate and build upon existing
security mechanisms like HTTPS. Furthermore, it offers
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protection against both passive and active adversaries.

Our contributions in this paper are the following:

o We present a framework to enhance HTTP(S) session
management, based on browser fingerprinting.

« We propose new browser fingerprinting methods for
reliable browser identification based on CSS3 and
HTMLS.

« We extend and improve upon existing work on using
a shared secret between client and server per session.

« We have implemented the framework and will release
the code and our test data under an open source

license'.

The rest of the paper is organized as follows: Section II
gives a brief technical background. The new browser
fingerprinting methods are presented in Section III. Our
SHPF framework and its general architecture is described
in Section IV. We evaluate our framework in Section V.
The results of our evaluation are discussed in Section VI,
before we conclude in Section VII.

II. BACKGROUND

Web browsers are very complex software systems
requiring multiple person-years of development time.
Different international standards like HTML, JavaScript,
DOM, XML or CSS specified by the W3C? try to make
the browsing experience across different browsers as
uniform as possible, but browsers still have their own
“touch® in interpreting these standards - a problem
Web developers have been struggling with since the
infancy of the Web. Due to the complexity of the
many standards involved, there are differences in the
implementations across browsers. New and upcoming
standards further complicate the landscape - HTMLS5 and
CSS3 for example, which are not yet fully standardized
but already partly implemented in browsers. These
imperfect implementations of standards with different
depth are perfectly suited for fingerprinting. Nmap [24],
for example, uses this exact methodology to identify the
operating system used on a remote host based on TCP/IP
stack fingerprinting.

Authentication on websites works as follows: A HTML
form is presented to the user, allowing them to enter
username and password, which are then transmitted to
the server. If the login succeeds, the server typically
returns a token (often referred to as a session ID), which
is subsequently sent along with further client requests to
identify the user due to the stateless internals of the HTTP
protocol. In an unencrypted HTTP environment, this
presents multiple challenges to the user’s confidentiality:
If login credentials are transmitted in an unencrypted
state, an eavesdropping attacker can learn them without
any further effort. Even if the document containing the
login form as well as the subsequent request containing

'Note to the reviewer: we will include the link here once the paper is
accepted for publication
Zhttp://www.w3.org/TR/
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the credentials are transmitted over HTTPS, attackers
may later learn the session ID from unencrypted requests
to the server or by using client-side attacks such as XSS.
Thus, it is imperative to enforce SSL throughout the
entire site (or at least on those domains that are privileged
to receive the session token).

Many administrators regard introducing SSL by default
as too cost-intensive. Anecdotal evidence suggests that
naively enabling SSL without further configuration may
incur significant performance degradation up to an order
of magnitude. Gmail, however, switched to HTTPS by
default in January 2010 [21]. Remarkably, Google reported
that they did not deploy any additional machines and no
special hardware (such as hardware SSL accelerators), but
employed a number of SSL optimization methods. Only
about 10 kB memory per connection, 1% of the CPU
load and less than 2% network overhead were incurred
for SSL in this configuration. Many other problems with
HTTPS have been discussed in the literature, ranging
from problems with the CA system [36], [8] to the fact
that a large number of keys have been created with
weak overall security [12], [23], [44]. While HTTPS
can be found on a large number of popular websites
that require some form of authentication [13], only a
minority of these binds the sessions to a user’s device or
IP address to protect the user against session hijacking [3].

Multiple tools have been released that allow automated
session hijacking: FaceNiff [34], DroidSheep’, Firesheep,
cookiemonster [32] and sslstrip, just to name a few.
Firesheep was among the first to received widespread
public attention when it was released as open source
in 2010 [4]. Firesheep works as follows: Upon startup,
Firesheep tries to start sniffing on an IEEE 802.11 or
Ethernet device. Whenever HTTP packets are captured and
can be parsed as such, they are matched against domain-
specific handlers (as of writing, the current git repository
includes handlers for sites such as Facebook, Google, and
LinkedIn). These handlers store a list of cookie values
that comprise a valid session. When a match is found,
these values are extracted and an entry for this hijackable
session is added to the attacker’s sidebar in Firefox. When
the attacker selects one of these entries, Firesheep writes
the stored cookie values into Firefox’ cookie manager and
opens the site in a new tab, thereby presenting the attacker
with a hijacked and fully operational session of the victim.

III. BROWSER FINGERPRINTING

This section introduces our new browser fingerprinting
methods, namely CSS and HTMLS fingerprinting. While
browser fingerprinting has ambiguous meanings in the
literature i.e., identifying the web browser down to the
browser family and version number [7] vs. (re-)identifing
a given user [26], we use the former. Our framework relies
on fingerprinting to reliably identify a given browser, and
CSS fingerprinting is one of the fingerprinting techniques

3http://droidsheep.de/



Browser Layout Engine Prefix
Firefox Gecko -moz-
Konqueror KHTML -khtml-
Opera Presto -0-
Internet Explorer Trident -ms-
Safari Webkit -webkit-
Chrome ‘Webkit -webkit-
Table I

BROWSER LAYOUT ENGINES AND CSS PREFIXES

implemented in our framework. Furthermore, we present
details on how we monitor HTTP headers in SHPF,
which allows website administrators to configure advanced
policies such as preventing an HTTP session from roaming
between a tightly secured internal network and a public
network beyond the control of the administrators.
A. CSS Fingerprinting

CSS as a standard is under ongoing development
and standardization. CSS 2.1 was published as a W3C
Recommendation in June 2011, while the upcoming
CSS3 is not yet finished. The CSS3 modules vary in
stability and status and while some of them already
have recommendation status, others are still candidate
recommendations or working drafts. Browser vendors
usually start implementing properties early, even long
before they become recommendations. We identify three
CSS-based methods of browser fingerprinting: CSS
properties, CSS selectors and CSS filters.

Depending on the layout engine, progress in
implementation varies for new and upcoming CSS
properties, which allows us to identify a given browser
by the CSS properties it supports. Table I shows which
browser uses which layout engine. When properties
are not yet on “Recommendation“ or “Candidate
Recommendation® status, browsers prepend a vendor-
specific prefix indicating that the property is supported
for this browser type only. Table I also shows the vendor
prefixes for the most popular browsers. Once a property
moves to Recommendation status, prefixes are dropped by
browser vendors and only the property name remains. For
example, in Firefox 3.6 the property border-radius had a
Firefox prefix resulting in -moz-border-radius, while in
Chrome 4.0 and Safari 4.0 it was -webkit-border-radius
(as they both use the Webkit layout engine). Since Firefox
4 as well as Safari 5.0 and Chrome 5.0 this feature is
uniformly implemented as border-radius. The website
https://www.caniuse.com shows a very good overview
on how CSS properties are supported in the different
browsers and their layout engine.

Apart from CSS properties, browsers may differ in
supported CSS selectors as well. Selectors are a way of
selecting specific elements in an HTML tree. For example,
CSS3 introduced new selectors for old properties, and
they too are not yet uniformly implemented and can be
used for browser fingerprinting.
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The third method of distinguishing browsers by their
behavior is based on CSS filters. CSS filters are used
to modify the rendering of e.g., a basic DOM element,
image, or video by exploiting bugs or quirks in CSS
handling for specific browsers, which again is very
suitable for browser fingerprinting. Centricle * provides a
good comparison of CSS filters across different browsers.

How to test: As CSS is used for styling websites it
is difficult to compare rendered websites at the server
side. Instead of conducting image comparison (as used
recently by Mowery et al. [29] to fingerprint browsers
based on WebGL-rendering), we use JavaScript in our
implementation to test for CSS properties in style objects:
in DOM, each element can have a style child object
that contains properties for each possible CSS property
and its value (if defined). These properties in the style
object have the same name as the CSS property, with
a few differences, for example dashes (-) are removed,
the following letter becomes upper case. Vendor-specific
prefixes however are preserved if the CSS property has a
vendor prefix. An Example: -moz-border-radius becomes
MozBorderRadius.

There are now two ways to test CSS support of a
property in the style object: the first way is to simply
test whether the browser supports a specific property
by using the in keyword on an arbitrary style object.
The returning Boolean value indicates whether the
property is supported. Browser-specific prefixes need to
be considered when testing properties with this method.
An example: 'borderRadius’ in document.body.style. The
second way to test whether a given CSS property is
supported is to look at the value of a property once it
has been set. We can set an arbitrary CSS property on an
element and query the JavaScript style object afterwards.
Interpreting the return values shows whether the CSS
property is supported by the browser: undefined (null) as
return value indicates that the property is not supported.
If a not-null value is returned this means the property
is supported and has been parsed successfully by the
browser.

Care has to be taken when interpreting the return values
for fingerprinting: A returning value may deviate from
the CSS definition if some parts were not understood
by the browser. This can happen, e.g., with compos-
ite properties, which allow several sub-properties to be
defined in just one long definition. For example, the
background definition can be used to define background-
color, background-repeat, background-image, background-
position and background-attachment all at once. Interest-
ingly, the value string returned upon querying the style
object also differs between browsers, and can be used as
yet another test for fingerprinting based on CSS properties.
For example, consider the following CSS3 background

“http://centricle.com/ref/css/filters/
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definition:
background:hsla(56, 100%, 50%, 0.3)

Upon testing the background property on the style
object as described above, Firefox returns the following:

none repeat scroll 0% 0% rgba(255, 238, 0, 0.3)
Internet Explorer, on the other hand, returns this:
hsla(56, 100%, 50%, 0.3)

As this shows, Firefox returns all possible values of the
composite background property explained above (repeat,
color, image, position) and additionally converts the hsla
definition to rgba values. In contrast, Internet Explorer
only returns exactly what was stated in the CSS definition,
no more and no less, and does not convert the values into
another format. The order of elements within the return
string for composite values may also deviate between
browsers, for example with the box-shadow property with
distance values as well as color definitions.

B. HTMLS Fingerprinting

HTMLS, like CSS3, is still under development, but
there are already working drafts which have been
implemented to a large extend by different browsers.
This new standard introduces some new tags, but also
a wide range of new attributes. Furthermore HTMLS
specifies new APIs (application programming interfaces),
enabling the Web designer to use functionalities like
drag and drop within websites. Since browser vendors
have differing implementation states of the new HTMLS5
features, support for the various improvements can be
tested and used for fingerprinting purposes as well. For
identifying the new features and to what extent they are
supported by modern browsers, we used the methodology
described in [33]. The W3C furthermore has a working
draft on differences between HTMLS and HTMLA4 that
was used as input [38].

In total we identified a set of 242 new tags, attributes
and features in HTMLS that were suitable for browser
identification. While 30 of these are attributed to new
HTML tags that are introduced with HTMLS [41], the
rest of the new features consist of new attributes for
existing tags as well as new features. We then created
a website using the Modernizr [2] library to test for
each of these tags and attributes and whether they are
supported by a given browser. We collected the output
from close to 60 different browser versions on different
operating systems. An excerpt of the data and how the
tags and attributes are supported by different browsers
can be seen in Table II. One of our findings from the
fingerprint collection was that the operating system
apparently has no influence on HTMLS5 support. We were
unable to find any differences between operating systems
while using the same browser version, even with different
architectures. An example: Firefox 11 on Windows XP (32
bit) and on Windows 7 (64 bit) share the same fingerprint.
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C. Basic HTTP Header Monitoring

For each HTTP request, a number of HTTP headers is
included and transmitted to the Web server. RFC 2616
defines the HTTP protocol [10] and specifies several
HTTP headers that can or should be sent as part of each
HTTP request. The number of headers, the contents and
especially the order of the header fields, however, are
chosen by the browser and are sufficient for identifying
a browser. Using this method for browser identification
has already been discussed in previous work [7], [43] and
is already used to some extend by major websites [3],
we will thus only briefly cover the parts which are of
particular interest for SHPF. In our implementation we use
the following header fields for HTTP session monitoring:

« UserAgent string contains browser version and plat-
form information.

o Accept specifies which data types the browser sup-
ports. It is also used to announce a preference for a
certain data type.

« Accept-Language specifies, similar to Accept, which
language is preferred by the browser.

o Accept-Encoding specifies which encodings are sup-
ported and which encoding is preferred by the
browser.

o IP-Address of the client is not part of the HTTP
header. However, the client IP address can be pro-
cessed by the server easily.

The UserAgent contains information about the browser

- often the exact browser version and the underlying
operating system. It is, however, not a security feature,
and can be changed arbitrarily by the user. SHPF is not
dependending on the UserAgent, and works with any
string value provided by the browser. If the UserAgent
changes during a session this is a strong indication
for session hijacking, especially across different web
browsers. Depending on the configuration of SHPF and
the particular security policy in place, it might however
be acceptable to allow changes in the browser version
e.g., with background updates of the browser while using
a persistent session if the browser is restarted.

The UserAgent as well as the other headers and data
usually remain consistent during a session. If any values
or a subset of these values change during a session, the
session has been hijacked (in the simplest case). For
example, if during a session multiple UserAgents from
different IPs use the same session cookie, this implies
in our framework that the session has been hijacked
(session identifiers ought to be unique). The session
would be terminated immediately and the user would
need to reauthenticate. In order to bypass this part of
our framework, the attacker would need to replicate all
the original headers and use the same IP address as
the client in order to send valid requests to the server.
While cloning the HTTP headers is rather easy, binding a
session to a given IP address considerably raises the bar
for adversaries, even if they can obtain a valid session
cookie and the HTTP header with e.g., one of various
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Tag Attribute | FF12 FF13 CI8 C19 1IE8 IE9 OIll1 012 S4 S5
<audio> — v v o v X v v v X X
<fieldset> name v v X v X X X X X X
<textarea>  maxlength v v v v X X v v X Vv
<nav> — v v v oo X v X v X v
<meter> — X X v v X X v vV X K
<input> type="url” v v v v X X v v X v
<canvas> — v v v v X v v v v v
Table 1T

EXCERPT OF HTMLS5 TAGS AND ATTRIBUTES FOR BROWSER FINGERPRINTING

kinds of cross-site scripting (XSS) attack [37].

Apart from the HTTP header values themselves, there is
also a significant difference in how the browsers order the
HTTP header fields. While Internet Explorer 9 for example
sends the UserAgent before the Proxy-Connection and
Host header fields, Chrome sends them in the exact
opposite order. The content of the header fields is not
important in this case, all header fields are included for
this check in our implementation. HTTP header ordering
is especially useful against session hijacking tools like that
clone only the UserAgent or copy the session cookie, but
not the rest of the header information.

IV. SHPF FRAMEWORK

This section describes the implementation of our frame-
work and its architecture, the Session Hijacking Prevention
Framework (SHPF). The source code is released under
an open source license and can be found on github’.
Despite the new fingerprinting methods presented in the
previous section, we also implemented and improved
SessionLock [1] for environments that do not use HTTPS
by default for all connections.

A. General Architecture

SHPF is a server-side framework which is written
in PHPS5 and consists of multiple classes that can be
loaded independently. Its general architecture and basic
functionality is shown in Figure 1. We designed it
to be easily configurable (depending on the context
and the security needs of the website), portable and
able to handle a possibly large number of concurrent
sessions. Our implementation can be easily extended with
existing and future fingerprinting methods, e.g., textfont
rendering [29] or JavaScript engine fingerprinting [28],
[35].

The main parts of the framework are the so-called
features. A feature is a combination of different checks
for detecting and mitigating session hijacking. In our
prototype we implemented the following features: HTTP
header monitoring, CSS fingerprinting and SecureSession
(which implements and extends the SessionLock protocol
by Ben Adida). Features are also the means to extending
the framework, and we provide base classes for fast feature

Shttps://github.com/mmulazzani/SHPF

development. A feature consists of one or more checkers,
which are used to run certain tests. There are two different
types (or classes) of checkers:

o Synchronous checkers can be used if the tests in-
cluded in the checker can be run solely from existing
data, such as HTTP requests or other website-specific
data that is already available.

o Asynchronous checkers are used if the tests have to
actively request some additional data from the client
and the framework has to process the response.

While synchronous checkers are passive in nature,
active checkers can challenge the client to send some
information for a specific checker, allowing the server
to verify that the browser is behaving as expected.
Client responses are sent via asynchronous calls (AJAX)
as part of SHPF, thus not blocking the session or
requiring to rewrite any existing code. Appendix A shows
the basic code needed to incorporate SHPF into a website.

The distinction between features and checkers gives the
website control over which checks to run. Features can
be disabled or enabled according to the website’s security
needs, and can be assigned to different security levels.
Different security levels within a webpage are useful, for
example, in privacy-heterogeneous sessions - basic checks
are performed constantly, while additional checks can be
run only when necessary, e.g., when changing sensitive
information in a user’s profile (much like Amazon does for
its custom session management). In order to communicate
with a Web application, callbacks can be defined both
in PHP and JavaScript. These callbacks are called if a
checker fails and thus allow the application to react in
an appropriate way, e.g., terminate the session and notify
the user. An example configuration for different security
levels with SHPF can be seen in Table III. The details
for each checker in this example are explained in detail
below. Consider a website, e.g., a web store, which uses
three different security levels for every session:

e Level 1 is for customers who are logged in and
browsing the web store.

o Level 2 is for customers who are in a sensitive part
of their session, e.g., ordering something or changing
their profile.

o Level 3 is for administrators who are logged into the
administrative interface.

Level 1 is a very basic security level. In this example it
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Figure 1.

prevents session hijacking by monitoring the UserAgent
string of the user for modifications. As a sole security
measure it only protects the user against attacks that can
be considered a nuisance, and can possibly be bypassed
by an attacker (by cloning the UserAgent string). The
Web application is designed in such a way that an
attacker cannot actively do any harm to the user, for
example browsing only specific products to manipulate
the web store’s recommendation fields. If the customer
decides to buy something, level 2 is entered, which uses
two additional security measures: the current session
is locked to the user’s IP address and the order of
the HTTP headers is monitored to detect if a different
browser uses the same UserAgent string. Once the
transaction is complete, the customer returns to level 1.
For an administrator, even more checkers are enabled
at the start of the session: SecureSession protects the
session cryptographically with a shared secret between
the particular browsers that started the sessions, and the
CSS properties supported by the browser are monitored.
Please note that this configuration is given merely by
way of an example and must be matched to existing
security policies when implemented. Furthermore, note
that HTTPS is not mentioned in the example - even
though it is strongly advised to use HTTPS during a
session (besides SHPF), it is not a requirement. SHPF
can prevent session hijacking even if session tokens are
transmitted in the clear.

Security Levels
Checks Level 1 Level 2 Level 3
UserAgent monitoring v v v
IP binding X v v
HTTP Header ordering X v v
CSS fingerprinting X X v
SecureSession X X v
Table III

EXAMPLE - DIFFERENT SECURITY LEVELS FOR A WEBSITE

Additional components in our framework are used for
keeping track of the session state in a database, for output
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2. Sync. SHPF Checkers:

+ Basic HTTP Header Monitoring
HTTP Header Ordering, IP,
UserAgent, ...

3. Async. SHPF Checkers:

e CSS Fingerprinting
Supported CSS Features

e Future Fingerprinting
HTML 5 Fingerprinting,
Javascript, WebGL, ...

SHPF Architecture

and logging, and there is a special class for integrating
the framework into existing websites and a crypto feature
CryptoProvider. The crypto feature defines methods of
encrypting and decrypting data. If a crypto provider is
set in SHPF and SecureSession is used, all asynchronous
messages exchanged between the browser and the frame-
work are automatically encrypted by the crypto provider
(see Section IV-D).

B. Basic HTTP Header Monitoring

The HTTP header monitoring feature does the follow-

ing:

1) On the first request, the framework stores the con-
tents and the order of the HTTP headers as described
above.

2) For each subsequent request, the feature compares
the headers sent by the client with the stored
ones and checks whether their content and/or order
match.

Depending on the particular use case, different configu-
rations are possible, e.g., binding a session to a given IP, a
certain IP range or a UserAgent string. Another example
would be to allow IP address roaming while enforcing
that the operating system as claimed by the UserAgent
string as well as the browser has to stay the same, allowing
the browser version to change, e.g., through background
updates in Chrome or Firefox. HTTP header monitoring is
implemented as a synchronous checker, as the data needed
for processing is sent with every request.

C. CSS Fingerprinting

Using the CSS fingerprinting methods explained above,
a SHPF feature has been implemented that does the
following:

1) Check whether the client’s
JavaScript.

2) On the first request of the client: Run the complete
fingerprinting suite on the client (using 23 CSS
properties at the time of writing) and save the values.

3) For each subsequent request of the client: choose a
subset of CSS properties and test them on the client.

browser supports



4) Receive the data and check if it was requested by

the framework (anti-replay protection).

5) Compare the values with the saved values.

As this feature needs data from the client, this checker
has been implemented as an asynchronous checker. The
client is challenged to answer a subset of the previously
gathered properties either for each HTTP request or
within a configurable interval between CSS checks (say,
every 10 or 20 requests). By default, the framework
tests three CSS properties and compares the results with
the previously collected fingerprint of that browser. The
data received asynchronously must match the requested
properties and must arrive within a configurable time
span. If the received data do not match the expected
data, arrive too late or are not requested by the feature,
the session is terminated immediately. If no response
is received within a configurable time span, the session
is terminated as well. SHPF may be also configured to
terminate the session if no JavaScript is enabled, thus
making CSS fingerprinting mandatory by policy.

In order to reliably identify a given browser, we selected
a mix of CSS3 properties that are not uniformly supported
by current browsers. In total, 23 properties were identified
as suitable for fingerprinting. The website http://www.
caniuse.com was used to identify CSS properties that
are not uniformly compatible across browsers, as well as
properties that still have vendor prefixes. The 23 identified
properties, possible testing values, and their status in the
standardization and implementation process are shown
in Table IV. Please note that in some cases merely the
additional values of an already existing property are new,
while the CSS property itself is not a novel CSS feature.

For each CSS property, an empty HTML <div> ele-
ment is inserted into the page, which contains an inline
CSS definition. The element is assigned an ID so that it
can be later accessed with JavaScript. Such an element
might, e.g., look like this:

<div id="cssCheckl” style="min-width:35px;”></div>

JavaScript is then used to check whether the properties
set previously exist in the style object, and also to query
the property’s value. The answers from the client are col-
lected in an array, which is then converted into JSON and
sent to the server secured by HTTPS or the SecureSession
feature against eavesdroppers.

["minWidth” in
$(”cssCheckl”).style,$(”cssCheckl” ).style. minWidth]
For our implementation of CSS fingerprinting in SHPF

we chose to use CSS properties only - CSS selectors were
not used because CSS properties are sufficient to reliably
identify a given browser. Nonetheless, the framework
could be extended by supporting CSS selector and CSS
filter fingerprinting in the future.

D. SecureSession

The SecureSession feature implements the SessionLock
protocol by Ben Adida [1], but extends and modifies it in
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certain aspects:

o SessionLock utilizes HTTPS to transfer the session
secret to the client. In our SecureSession feature we
use a Diffie-Hellman Key Exchange [5]as discussed
by Ben Adida in his paper because of the recent
attacks against the trust foundation of HTTPS (Dig-
inotar, Comodo) to do the same. We also looked at
performance and security implications of that choice.

e We use the new WebStorage [40] features imple-
mented by modern browsers by using JavaScript and
the localStorage object to store the session secret.

e We improved patching of URLs in JavaScript com-
pared to the original protocol.

SessionLock used the URL Fragment Identifier to
keep the session secret around but hidden in the network
traffic. For that, each URL needs to be patched so
that the fragment gets appended. Using WebStorage is
superior in multiple ways. If WebStorage is not supported
by the browser, SecureSession falls back to using the
fragment identifier. SessionLock furthermore hooks into
the XMLHttpRequest object to intercept and modify
asynchronous messages. We determined that there are
cross-browser issues in using this method. In order to
improve compatibility across browsers, we used the
modified XMLHttpRequest object by Sergey Ilinsky [16]
to make message interception compatible across different
browsers.

In order to implement the above features we used two
checkers for the framework feature:

o The SecureSessionSecretNegotiation-Checker is an
asynchronous checker. The server has to run a Diffie
Hellman Key Exchange only if no valid session secret
is present. The server first calculates its private and
public parts, sends them to the client as JavaScript
code, and receives the client parts asynchronously in
response when the client is done calculating. Both
sides can then calculate the shared session secret.

o The SecureSessionSecretChecker-Checker is a syn-
chronous checker that validates all incoming requests
regarding HMAC and timestamp.

The SecureSessionSecretNegotiation initiates the key
exchange by sending JavaScript to the client containing
the calculations as well as the prime, generator and public
number. The client sends its public number back via an
asynchronous call. The server assumes that JavaScript is
disabled if it receives no answer from the client within
a (configurable) period of time. Again, SHPF can be
configured to make this feature mandatory. If an answer
is received, all further requests need to be appended
with a valid HMAC and timestamp (configurable). This
is done by the SecureSessionSecretChecker. While the
method is the same as in SessionLock, we ported it to
PHP. However, there is an exception to the rule: As Ben
Adida discussed in his paper, there may be cases where
a URL is not valid, such as when a page is opened
from a bookmark. In such a case, the feature allows a
configurable amount of consecutive requests that may
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CSS Status - Recommendation

CSS Status - Working Draft

Feature Value Feature Value
display inline-block transform rotate(30deg)
min-width 35px font-size 2rem
position fixed text-shadow 4px 4px 14px #969696
display table-row background linear-gradient (left, red, blue 30%, green)
opacity 0.5 transition background-color 2s linear 0.5s
background hsla(56, 100%, 50%, 0.3) animation name 4s linear 1.5s infinite alternate none
resize both
CSS Status - Cand. Recommendation box-orient horizontal
Feature Value transform-style preserve-3d
box-sizing border-box font-feature-setting dlig=1,ss01=1
border-radius 9px width calc(25% -lem)
box-shadow inset 4px 4px 16px 10px #000 hyphens auto
column-count 4 object-fit contain
Table IV

23 CSS PROPERTIES AND VALUES IDENTIFIED FOR CSS FINGERPRINTING

fail. If a valid request is received before that amount is
exceeded, no action is taken. To make the key exchange
secure against MITM attacks, this feature should only be
used on top of HTTPS or a secure, offline communication
channel for exchanging the parameters and the JavaScript
code.

For implementation we used the Crypt_DiffieHellman
library from the PEAR Framework® on the server side.
On the client, we used the Big Integer Library of Leeom
Baird’. The SecureSession feature also implements a
CryptoProvider. The CryptoProvider offers AES-CBC en-
cryption by using the SHA-1 hash of the session secret ne-
gotiated between the framework and the client as the key.
For PHP, the PHP extension mcrypt8 is used, for JavaScript
we use the library crypto-js°. The CryptoProvider then
encrypts all asynchronous messages from the client to the
framework. Furthermore, it prepends a timestamp to the
plaintext before encryption, thus preventing replay attacks
if the age of the timestamp exceeds a configurable time
span.

E. Further Fingerprinting Methods

Our framework is especially designed to allow new
and possibly more sophisticated fingerprinting methods to
be added at a later point in time by implementing them
as additional checkers. The presented results on HTMLS
fingerprinting above, e.g., have not yet been implemented
at the time of writing. We are planning to implement
HTMLS5 fingerprinting as an asynchronous checker in
the near future. Other fingerprinting methods e.g., EFF’s
Panopticlick, can be added at ease adding 18.1 bits of
entropy on average [7]. See Section VI-A for related work
and other fingerprinting methods which could be added to
SHPF.

V. EVALUATION

There are multiple possible attack vectors that enable
an attacker to obtain session tokens of any kind and take

Shttp://pear.php.net/package/Crypt_DiffieHellman
Thttp://leemon.com/crypto/BigInt.html
8http://php.net/manual/en/book.mcrypt.php
9https://code.google.com/p/crypto-js/

over the victim’s session. We will discuss for each attack
vector how SHPF can detect session hijacking and how it
prevents it.

A. Threat Model

An attacker in our threat model can be local or
remote from the victim’s point of view, as well as either
active or passive. While a passive attacker just listens
without interacting with the client, an active attacker
sends, modifies or actively drops communication content.
Different requirements have to be met for each of the
outlined attacks, however, these are beyond the scope of
this paper.

Figure 2 shows an overview of the different points of
attack that were considered while designing SHPF. They
are based on the OWASPS Top 10 from 2010'°, which
has multiple categories that either directly allow session
hijacking, or facilitate it. The most notable categories are
”A2 Cross-Site Scripting”, ”A3 Broken User Authenti-
cation and Session Management and A9 Insufficient
Transport Layer Protection”. We particularly considered
threats that are actively exploited in the wild, with tools
available for free.

The following points of attack allow an attacker to
hijack a session:

1) Different attacks where the attacker has access to

the victim’s network connection.

2) The target website is vulnerable to code injection
attacks (XSS), pushing malicious code to the client.

3) Local code execution within the victims browser’s
sandbox, e.g., by tricking the victim into executing
Javascript (besides XSS).

4) Attacker has access to 3rd party server with access
to the session token, e.g., a proxy, Tor sniffing or
via HTTP referrer string.

The detailed attack descriptions for each of these
attacks are as follows: 1) If the attacker is on the same
network as the victim, e.g., on unencrypted Wi-Fi,
searching for unencrypted session tokens is trivial - these
are the methods used, for example, by Firesheep and

10https://owasp.org/index.php/Top_10
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Figure 2.  Attack Points for Session Hijacking

FaceNiff. In case the connection between victim and
website is encrypted with HTTPS, the attacker might
use sslstrip [25] or cookiemonster [32], as HTTPS as a
sole countermeasure against session hijacking has been
shown to often be insufficient. The token could also be
obtained by an active attacker on the same network by
means of ARP or DNS spoofing, redirecting the victim’s
communication in a man-in-the-middle attack, or DNS
cache poisoning [18]. 2) If an attacker is able to inject
Javascript into the website which is then executed at
the victim side (XSS), he can transmit all necessary
session tokens to himself and take over the session. 3)
An attacker could access session tokens by attacking the
browser directly using social engineering or a malicious
browser extension, e.g., by tricking a victim into copy-
pasting some Javascript into the URI bar of the browser.
4) In case of a poorly implemented Web application
(HTTP referrer string), insecure transport (HTTP only)
or network design (logging proxy server), an attacker
might be able to access accidentally leaked tokens. This
class of attacks would also include shoulder surfing (if
the token is part of the URI) and improper usage of the
Tor [6] anonymization network [27], [14].

B. Discussion

To counter the attacks listed above, SHPF relies on a
combination of its features: the shared secret between the
server and client using the SecureSession feature, and
session hijacking detection using browser fingerprinting.
An attacker would thus have to find out the secret, share
the same IP and copy the behavior of the victim’s browser
- either by running the same browser version on the same
operating system or by collecting the behavior of the
browser over time.

The basic monitoring of HTTP information gives a
baseline of protection. Binding a session to, e.g., an
IP address makes it considerably harder for a remote
attacker to attack, and a local attacker needs to be on
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the same local area network if the victim is behind NAT.
Changes in the UserAgent or the HTTP header ordering
are easily detectable, especially if careless attackers use
sloppy methods for cloning header information, or only
use some parts of the header for their user impersonation:
Firesheep and FaceNiff, for example, both parse the
header for session tokens instead of cloning the entire
header. A recent manual analysis of the Alexa Topl100
pages showed that only 8% of these very popular websites
use basic monitoring in any form - notably eBay, Amazon
and Apple [3]. Even though asynchronous challenges for
fingerprinting on the attacker’s machine could also simply
be forwarded to the victim for the correct responses, the
additional delay is detectable by the server.

We shall now discuss for each of the attacks outlined
above how SHPF protects the session through active
attack detection and prevention. Even though SHPF
could work without HTTPS in certain configurations and
environments, it should be used for starting the session,
as without HTTPS bootstrapping the session becomes
complicated, e.g., with respect to possible MITM attacks.
As HTTPS is already used widely for user authentication,
we assume that it is available at least for bootstrapping
the SecureSession feature. SHPF has the following impact
on the attack vectors: 1) Snooping or redirecting local
network traffic can be detected at the server with either
browser fingerprinting or using the shared secret, which
is never transmitted in clear from SecureSession - both
methods are equally suitable. 2) Cross-site scripting
prevention relies on browser fingerprinting only, as
the attacker could obtain session tokens by executing
Javascript code in the victim’s browser. The shared secret
is not protected against such attacks. 3) Local attacks are
also detected by browser fingerprinting only - the session
secret is not safe, thus the attacker has to either run the
same browser, or answer the asynchronous checks from
the framework correctly. 4) Accidental token leakage is
again prevented by both aspects, so even if the session is
not encrypted by HTTPS the content is encrypted by the
SecureSession feature and fingerprinting is used to detect
changes in the used browser. Please see the original paper
about SessionLock [1] for a detailed security analysis of
the protocol.

SHPF does not intend to replace traditional security fea-
tures for web sessions. While our approach cannot prevent
session hijacking entirely it makes it considerably harder
for the attacker. For sensitive websites with a high need for
security, additional measures like 2-factor authentication
or client-side certificates should be employed.

C. Limitations

Even though SHPF makes session hijacking harder, it
has limitations: the HTTP headers and their ordering, as
well as the UserAgent, are by no means security measures
and can be set arbitrarily. However, if enough information
specific to a browser is used in combination with ever
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shorter update intervals for browsers, we believe that
fingerprinting is suitable for preventing session hijacking.
Secondly, SHPF does not protect against CSRF: An at-
tacker who is able to execute code outside of the browser’s
sandbox, or has access to the hardware, can bypass our
framework. Thus session hijacking is made harder in the
arms race with the adversary, but not entirely prevented.
Another limitation is the vulnerability to man-in-the-
middle attacks: Diffie-Hellman in Javascript for shared
secret negotiation is vulnerable to MITM, and either a
secure bootstrapping process for session establishment or
offline multifactor authentication is needed to protect the
session against such adversaries.

D. Future Work

We plan to extend CSS fingerprinting with CSS se-
lectors and CSS filters and intend to implement HTMLS
fingerprinting as an additional SHPF feature. We further-
more plan to assess the tradeoff between the numbers of
asynchronous challenges sent by the server to the total
pool size of challenges for recent browser versions, as well
as to measure the entropy of each fingerprinting method
in practice. Even though the SHPF features for CSS (and
soon HTMLS fingerprinting) are not designed to be used
as single-use challenges within a session, we believe that
measuring the entropy on a large set of users would be
beneficial for the area of browser fingerprinting.

VI. RESULTS

In general, the performance impact of running SHPF
on the server is negligible as most of the processing is
implemented as simple database lookups. Only a few
kilobytes of RAM are needed per session and client for
all features combined, while the overhead on the network
is around 100 kilobytes (mostly for the libraries used by
our framework - they need to be transferred only once due
to browser caching). A mere 15 lines of code are needed
to include SHPF in existing websites (see Appendix
A), while the features each consist of a few hundred
lines of code on average, with SecureSession being by
far the biggest feature (about 4000 lines). Existing Web
applications implement far more complicated logic flows
and information processing capabilities then SHPF. !!

The biggest impact on performance is caused by the
generation of the primes for the Diffie-Hellman key ex-
change. We used a small but diverse set of devices to
assess the clients’ performance for creating the shared
secret: a notebook (i7 CPU with 2 Ghz), a netbook (AMD
Sempron with 1.5 Ghz) and two different smartphones
(iPhone 4S and Nexus S). On the notebook, the latest
versions of Chrome and Firefox at the time of writing
(Chrome 18 and Firefox 12) were the fastest browsers for
this operation, while Internet Explorer 9 was up to four
times slower. As smartphones are limited with regard to
CPU performance, they were even slower. A comparison

""We will release our datasets along with the source code once the
paper is accepted.
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of runtime needed for generating primes of different length
can be seen in Figure 3. Depending on the security need of
the website this overhead should be considered, as well as
the amount of expected mobile users. The overhead caused
by CSS fingerprinting on the client side is negligible
compared to regular website rendering.
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A. Related Work

In the area of browser fingerprinting, different
approaches have been used to identify a given browser.
Panopticlick!?> relies on the feature combination of
UserAgent string, screen resolution, installed plugins and
more to generate a unique fingerprint [7] that allows the
tracking of a given browser even if cookies are disabled.
Even though the features of Panopticlick, such as screen
resolution or installed browser plugins, are not yet fully
incorporated in our framework, we are planning to do
this in the near future. Other recent work in the area of
browser fingerprinting identifies a client’s browser and
its version as well as the underlying operating system
by fingerprinting the JavaScript engine [9]. While the
approach in [28] uses various well-known JavaScript
benchmarks to generate a unique fingerprint based on
timing patterns, [35] employs a JavaScript conformance
test to identify subtle differences in the conformance
of the underlying JavaScript engine. Another recent
method uses website rendering differences as presented
in [29]. Like SHPF, these methods allow the detection
of a modified or spoofed UserAgent string, as it is
not possible to change the behavior of core browser
components like the rendering or the JavaScript engine
within a browser.

With regards to privacy, cookies and browser
fingerprinting can be employed to track a user and
their online activity. A survey on tracking methods in
general can be found in [26]. Other work has recently
shown that the UserAgent is often sufficient for tracking a
user across multiple websites or sessions [43]. Intersection
attacks on browsing history [31] or social networking

12https://panopticlick.eff.org



sites [42] can be used to identify users. Session hijacking
has been shown to allow access to sensitive information
on social networking sites [15]. Finally, session hijacking
is often conducted using cross-site scripting (XSS)
attacks that are used to send the session information to
an attacker. While this can be employed to protect a user
from entering the password at an insecure terminal [3], it
is often used maliciously, e.g., to impersonate the victim.
Different approaches have been implemented to protect
users from XSS on the client side [19], [39], [30] as well
as on the server side [17].

The OWASP AppSensor project'? is a framework that
offers similar features as SHPF for Web applications:
It can detect anomalies within a session and terminate
it if necessary. However, it only uses a very limited set
of checks compared to SHPF, namely the IP and the
UserAgent string.

VII. CONCLUSION

In this paper, we presented our framework SHPF, which
is able to raise the bar for session hijacking significantly.
It detects and prevents attacks and hijacking attemps of
various kinds, such as XSS or passive sniffing on the
same network (Wi-Fi). We furthermore proposed two
new browser fingerprinting methods based on HTMLS
and CSS, which can identify a given browser. SHPF
uses browser fingerprinting to detect session hijacking
by constantly checking (e.g., with every request) if the
browser is still behaving as it did when the session was
started. SHPF can be configured to run with different
security levels, allowing additional security checks for
sensitive sessions or session parts. Future and upcoming
fingerprinting methods can be incorporated easily.

APPENDIX

APPENDIX A - SHPF EXAMPLE
include (’../SHPF/SHPF.php’);

$shpf = new SHPF\SHPF ();
$shpf->setCheckFailedHandler (’\failedHandler’);
$shpf->getOutput () —>includeJSLibrary = false;

$serverEnvFeature = new SHPF\Features\HttpHeader\HttpHeaderFeature ($shpf);
$serverEnvFeature->setCheckAll (true);
$shpf->addFeature ($serverEnvFeature);

$shpf->addFeature (new SHPF\Features\SecureSession\SecureSessionFeature ($shpf));

(2]

(3]

(4]

(3]

(6]

(7]

[8

—

[9]

[10]

[11]

[12]

[13]

[14]

$shpf->addFeature (new SHPF\Features\CSSFingerprint\CSSFingerprintFeature ($shpf));

$ret = $shpf->run ();

Soutput = Registry::get (’smarty’);

$output->append ($shpf->getOutput () ->flushHead (true), "head’);
Soutput->append ($shpf->getOutput () ->£lushHTML (true));
Soutput->append ($shpf->getOutput () ->£1lushJs (true));
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Abstract. The Tor network is a widely deployed anonymity system on
the Internet used by thousands of users every day. A basic monitoring
system has been designed and implemented to allow long term statistics,
provide feedback to the interested user and to detect certain attacks
on the network. The implementation has been added to TorStatus, a
project to display the current state of the Tor network. During a period
of six months this monitoring system collected data, where information
and patterns have been extracted and analyzed. Interestingly, the Tor
network is very stable with more than half of all the servers located in
Germany and the US. The data also shows a sinusoidal pattern every 24
hours in the total number of servers.

1 Introduction

This work is about monitoring the infrastructure of the Tor network. Tor, “The
Onion Router”, is an anonymity network that is widely used in the world to
hide the user’s IP address [12]. The required infrastructure is run by volunteers.
Anyone can host a Tor server to improve the overall performance of the Tor
network. Because servers can join and leave the current set of servers anytime,
the network is highly dynamic and the overall performance depends on the time
of usage. However, the number of servers is surprisingly constant over time.

To provide some form of monitoring of this widely distributed network is
difficult as it is an anonymity network. Especially since the user’s anonymity
must not be compromised. We have implemented a form of monitoring to the
infrastructure with a special focus on performance statistics, without introduc-
ing new or improving known attacks on the user’s anonymity.

This work is organized as follows: The second section discusses anonymity
on the Internet and the Tor network. Section 3 presents the approach chosen for
the monitoring and the selected values of interest. Section 4 explains briefly the
implementation, while Section 5 interprets the data from the monitoring over
a period of six months. It shows interesting regular patterns and properties of
the Tor network as well as unusual patterns. The last section is dedicated to the
conclusion.
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2 Anonymity on the Internet

The word anonymity comes from the Greek language, meaning “without a name”
or “namelessness”. When talking about anonymity, the usual setting refers to
the transportation of a message from a sender to one or more recipients [29].
These messages can be of any kind (like electronic messages, votes in general
elections, emails, etc.) and can be transported using any media (a piece of pa-
per, radio waves, the Internet, natural language, etc.).

Anonymous electronic communication was first introduced in 1981 by David
Chaum [5]. Instead of sending the message directly from the sender to the re-
cipient it passes several additional relay servers on its way (so called mixes).
These mixes collect the messages and forward them in batches. With the use of
public key cryptography [10] it is possible that only the intended receiver can
read the message and the mixes can not. Since the first introduction of mixes the
development has evolved into two main directions: low latency and high latency
anonymity systems [7].

High latency anonymity systems started in the early nineties and provided
anonymity by mixing the messages over time. It is not important when ex-
actly the message reaches the destination, but it has to reach it eventually with
all possible identifying information removed. One of the first heavily used sys-
tems which started in 1992 was the pseudonymous remailer by Johan Helsingius
(anon.penet.fi) [28]. By sending an email to this server including the intended
target, it was possible to send pseudonymous emails and postings to the Usenet.
However, in 1995 Helsingius was forced by the authorities to reveal a users real
email address because of a complaint filed by the Church of Scientology. Thus the
provided anonymity was weak, no encryption was used and the server was a sin-
gle point of failure. If the server was down, the service was unusable. A deployed
example for an anonymous remailer at the time of writing is Mixminion [8]. It
was first published in December 2002 and is the successor of Mixmaster [21] and
the Cypherpunk remailer [28]. It uses a set of trusted and synchronized direc-
tory servers which know the current network and server states. On the current
Mixminion network there are between 80,000 and 100,000 messages transmitted
daily [20]. The differences between the systems are that every succeeding re-
mailer uses a stronger threat model and becames more resistant against attacks
like traffic analysis [6]. One of the most recent developments in this field is the
publication of the Sphinx cryptographic message format [9].

Low latency anonymity systems on the other hand are not able to use time to
achieve strong anonymity. They are built to be usable for interactive communica-
tion like SSH or web browsing, which means that long delays like in anonymous
remailers are unacceptable. Bidirectional communication is used where a client
can request something from another entity like a server and gets the response
with only minor additional delay. Various systems exist with different threat
models and different compromises between flexibility and anonymity. One of the



first systems designed was “ISDN-mixes” [30]. Today, Tor is probably the most
heavily used with an estimated 100,000 plus users every day. An alternative to
Tor is “JonDo”, formerly known as the Java Anon Proxy [4].

2.1 The Tor Network

Tor [12] is the second generation of onion routing and is based on the original
onion router [15] from 1999. It is a low latency anonymity system and used all
over the world. The public network was deployed in October 2003 [13] and has
grown from only a few servers to more than 2000 distinct servers with around
1200 servers running any time at the time of writing. It is an open source project
and offers a lot of features compared to earlier implementations of onion routing
for users seeking anonymous communication.

The goal of the Tor network is to provide communication anonymity and
to prevent traffic analysis [6], thus making it hard for an attacker to link com-
munication partners or link multiple conversations to or from a single user. It
was developed for a high degree of deployability and usability, resulting in an
increased anonymity set [11]. Tor also makes it easy for anyone to extend the
underlying infrastructure by running a Tor node at very low cost. Tor nodes run
on a variety of platforms and the system is very flexible regarding what applica-
tions can be used, and incorporates many good designs from previous anonymity
systems.

The threat model of Tor is weaker than other anonymity systems. The most
commonly assumed threat regarding anonymity systems is a global passive ad-
versary who can monitor all traffic going into and out of an anonymity systems as
well as the traffic inside of the system. Additionally, it is often assumed that the
adversary may has the ability to inject, delete or modify messages in transit and
a subset of the nodes can be under this persons control; it is however unrealistic
that he controls all of the nodes. Anonymity systems that protect against such
attackers can assume to be secure for most of the possible users [12]. By design
Tor does not protect against such a strong attacker. The assumed adversary in
Tor is able to run or control a subset of network nodes, is able to observe some
fraction of the network traffic and is able to inject, delete or modify messages [12].

Tor protects against traffic analysis attacks which would allow an attacker to
find out which nodes of importance to attack only by watching traffic patterns.
In favor of a simple and deployable design, some commonly used techniques
in anonymity like message reordering were intentionally not used when Tor was
designed. The network is not solely peer-to-peer based and is not using steganog-
raphy; thus it is not hiding the fact that somebody is using Tor. Another design
choice was to keep Tor completely separated from protocol normalization: many
protocols like HTTP are very complex and variable, which would require com-
plex protocol normalization to make all clients look the same. For HTTP, Tor
relies on TorButton, a firefox extension to prevent IP and cookie leakage, and
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Privoxy, a filtering web proxy that enhances privacy. TorButton on the other
hand filters many types of active web content which could possibly leak identity.
For other protocols this has to be considered separately before relying on the
anonymity provided by Tor.

The Tor network consists of the following basic entities - the details of the
basic architecture and the entities can be found in the original paper [12] as well
as on the Tor website [1]:

— Directory Server: The core of the Tor network, a small set of trusted au-
thorities (7 at the time of writing). They know the current set of valid Tor
servers, distribute this knowledge to the clients and sign it with their pri-
vate keys. The directory servers vote on the current set of Tor servers with
simple majority, so that control over one directory server has no value. For
an adversary control over more then half of these servers would be required
to successfully attack Tor at the directory server level.

— Server: The Tor servers are used to actively hide the user’s IP address. They
are operated by volunteers, anyone can download the server software and
run a Tor server. As soon as the server program is started it publishes its
keys and descriptor to the directory servers, and will then become part of
the directory. Once the server is listed in the directory it can be used by
clients. It will continue to publish signed statements to the directory servers
constantly. To be as flexible as possible, every server operator can decide to
limit the bandwidth or transferred data Tor might consume, and whether the
server will be an exit server and allow connections to hosts outside the Tor
network. There are many other configurable options and many properties a
server can have, for example if it is flagged as a guard node. Guard Nodes [34]
were not part of the original design but were added later because of a certain
attacks [25] against hidden services and predecessor attacks in general [37].

— Clients: The client software runs on the user’s computer. Right now there are
two software clients available, the original client written in C and available
for the majority of popular operating systems (Windows, Mac OS X and
various Linux/Unix flavors) and OnionCoffee, which was written in Java for
the PRIME project [31] as a proof of concept and is no longer maintained.
Additionally the client is available in different packages, like preconfigured
USB sticks and VMware images.

Communication in Tor works on the transport layer, anonymizing TCP streams.
Many TCP streams can share a circuit, and by default a circuit consists of three
Tor servers: the entrance node, the middleman node and the exit node. The
entrance node is aware of the real IP address of the users, but not the commu-
nication content whereas the exit node is able to see the content the user was
originally transmitting and the final destination but not the originating IP ad-
dress. The circuit is constructed incrementally by the client software. Everything
is transported in fixed size cells, which get encrypted once for every relay in the
circuit by the client. Packet anonymization instead of stream anonymization was
proposed [17] and has the drawback of causing a lot of resend requests as the



packets take different paths with arbitrary delays to the destination.

As Tor became popular in recent years, many attacks were designed to de-
feat or degrade anonymity [3, 16, 22] and their according countermeasures [25].
Among the most notable attacks is the Sybil attack [14], which is applicable on
almost any system that relies on distributed trust. It is based on the idea that
a small number of entities can impersonate multiple identities. Traffic analysis
[2] on the other hand uses metadata from network communications instead of
content to attack anonymity systems, as content is often encrypted with strong
ciphers. This metadata includes volume and timing information as well as source
and destination of messages. Tor does not protect against a global passive adver-
sary that can monitor all network connections. Traffic analysis makes it possible
to link communication partners at random, just by controlling and monitoring
some part of the network. This has been shown in [23] by estimating the traffic
load on specific Tor nodes. Other publications wanted to improve the overall Tor
performance and the security inside Tor [24, 26,27, 32, 33].

TorStatus, also known as Tor Network Status, is one of many open source
projects around the Tor Network [35]. Its goal is to present the current status
of the Tor network to the interested user. In essence it consists of a Perl script
which connects to a local Tor server and writes the necessary information into
a database, the frontend is a PHP application which takes care of the appropri-
ate presentation. It was originally developed by Joseph Kowalski in 2006. The
current lead developer is Kasimir Gabert.

3 Monitoring Tor

Monitoring the Tor network has been done before, but with a different focus. Re-
searchers tried to find out more information about Tor users and to understand
what they use Tor for [19] in the beginning of 2008. This is somehow contradict-
ing with the purpose of an anonymity service. Usage pattern on the other hand
are important for future development of Tor and the perception of Tor in the
public. The result was that most connections are used for HT'TP traffic, while
most of the traffic is caused by BitTorrent, a common file sharing protocol. For
Tor hidden services, statistics have been collected as well [18], but without long
term public presentation.

3.1 Values of Interest

Before monitoring a system it is important to identify the values of interest, i.e.
not all values are bearing useful information. As with the Tor network it is im-
portant to find values that have a direct influence on the user’s anonymity. Care
has to be taken not to introduce possibilities for new attacks on the network, or
to decreasing the degree of anonymity and making existing attacks easier. The
Tor infrastructure is a dynamic number of Tor servers operated by volunteers,
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so the most basic values of interest consists of the total number of Tor servers.

Monitoring the infrastructure of the Tor network has been done before but
was suspended again. There is a website that collected the number of Tor nodes
and the total traffic of the Tor network over time, [36], but stopped publishing
those values as of August 2007. Instead, it refers to the current TorStatus web-
sites, which only shows the current state of the network and does not monitor
anything over time (yet). One of the design papers by the creators of Tor [13]
published some statistics about the number of running routers and the total
relayed traffic in the early stages of the Tor network, from August 2004 till Jan-
uary 2005. Apart from that no official statistics over time are publicly available.

Inspired by those early data collections the following important values worth
monitoring have been identified:

— Total number of running servers

— Total number of running exit servers

— Total number of running fast servers

— Total number of running guard servers

— Country distribution of running servers
Country distribution of running exit servers

These values have been chosen with two goals in mind: to measure the ef-
fects of the infrastructure on the possible degree of anonymity and to measure
the effects on the quality of service.

For the overall anonymity and security, the number of Tor servers at the time
of usage is crucial. A handful of servers would be easy to attack, either directly
with the goal of defeating anonymity or with a denial of service attack. Thus
the greater the number of Tor servers, the better. In the network consensus all
servers are flagged according to their capabilities and qualities. The important
flags for the degree of anonymity are “running” and “exit server”. Those are the
servers a client uses for his circuits, as apparently a server that is not reachable
is of no value in a Tor circuit. Thus the number of running servers and running
exit servers is the smallest practical metric with influence on the path selection
and anonymity. The client’s actual path selection algorithm is more complex
and depends on further server attributes like advertised bandwidth and server
IP address, which are not part of the monitoring. For the quality of the Tor
connections, two other flags become important, namely the “fast” and “guard”
nodes: the more fast Tor nodes there are, the better the overall performance for
the client. The more guard nodes in the network, the better the performance
(as the proportion guard nodes to clients decreases) and the number of clients a
given guard handles decreases.

The distribution of servers over different countries and therefore different
jurisdictions is the second value that influences the degree of anonymity. To keep
the demands on the performance of the monitoring system low and to prevent



the user from an uncontrollable information flood, only selected countries are
getting monitored. The countries with the highest number and the vast majority
of Tor servers are those of interest. Over a period of two months the country
distribution of Tor servers has been monitored, resulting in the implementation
of the following set of countries to monitor: United States of America, Germany,
China, France, Sweden, Russia, the Netherlands, Canada, Great Britain, Italy
and Austria. Additionally the sum of all other countries and Tor nodes that
are not mappable to any country get accumulated and stored as well. Based
on this information, the top 11 countries have been selected for monitoring.
The mapping of IP addresses to countries was done by using TorStatus, more
precisely by using the GeolP library together with TorStatus.

4 Implementation

The gathering of data was implemented by expanding the TorStatus update
script, tns_update.pl, together with a graphical user presentation in the frontend,
network_history.php. Whenever the script is updating the TorStatus database,
it is also updating the Tor History monitoring. The values are stored in a RRD,
a so called round robin database, which is part of the software “RRDtool” and
was already used for generating and updating the other graphs of the TorStatus
website. The changes can already be found in the SVN trunk of TorStatus, and
will be included in the next release.

When working on an anonymity network it has to be assured that by adding
features the additional features should never possibly harm the network or
anonymity. This means that the new features should not introduce new attacks
or make existing attacks easier. In our case, all the used information is part of
the network consensus, which means that all the information are already known
to every Tor server as well as every Tor client, they are kind of public knowledge.
The only difference is that some coarse part of it is now stored over time. From
all the recent published attacks on the Tor network none becomes easier. And
even future attacks should not benefit from it, as e.g. the number of servers per
country or the total number of exit servers holds no valuable information when
trying to attack the user’s anonymity. The main objective is to provide the in-
terested user an overview over the current status of the underlying Tor network
and to make changes in the Tor network visible.

4.1 Further improvements

The collected data set might be expanded to collect information of other coun-
tries in detail, and collect additional data on the overall network. One useful
example would be the total transmitted traffic (as in [13]), but as this informa-
tion is provided by the servers it is easy to manipulate and to bias the statistics.
Another feature worth implementing in the future would be the port distribution
of the exit servers in general and the distribution of specific important ports like
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HTTP by country. As soon as IPv6 is supported by Tor the monitoring software
should be extended to support IPv6 as well.

The focus of this work was on basic network monitoring, so these improve-
ments are left open for the future. However, any extensions should be done very
carefully and only after evaluating the impact on anonymity.

5 Data Interpretation

The data collection started in the middle of October 2008 and is still going
on. The time interval of the collected data presented here refers to around six
months. Note that the time zone in the graphics is GMT and that gaps in the
graphics were caused by failures in the data collection process.

5.1 Overall Network Size

Since deployment, the overall network size and the number of running Tor servers
has been steadily increasing. Since public deployment in October 2003 with only
a handful of servers, the infrastructure has grown to a total of 50 nodes by
November 2004 [23]. This doubled to around one hundred nodes in January
2005 [13]. In August 2007 there were around 1000 running servers as of [36]. Up
to today, everyday between 1300 and 1500 servers form the basic infrastructure
of the Tor network, whereof 600 to 700 of them are exit servers.
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Fig. 1. Running Tor Servers in the first 3 months

Figure 1 shows the overall number of servers and the number of exit servers
during the first three months of the data collection period. On average, 1163
servers were online during that period, 532 of them exit servers. The highest
number of servers were 1289, the lowest 1040 (626/454 exit servers). It is clearly
visible that the number of servers stays roughly the same and the network is
quite constant. This does not mean that these are the same servers all the time:
more then half of the servers that report their uptime have an uptime less then
one week. Less then five percent have an uptime which is longer then ten weeks.



About eighty percent of the servers have a reported uptime in TorStatus. During
the last 3 months the overall network size increased, which is shown in figure 2.
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Fig. 2. Running Tor Servers during 6 months

On country level the most active countries are by far Germany and the United
States. Both countries together host in total more than half of all the servers,
which is shown in figure 3. The reasons for that are not easy to identify. Among
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Fig. 3. Running Servers in DE and US, in total

other reasons, data privacy seems to have a high significance in Germany, prob-
ably based on the country’s history and because of many popular organizations
that want to enforce civil rights and electronic privacy like the Chaos Com-
puter Club. In the US there is a different approach on data privacy compared
with Germany or the European Union. Both countries are among the top five
countries regarding the Internet density in the world according to internetworld-
stats.com. If the Internet density is high, Internet access and bandwidth for the
users becomes cheap. This of course increases the likelihood that a user is willing
to donate bandwidth to the Tor project by running a Tor node.

5.2 Total Number Patterns

The most obvious pattern is that the number of overall servers is dependent on
the current time of day. This is shown in figure 4. It looks like a sine function (or
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cosine) as the number of servers reaches a maximum and a minimum within a 24
period each day. The time in the figure is GMT, which means that most of the
servers are online in the “GMT evening” which is insofar interesting as this data
represent the worldwide Tor network. This is mainly influenced (among other
things) by the daily variation of servers in Germany, where most of the servers
are online in the evening.

This daily pattern is also found in the data set of the “other” servers. These
are the servers were the country is unknown, summed up with the servers that
are in a different country then the countries monitored separately. The sum of
the other servers and how it changes over time is shown in figure 5. By looking
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Fig. 5. Daily pattern in “other servers”

at it, it is visible that this category of servers as well has a daily pattern. The
amplitude is much lower than compared with the number of exit servers, but it
is still visible. This means that firstly Germany seems to be the reason that the
number of servers changes over the day, but also the servers that are not in the
top countries or where the country is not identifiable by GeolP within TorStatus.
Secondly, it seems that the majority of servers have to be geographically close if
the server administrators operate their servers similar, which is needed that an
overall pattern becomes visible.



Finally, regarding the overall network pattern, the proportion of exit servers
is of importance. The Tor network is designed that 33 % of the servers need to be
exit servers. Figure 6 shows that between 45 % and 50 % of the servers are exit
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Fig. 6. Overall percent exit servers

servers, which is very good. Just because a server is flagged as an exit server does
not mean that the client software has to choose this server as the exit server.
Interestingly, the ratio of normal to exit servers stays quite constant compared
to the rest of the Tor network. Sudden changes in the percentage of exit servers
would be a good indicator in case of any attacks. For example if an attacker tries
to redirect as many users as possible to his exit servers by attacking the others
with a denial of service attack. However, a sophisticated attacker might combine
the denial of service attack with a Sybil attack and start an exit server for every
attacked exit server. This would keep the ratio unchanged. The percentage of
exit servers does not take into account the various exit server policies as they
allow services based on the port number, but gives a good overview of the overall
network.

In our monitoring, around 80 % of the servers are monitored, which means
that at least 80 % of all Tor servers are hosted in only 11 countries. In the future
it would make sense to take the various exit policies into account as well.

5.3 Country Pattern

When watching the data on country level, other interesting patterns can be iden-
tified. The patterns discussed in this section refer to the top countries that are
monitored separately. The biggest part of the Tor network is made by servers
from Germany and the United States. By comparing those two countries, subtle
differences are detectable. This is shown in figure 7. While the number of servers
in the US stays quite constant, the number of servers in Germany is changing
with a 24 hour pattern. Around 50 servers or 15 % of the German servers are
turned off and on again during the night. This might be because of Internet
access pricing models from Internet service providers or because the servers are
operated at workplaces. The exact reasons are hard to tell. The total number of
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Fig. 7. Differences Germany and the USA

servers in Germany per day is between 300 and 400.

It is also interesting how many servers in a country are exit servers. This
is shown for a few countries in figure 8. Only the top 5 countries have been

Percent

Number of Servers

oct Nov Dec Jan Feb Mar Apr
W Overall @ us W CE W CN O FR

Fig. 8. Percent of Exit Servers

compared for simplicity of the graph. It is very interesting to see which countries
have more than average in exit servers. The average of exit servers was already
shown in figure 6. Germany and the United States have a less then average
percentage of exit servers, while the countries hosting not so many Tor servers
like China and France have a higher percentage. This is most likely because of
the much lower number of servers. Overall, China has constantly between 80 and
90 % exit servers.

5.4 Strange Pattern found

During the collection of data, some strange patterns have been found. One of
them seems to be inside of Tor itself: When looking at the number of guard
servers, the values change quite a lot. It seems as if the Tor consensus is adding
and removing a large proportion of guard servers. This is shown in figure 9.
Although the number of guard servers seems to change a lot, there is still a
daily visible pattern. The sine pattern again can be attributed to Germany, the
country with the highest number of guard servers, and some other countries.
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The large jumps with more than 100 guard nodes and more joining and leaving
the set of guard nodes is not explicable by daily pattern. This is likely due to
some topics in the Tor implementation, or the network consensus protocol. This
issue has been reported to the Tor developer team and not yet solved.

6 Summary and Conclusion

Monitoring the Tor network greatly increases the overall benefits of the Tor
community. First, the most obvious benefit, is that the development and growth
of the Tor network is now visible to the Tor developers, the server operators,
the users and everyone interested. The information is presented conveniently
and self-explanatory, no deep knowledge or understanding of the Tor network
is needed. This feedback can be used by the advanced user to decide about the
current degree of anonymity and whether the network is providing sufficient
anonymity or not. The collected statistics about the history of the Tor network
might one day allow decisions as to which country is to be used as an entry to
Tor or other improvements to the path selection. An example: all of the sudden
the number of servers in Italy drops significantly. Is it then still ok to use the re-
maining servers in Italy? It probably is ok for a user relatively close to Italy who
is seeking high data throughput, if the Italian servers are used as a middleman or
entry node. For a user seeking high anonymity it might be better to avoid Italy
in all circuits at all. Recently the complete network consensus information since
the beginning of the Tor network has been made available, which will further
improve the findings of this paper in the future. By comparing the present with
the past it becomes possible to observe trends and this might be a triggering
point for an analysis or discussion.

This brings us to a very important benefit, the possibility of attack detection.
Right now, only the server operator is able to detect attacks on servers under his
control, like denial of service attacks. Sometimes there follows a discussion on
the Tor mailing list (or-talk@freehaven.net), mainly to check if other operators
have or had similar problems. If an attacker would launch a more significant at-
tack like a distributed denial of service attack on half of the Tor servers, the real
impact on the Tor infrastructure would be hard to detect fast. The same holds if
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an attacker launches a Sybil attack by adding numerous potentially manipulated
servers. With the monitoring of the Tor network this becomes easier to detect,
as the change in the number of servers is reflected immediately respectively as
soon as the change becomes part of the consensus.

In the far future, the collected information could be used to compare the
current state of the network with the expected state. By calculating a conserva-
tive set of rules about the “normal” behavior of the Tor network, changes that
could probably have an influence on the security can be detected. Incorporating
these rules into the path selection algorithm would allow finely tuned privacy
constraints on the selected nodes. An example would be an adaptive path length:
in the normal case, three nodes could get selected as it is currently implemented.
If then all of the sudden the number of servers drops or significantly increases
the path length could be automatically set to six Tor nodes to increase security.
It is not clear if an increase in path length would increase the security, but it is
sufficient as an example where the collected data of the Tor network could get
used in the future. Another example would be the integration of the data into
TorFlow, a project to detect malicious nodes. Instead of testing all the servers
all the time, which could eventually be costly in terms of time and resources,
only selected Tor nodes or all the nodes in a specific country could be tested.
Based on the collected data a set of Tor nodes responsible for the most suspicious
changes in the infrastructure could be identified for testing.
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Abstract. This paper analyzes the web browsing behaviour of Tor users.
By collecting HT'TP requests we show which websites are of interest to
Tor users and we determined an upper bound on how vulnerable Tor
users are to sophisticated de-anonymization attacks: up to 78 % of the
Tor users do not use Tor as suggested by the Tor community, namely
to browse the web with TorButton. They could thus fall victim to de-
anonymization attacks by merely browsing the web. Around 1% of the
requests could be used by an adversary for exploit piggybacking on vul-
nerable file formats. Another 7 % of all requests were generated by social
networking sites which leak plenty of sensitive and identifying informa-
tion. Due to the design of HT'TP and Tor, we argue that HTTPS is cur-
rently the only effective countermeasure against de-anonymization and
information leakage for HTTP over Tor.

Keywords: Tor, information leakage, privacy

1 Introduction

The Tor network [1] is a widely deployed anonymization network which hides
the user’s IP address on the Internet. It is expected to be used by hundreds of
thousands of users every day and is the most heavily used open anonymization
network today [2]. The main contribution of this paper is an in-depth analysis
on how the Tor network is used to browse the web.

At the time of writing little is known about the traffic that leaves the Tor
anonymization network. McCoy et al. [3] published a first investigation into how
Tor is being used by its end-users. They found that the majority of connections
leaving the Tor network are caused by the hypertext transfer protocol (HTTP).
According to statistics from the Tor project [4], their anonymization network
played a crucial role in the aftermaths of the latest Iranian elections whereas
HTTP-based services such as Facebook had been blocked on a national-level.
The ability of Tor to bypass Internet-censorship techniques got recently even
the attention of mainstream media (e.g. Forbes [5]). A deeper analysis of HT'TP
traffic that is tunnelled trough the Tor network is however lacking. Hence we aim
to provide a first investigation into how Tor is used to access the world wide web.
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By running a Tor exit server and logging the HTTP requests, we collected in
total 9 x 10° HTTP requests over a period of several weeks. The captured HTTP
requests form the basis of our investigation into the web browsing behaviour of
Tor users. The main contributions of this paper are:

— An in-depth analysis of HTTP traffic tunnelled through the Tor network
(Section 4).

— HTTP-based attack scenarios and mitigation strategies (Section 5).

— Potential risks for complete HTTP user de-anonymization, which can not be
prevented by Tor (Section 5.1).

We additionally show dangers to which users are exposed by using Tor in-
correctly and which information users leak by browsing the web with Tor.

The rest of the paper is organized as follows: Section 2 discusses Tor and pre-
vious work about Tor usage analysis. Section 3 shows how we collected our data
while we interpret the results in Section 4. Section 5 describes new attack sce-
narios based on HTTP as well as countermeasures. The last section is dedicated
to the conclusion.

2 Tor Security and Threat Model

The Tor network hides the user’s IP address by sending its packets through a
number of Tor servers. Tor itself does not hide nor encrypt communication con-
tent leaving the Tor network: the user has to take care that it is used correctly.
Sensitive information should only be sent over an encrypted protocol such as
HTTP secure (HTTPS). A passive adversary running an exit server would need
to break the end-to-end encrypted transmission in order to capture sensitive in-
formation. We will show later to what extent sensitive information is transmitted
unencrypted over HTTP.

The basic infrastructure of Tor is run by volunteers, and anyone can set up
a relay at relatively low cost. It provides reliable, bi-directional communication
that can be used for low latency communication such as interactive conversa-
tions, shell access or web browsing. Tor can be used by any program that is able
to use a SOCKS proxy and is freely available for almost any operating system
as well as in the form of prepared live CDs and virtual machines. Tor uses three
servers per path by default to hide its users real IP address, all servers chosen
at the client-side. The user’s communication content is protected from eaves-
dropping within the Tor network by using multiple layers of encryption. Before
forwarding a message, every Tor server removes his layer of encryption.

At the time of writing, the Tor network consists of approximately 1600 run-
ning servers, distributed all over the world. The first server in a path is chosen
from an ordered set of so called “entry nodes”; these servers are able to see the
users real IP address. Without the ordered set, every entry node would eventually



see every user’s real IP address. The last Tor server in the path is the so called
“exit server” and is chosen based on the communication target’s port number
and self-proclaimed available bandwidth. The so called “exit policy” at every
server specifies which port numbers are allowed for communication and whether
the server is allowing connections only within Tor or leaving Tor to the regular
Internet. The exit policy is defined by the server operator. Finally, a small set
of trusted “directory servers” collect information about the current state of the
network and vote on the current set of reachable servers. This information is
publicly available to all clients. The security of the Tor network relies on the
fact that instead of a single point or entity a user has to trust (for example by
using an open proxy server or a dubious VPN service); the trust is distributed
among the three Tor relays in a path.

Previous research about the usage of Tor has been conducted in the beginning
of 2008 [3]: by running a high bandwidth Tor relay and inspecting the commu-
nication content it was found that the majority of connections leaving Tor was
created by HTTP traffic, in total more than 90 %. However, a disproportional
part of the transferred data was caused by BitTorrent, a common file sharing
protocol. Yet a detailed analysis of the HTTP usage has not been conducted.
Another analysis has been conducted by Dan Egerstad in 2007 [6] who published
a list of 100 sensitive email accounts including passwords from embassies that
apparently used Tor incorrectly. Other published attacks on Tor aimed at de-
creasing or defeating the users anonymity by means of traffic analysis [7,8,9,10]
as well as attacks on unique aspects such as path selection [11] or the “hidden
services” of the Tor network [12,13].

3 Tor HTTP Sniffing - Ethics and Methodology

In our experiment we ran a Tor exit node and collected all HT'TP requests by
running urlsnarf from the dsniff toolkit [14]. Urlsnarf sniffs HTTP traffic and
is able to format it in CLF (Common Log Format), which is a format commonly
used by webservers. Compared to other experiments [3] our server was advertis-
ing less bandwidth to represent an average node and not to bias the client’s Tor
path selection algorithm towards our node; only HTTP traffic was allowed in
our exit policy. The collection period was from December 2009 till January 2010
with 9 x 10 HTTP requests in total resulteding in a logfile of 2.5 gigabytes.
We took special care that the users identities were not endangered or revealed
during the collection process: we did not store any packet dumps, user creden-
tials, authentication cookies or any other possibly compromising data except
the HTTP request. We did not try to become a “guard server” which clients use
as their entry to the Tor network and which are able to see the users real TP
address, and we did not monitor incoming connections. The data was stored in
an encrypted filecontainer and moved to another computer after the collection
process to protect against data disclosure in case of a server compromise.
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A Python script using the “apachelog” libary [15] deconstructed the requests
into three parts, according to our evaluation criteria:

— Target domain: the domain name of the request, without any deeper analysis
of the specific requested file or session context.

— User agent: the string that the browser sends to identify itself. This gives a
hint if the users are using TorButton, the recommended software by the Tor
developers to prevent user identification by an adversary.

— File type: the extension of the requested file. Executables pose a direct danger
to the user as an adversary might replace or modify them to defeat anonymity
or even worse. Indirect danger comes from file formats were there exist known
vulnerabilities in the corresponding software.

Subsequently the requests were sanitized and normalized for evaluation:

— File formats: various file extensions are treated the same on the client side,
notably image file formats such as jpg and jpeg or websites within the
browser, such as html, htm, php or cgi.

— Domain affiliation: some websites use different domains for content distribu-
tion, such as for example fbcdn.net and facebook.com belong to the same
website.

4 Results & Data Interpretation

Our goal was to analyze what Tor is used for, which domains are most popular
among Tor users and to discover potential threats to users.

4.1 Domains

In a first analysis based on the collected HTTP traffic we looked into depth into
the different websites that were visited through our Tor exit server.

Table 1a shows the top 10 visited domains, based on the percentage a cer-
tain domain accounts to the total requests. Facebook.com and google.com were
amongst the most visited sites. In fact, the majority of the requests belonged to
one of the following website categories:

— Social networking sites (e.g. facebook.com, blackplanet.com)
— Search engines (e.g. google.com, yellowpages.ca)
— File sharing (e.g. btmon.com, torrentbox.com)

Social networking sites (SNSs), which today account to the most popular web
sites, account in total to 7.33 per cent of all analysed HTTP traffic. These web-
services are interesting for two reasons: SNSs leak plenty of personal information
and secondly these services do not support HTTPS at the time of writing, except
for user authentication. Table 1b shows the Top SNSs as well as how much of
the SNSs traffic accounts to which service.



Domain (total %)

Social Networking Site (relative %)

URL Per cent (%) Name Per cent (%)
"facebook.com’ 4.33  ’facebook.com’ 59.06
'www.google.com’ 2.79  ’blackplanet.com’ 21.94
"blackplanet.com’ 1.61 ’vkontakte.ru’ 5.61
'yandex.ru’ 1.57 ’tagged.com’ 4.95
’btmon.com’ 1.47  ’orkut.com’ 3.13
‘photobucket.com’ 0.98 ’myspace.com’ 2.36
‘craigslist.org’ 0.90 ’mixi.jp’ 1.54
’torrentbox.com’ 0.88  ’hi5.com’ 0.48
’ameba.jp’ 0.87 ’adultfriendfinder.com’ 0.47
‘maps.google.com’ 0.70  ’badoo.com’ 0.46

(a) Overall services

(b) Social Networking Sites

Table 1: Analysis of most accessed domains

4.2 Fileformats

Among all the collected HTTP GET requests, .html was predominant with
almost 54 % of all the requests. Around 32 % were caused by image formats,
followed by JavaScript with 4.25 % of all GET requests. The details of the top

10 requested file extensions are shown in table 2.

Fileformat

Extension Description

Per cent (%)

"html’ HyperText Markup Language 53.83
'jpg’ JPEG image 18.15
"gif’ Graphics Interchange Format (GIF) 11.43
js’ JavaScript 4.25
‘css’ Cascading Style Sheets (CSS) 3.03
‘png’ Portable Network Graphics 2.81
xml’ Extensible Markup Language 2.62
"ico’ ICO image 0.77
swi’ Shockwave Flash file 0.48
‘rar’ RAR archive file format 0.20

Table 2: Top 10 file formats

4.3 Web browser types

Web browsers submit a text string known as “user agent string” to servers with
details on the client version and the operating system they are running on. When
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looking at the browser user agent string, various browser and operating systems
combinations were seen. The browser used to access websites through the Tor
network plays a crucial role for the anonymity of the end-user. TorButton [16]
is a plugin for the Mozilla Firefox browser developed by Mike Perry and Scott
Squires, which makes it possible for the user to switch between using the Tor
network and browsing the web directly. Even more important, it disables many
types of active content which could be used to bypass Tor and thus defeat Tor’s
anonymity protecting methods. To begin with, we inspected which were the ten
most common user agent strings. Table 3 shows the top 10 browser user agent
strings within our experimental data.

Browser

Full User Agent String Per cent (%)

"Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.0.7) Gecko/2009021910 Firefox/3.0.7’ 18.86
- 4.48
"Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9) Gecko/2008052906 Firefox/3.0° 2.71
"Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.16) Gecko/20080702 Firefox/2.0.0.16 1.81
"Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)’ 1.66
"Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)’ 1.64
"Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US; rv:1.9) Gecko/2008052906 Firefox /3.0’ 1.59
"Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)’ 1.50
"Mozilla/5.0° 1.34
’Opera/9.63 (Windows NT 5.1; U; en) Presto/2.1.1 1.31

Table 3: Topl0 Browser (Raw user agent string)

TorButton uses a more constant user agent string in contrast to Firefox since
the Firefox user agent string changes with every update of Firefox. This increases
the anonymity set, as long as the used string is plausible and the used version is
still in widespread use. By an analysis of the TorButton source code we identified
nine distinct user agent strings that have been used by the different versions of
TorButton. We found that solely 22 % of all the user agent strings matched one
of the nine user agent strings used by the TorButton Firefox extension. Hence
we argue that at least 78 % per cent of all traffic originated from a browser
without the TorButton extension. It remains unclear if the users take additional
preventive measure when using other browsers, however it seems unlikely that the
majority of the non-TorButton users enforced all required browserside anonymity
protection measures. Table 4 shows the Top 10 user agent strings, whether the
user agent strings were used by TorButton and the revision of the TorButton
source code. Furthermore the table shows the user agent strings and operating
systems versions in a more readable format.

5 Further Tor Exit Server Attack Scenarios

A malicious exit server has many different options to gain knowledge of the
Tor users, active as well as passive. Many HTTP requests leak information of
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Browser
Version 0s Per cent (%)
TorButton > svn:r18954 (Firefox/3.0.7) - 18.86
- - 4.48
Firefox/3.0 (Gecko/2008052906), en-US ~ Windows XP 2.71
TorButton > svn:r16066 (Firefox/2.0.0.16) - 1.81
Internet Explorer 6.0 SV 1.0 Windows XP 1.66
Internet Explorer 6.0 Windows XP 1.64
Firefox/3.0 (Gecko/2008052906) Windows Vista 1.59
Internet Explorer 6.0 Windows 2000 1.50
Mozilla/5.0 - 1.34
Opera 9.63 (Presto/2.1.1), en Windows XP 1.31

Table 4: Top 10 Browser (interpretation)

various kinds. Additional information can be gained by active content insertions
and modifications.

5.1 Information leakage of sensitive information

Many HTTP requests leak information, sometimes even sensitive information.
Even if the malicious exit server is unable to identify the originator of the request,
it is able to gain knowledge only by watching the requests passively.

— Search query strings: Search queries are often submitted to a search engine
via a HTTP GET request. If a Tor user searches information about e.g. a
special disease, location information about a hotel, how to get to a certain
place, or a recent political event, this gives hints about the identity, location
or nationality of the user. Additional information can be deduced by lan-
guage, browser and operating system to further reduce the anonymity set.
This theoretical risk has also become evident in practice by the incident with
AQOL’s release of search queries [17].
Social networks: As described above social networking sites accounted for
more than 7 per cent of the all the HT'TP traffic captured by our Tor exit
server. In the case of Facebook as well as other popular SNSs, HTTP requests
include the user-id in plaintext. Because users often represent their realworld
persona, SNSs users can easily be identified. The social graph of a user could
furthermore reveal the identity of a SNS user. Thus an analysis of a user’s
id and corresponding social graph could completely deanonymize the Tor
user. This is especially dangerous as many Tor users apparently use social
networks.
— Localization information sent by a misconfigured browser reduces the anonymity
set considerably. TorButton normalizes all user to use “en-us” within the
browser user agent. This increases the size of the anonymity set for users
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from the US, however decreases the size for the rest of the world. Other lo-
calization information can be retrieved from toplevel domains as we suspect
that many users e.g. browse to their localized version of the Google search
engine (google.ca, google.dk, ...) instead of the normalized google.com.

— Other sensitive and possibly incriminating content will be transmitted with-
out proper usage of Tor, e.g. authentication cookies. However, as these are
not transmitted in the HTTP GET request, we did not include them in our
analysis. A motivated attacker surely will harvest those information as well,
thereby possibly increasing the chance of defeating anonymity of a certain
Tor users.

As an example we will use a search query on google maps, asking for driving
instructions from Times Square to Central Park in New York. As it can be seen,
plenty of parameters are part of the request, and of course the exact address
coordinates as well:

http://maps.google.com/maps?f=d&source=s_d&saddr=times+square ->
&daddr=central+park&éhl=en&geocode=&mra=1s ->
&s11=40.771133,-73.974187&sspn=0.053106,0.111494 ->
&g=central+park&ie=UTF8&t=h&z=16

5.2 Script injection

Dynamic website content such as e.g. AJAX or Flash is hard to filter: either all
dynamic content is blocked which results in poor usability, or dynamic content
is allowed which opens the door for exit servers injecting malicious scripts. It has
already been shown that the insertion of invisible iframes and Flash can defeat
anonymity [18]. By injecting JavaScript within an invisible iframe it was possible
to further reduce the requirements on the client to become vulnerable to this
attack [19]. The authors even showed that their attack is feasibly by modifying
the HTML meta refresh tag of a website, so without JavaScript.

By manipulating HTTP communication content, phishing attacks become
possible if no communication encryption or verification is used. Instead of sending
the data to the destination, a malicious exit server might save the data and
present an error page.

5.3 File replacement

There exist many file formats commonly used on the Internet which could be
used by an adversary to execute malicious code as the corresponding software
handling the files has well known weaknesses. Among all the HTTP requests we
have seen, up to 97993 requests, or 1% of the total requests were for files with
known vulnerabilities and publicly available exploits. As we did not inspect the
communication content and the transferred files itself, it remains unclear if the
files could have been used for infecting the client or not. Instead, it can be seen
as an upper bound for a new possible and yet not documented infection vector.



— executable (5590 requests): .exe files could get replaced or malicious code
could be appended to the executable. This could result in remote code exe-
cution on the client side and could among other things be used to reveal the
users identity.

— PDF (1619 requests): vulnerabilities in Adobe Reader and Acrobat as well
as alternative PDF viewers could be used to execute malicious code in .pdf
files.

— Office (400 requests): Microsoft Office has many documented vulnerabilites.
The requests we monitored were for .doc, .x1s and .ppt files.

— Mediafiles (23821 requests): Several Mediaplayer like e.g. Apples Quicktime,
the Windows Media Player or VLC have documented flaws that are ex-
ploitable by manipulated media files. We encountered various requests that
could be used for exploit piggybacking: .avi (10105 requests), .wmv (6616
requests), .mp3 (4939 requests) or .mpg (1138 requests).

— other file formats (66563 requests): compressed file archives like .zip (9937
requests) and .rar (16512 requests) might get used by an attacker as they
can be used to exploit vulnerabilities in the software itself; but also to add,
manipulate or replace files within those archives. Shockwave flash files .swf
(40114 requests) account for a major proportion of vulnerable file formats
and could be used for client infection as well.

These vulnerabilities could be used to massively compromise anonymity on
a large scale by exploiting vulnerable software, using Tor for cheap “man in
the middle” attacks and even creating a botnet of Tor clients. However, it has
to be noted that this is not a flaw of Tor but of rather an inappropriate use
of it. Clients should verify the integrity of their files when using unencrypted
communication.

5.4 Countermeasures and discussion

It is hard if not even impossible to prevent information leakage in HTTP re-
quests, as the requests are often transmitting information of a certain user’s
context. The collection and aggregation of webservice specific information is
non-trivial, but we showed that a great amount of information can be gathered
by a passive adversary. In the following we briefly outline three methods that
can help to mitigate security and privacy risks caused by a malicious Tor exit
server:

Detection of malicious exit servers The most straightforward solution
would be to detect bad exit servers and ban them from the Tor exit server
list. McCoy et al. [3] proposed to use reverse DNS lookups in order to detect
exit servers that run packet analyzer software with a host resolution feature. A
complete passively adversary is almost undetectable. TorFlow is an application
developed by Mike Perry [20] which supports exit server integrity checks. Hereby
the basic principle is that: a reference file is used as a sample and downloaded
through different Tor exit servers, cryptographic checksums are used afterwards
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to check if a manipulation occurred. The basic idea works fine on files like bi-
naries or static websites, dynamic content however is much harder to verify. For
this reason, dynamic content is blocked by TorButton instead of analyzed for
maliciousness.

User education The Tor network offers reliable anonymity in case if properly
used. Awareness-campaigns as well as end-user education can help to ensure that
people use Tor always in combination with TorButton as well as take special care
of which services they use through Tor. The incident with the embassy mail ac-
counts [6] has shown what might happen if Tor is used incorrectly, even seriously
harming privacy instead of preventing de-anonymization and obfuscating user
activity. Active content (e.g. Macromedia Flash) of all kind should be avoided
if possible, and using trusted exit nodes could further reduce the risk of data
leakage.

HTTPS The only solid protection of user data would be the use of strong
encryption such as secure HTTP (HTTPS). The usage of the HTTPS protocol
is unfortunately not always possible as many website operators do not support
it, e.g. https://www.google.com redirects the user to http://www.google.com.
At the time of writing the great majority of social networking providers fail to
support HTTPS.

6 Summary and Conclusion

By collecting 9 x 10 HTTP requests we observed that up to 78 % of the Tor
users browse the Internet without TorButton, the recommended software by the
Tor community. The majority of users is therefore possibly vulnerable to so-
phisticated deanonymization attacks by an exit server, e.g. by injecting invisible
iframes or scripts. 1 % of the requests were for vulnerable file formats, which
could be used for exploit piggybacking. Even if the adversary running an exit
server is completely passive, without modifying or redirecting communication
content, an uncountable amount of sensitive information like search queries or
authentication cookies are leaked. Furthermore, 7 % of all analysed HTTP con-
nections were created by social networking services which leak plenty of personal
information. To protect the Tor users, various tools like TorButton or TorFlow
have been proposed and implemented. However, the only effective countermea-
sure at the time of writing is the use of end-to-end cryptography, namely HTTPS.

Future research in this area can be done to quantify the amount of sensitive
information observable by an passive adversary. It has to take into account the
different requirements for anonymization and/or censorship circumvention by
the users. Additional research is needed on protection measures.
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Abstract

In digital forensics, different forms of slack space can be used to hide
information from either the operating system or other users, or both. While
some forms are easily detectable others are very subtle, and require an expe-
rienced forensic investigator to discover the hidden information. The exact
amount of information that can be hidden varies with the form of slack space
used, as well as environmental parameters like file system block size or par-
tition alignment. While some methods for slack space can be used to hide
arbitrary amounts of information, file slack has tighter constraints and was
thought to be rather limited in space.

In this paper we evaluate how much file slack space modern operating
systems offer by default and how stable it is over time with special regards
to system updates. In particular we measure the file slack for 18 different
versions of Microsoft Windows using NTFS. We show that many files of the
operating systems are rather static and do not change much on disk during
updates, and are thus highly suitable for hiding information. We furthermore
introduce a model for investigators to estimate the total amount of data that
can be hidden in file slack for file systems of arbitrary size.

Keywords: Digital Forensics, Slack Space

*This is the author’s preprint for the Ninth Annual IFTP WG 11.9 International Con-
ference on Digital Forensics. The original publication is available at www.springerlink.com
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1 Introduction

With ever increasing hard drive and storage capacities, slack space is now
more than ever an interesting topic in digital forensics. Hard drives with 3 ter-
abytes and more are commodity hardware now, which leaves plenty of space
to hide information and making manual forensic analysis time-consuming and
cumbersome. While encryption can be used and is used to make certain or
all information on a hard drive inaccessible during forensic investigations [5]
(e.g., Truecrypt !, dm-crypt, FileVault or Bitlocker [13]), slack space and
steganography hide information more or less in plain sight.

While special areas for hiding data like the Host Protected Area (HPA)
and Device Configuration Overlay (DCO) on the hard drive can be easily
detected with current tools e.g., The Sleuth Kit (TSK) [4] or Encase [3],
it is much harder for an investigator to find data that was hidden in file
slack space on purpose. During the natural life-cycle of files on hard drives,
file slack is constantly created and overwritten, thus not necessarily stable.
Multiple tools have been published that allow to hide information in file
slack, even encrypted. This paper is the first work towards quantifying file
slack space of common operating systems, and how slack space is affected
by system updates. We focus our work on different versions of Microsoft
Windows, as it is in widespread use on clients and servers. We used Windows
versions from the last 10 years that are still supported by Microsoft and
receive operating system updates, starting with Windows XP and Server
2003. We also included the most recent versions at the time of writing,
Windows 8 and Windows Server 2012 RC. We furthermore propose a model
that allows an investigator to estimate the amount of file slack capacity across
all files on a hard drive, thus including files created by the user. In particular,
the contributions of this paper are as follows:

o We quantify file slack space in a multitude of Microsoft operating sys-
tems.

e We evaluate the durability of OS-specific file slack space regarding sys-
tem updates.

e We present a simple model to estimate the total possible file slack for
investigators.

http://www.truecrypt.org/
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The rest of the paper is organized as follows: Section 2 briefly explains
different forms of slack space and their background in file systems, and why
file slack is particularly interesting for forensic investigations. Our method for
measuring file slack space is presented in Section 3. Section 4 evaluates how
much information can be hidden in commodity operating systems, and how
stable OS-specific file slack is over time. Results are discussed in Section 5,
as well as our model for estimating file slack space. Related work is presented
in Section 6 before we conclude in Section 7.

2 Background

File slack is defined as the space between the end of the file, and the end of
the allocated cluster [4]. Slack space is a byproduct of operating systems:
to reduce addressing overhead they cluster multiple sectors of a hard drive
together, and implicitly create file slack space for every file that does not
aligns in size with the cluster size. The size of usable slack space is in general
depending on the cluster size of the filesystem, the sector size of the underly-
ing hard drive, and the padding strategy used by the operating system. Hard
drives used to have a sector size of 512 bytes, with modern hard drives hav-
ing a sector size of 4k. FAT32 usually has a cluster size between 4k and 32k
(depending on the actual partition size), while NTFS usually has a cluster
size of 4k for drives < 16 TB [14]. Windows uses padding only for the last
sector at the end of each file, while the other sectors in the cluster are left
untouched [4], possibly leaving up to n — 1 sectors untouched if the portion
of the file in the last cluster (with n sectors) is smaller than the sector size.

Numerous other forms of slack space (like volume slack or partition slack)
or places to hide data on a hard drive (e.g., HPA and DCO) can be encoun-
tered in a forensic investigation [2, 10, 6]. The benefit of file slack, however,
is that it exists in any case on every hard drive, and can be extended in
size by storing a large number of files and /or using large cluster sizes (NTFS
for example supports a cluster size of up to 64 KB). File slack is also the
reason why bitwise copies have to be created during image acquisition [11],
as otherwise the content of file slack would be lost for the investigation.

For a forensic investigation the slack space is of interest in two cases: if
the suspect used a secure deletion software like shred or WipeFile for wiping
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files, slack space can contain fragments of previous data. In the second case,
the suspect might have hidden data in slack space on purpose, using freely
available tools. Several tools have been developed to facilitate easy storage
of information in slack space, among them slacker.exe for NTFS from the
Metasploit anti-forensic toolkit, or bmap for Linux.

3 Quantifying OS File Slack Space

To analyze file slack in NTFS for different operating systems we used fi-
walk [7] by Simson Garfinkel which is now part of SleuthKit, and which is
based on the DFXML language for digital forensics [8]. For our evaluation
we used 18 different versions of Microsoft Windows, as it is still by far the
most predominantly operating system in use. We evaluated client and server
versions alike, and used different service pack levels as starting point to mea-
sure slack file persistency. Each system used the NTFS default cluster size
of 4KB with underlying 512 bytes sector size and was installed using the
default settings. We then patched each installed system with the available
system updates and available service packs, including optional updates like
the .NET framework and additional language packs, and ran fiwalk on the
acquired disk images. The full list of operating systems and the total num-
ber of security updates and service packs that have been installed during our
evaluation can be seen in Table 1.

Our scripts parsed the XML outputs from fiwalk?, and calculated the
slack space for each disk image. During calculating the usable file slack
capacity we omitted NTFS file system metadata objects like the SMET or
$BitClus, and files that are less than a full disc cluster in size to avoid files
that are possibly resident in the NTFS master file table ($MFT) and thus
not directly usable for file slack. For calculating file slack persistency we
checked the SHA-1 hash values as well as the file’s timestamp for last write
access before and after the updates. Again, we only included files that use
more than one disc cluster in size.

2Note to the reviewers: we will release our datasets and scripts online, and will include
the link here once the paper is accepted for publication



115

Operating System Upd. | SPs | Operating System Upd. | SPs
Windows XP Pro. +189 +2 | Windows 7 Pro. SP1 +106 —
Windows XP Pro. SP2 +164 | +1 | Windows 7 Ent. +212 | +1
Windows XP Pro. SP3 +177 — | Windows 7 Ent. SP1 +167 —
Vista Business 4246 | +2 | Windows 8 RC +11 —
Vista Business SP1 +72 +1 | Server 2003 R2 Std. SP2 +163 —
Vista Business SP2 +143 — | Server 2003 R2 Ent. SP2 +167 —
Vista Ent. SP1 +207 | +1 | Server 2008 R2 Std. +148 +1
Vista Ent. SP2 +143 — | Server 2008 R2 Std. SP1 +103 —
Windows 7 Pro. +156 +1 | Server 2012 RC +6 —

Table 1: List of evaluated operating systems and their updates

4 Evaluation

For our evaluation we first quantify file slack in Windows before we analyze
file slack stability during system updates.

4.1 Quantification of OS Slack Space

The amount of available file slack space depends on the number of files and
thus on the complexity of the underlying operating system. The base instal-
lation of Windows XP (the oldest system in our evaluation) can be used to
hide about 22 megabytes of data in file slack on average, the newest versions
of Windows at the time of writing (i.e., Windows 8 and Server 2012 RC) can
be used to hide 86 and 70 megabytes respectively. Windows Vista in its dif-
ferent versions (Business vs. Enterprise) allows approximately 62 megabytes
in file slack, and Windows 7 (Professional and Enterprise) a little more than
69 megabytes. A similar trend is observable for Windows server: Windows
Server 2003 R2 has approximately 20 megabytes in file slack capacity, while
Server 2008 R2 has about 73 megabytes.

The amount of file slack increases tremendously with system updates, es-
pecially with service packs, as the old system files are usually kept referenced
in the file system in case something goes wrong during the update process.
Table 1 shows which version of Windows has received a service pack since its
release, and the number of system updates that have been installed for our
evaluation. Many system updates affect only a small number of files, while
service packs are major updates. An increase in file slack capacity of more
than 100% during the lifetime of an operating system is not uncommon, on
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average the slack space doubles in total. At the end of the evaluation process
Windows XP had more than 30 megabytes on average, Vista 105 megabytes
and Windows 7 Professional 100 megabytes on average. Windows 7 Enter-
prise showed an exceptional increase of more than 500%, from around 72
megabytes to more than 400 megabytes. Windows 8 and Server 2012 RC
were stable, as there are not many updates available yet. The detailed re-
sults can be seen in Table 4.2.

The details of the cumulative slack space are visualized in Figure 1: we
use a standard box-plot over all collected states in the evaluation process,
grouped by the product lines. This graph can be used by forensic examiners
in assessing the amount of possible file slack for a given operating system. De-
pending on the install date of the underlying operating system, one hundred
to two hundred megabytes of file slack space is possible for newer operating
systems, even with the default cluster size of 4k in NTFS. We will discuss
the amount of file slack for larger cluster sizes in Section 5. Note that the
number of samples (respectively update steps) for the different product lines
was as follows: Windows XP had 15, Vista had 32, Windows 7 had 19, 8 RC
had 4. For the Windows Server: Server 2003 R2 had 10, Server 2008 R2 had
9 and Server 2012 RC had 4.

4.2 Stability of OS Slack Space

To assess the stability of file slack in the files of the operating system we
compared SHA-1 hash values as well as the timestamps for each file in the
images. While the number of files increased heavily (especially due to service
packs), the stability of the initial file slack was high: in some cases more than
90% of the slack areas were not modified, and the amount of stable file slack
was 50 megabytes and more. While the older versions of Windows i.e., XP
and Server 2003 had 20 megabytes and less that persisted all system updates,
Vista, Windows 7 and Server 2008 had 50 megabytes and more. On average
and across all different Windows versions, 44 megabytes and 78% of initial
file slack were still available at the end of the evaluation process. This means
that up to two third of the file slack is still available even today e.g., for
Windows XP SP2, which was already released in 2004. For Server 2003 R2
we measured that up to 80% would be still available today. Vista SP2 from
2009 as well as Windows 7 SP1 from 2011 kept more than 90% of their files
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Figure 1: Box plot of quantified file slack space
intact.

File slack stability for a selection of different Windows versions and the
corresponding number of update steps is shown in Figure 2. Again, the
details of our data can be found in Table 4.2. Please note that even though
the total file slack capacity increases with the system updates and update
steps, the stability of file slack from the initial installation is represented as
a monotonically decreasing function as the update can change existing files,
but not add files to the previous.

5 Discussion

All tested operating systems rely on a large number of files for storage: while
the earliest versions of Windows XP had only a little more than 10.000 files
that are bigger then the default cluster size of 4k, Windows 7 has already
more than 40.000 and Windows 8 more than 55.000. The number of files in-
creases heavily with service packs: Windows Vista, which started with 35.000
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Figure 2: Stability of file slack across updates

files had more than 90.000 after installing two service packs. For forensic in-
vestigators this is particularly interesting as on one hand, the amount of
information that could possibly be extracted from these files can be large.
On the other hand these vast number of files offer a lot of slack space that
can be used with readily available tools to hide information.

An adversary that actively uses file slack could furthermore increase the
cluster size of NTFS - up to 64kb are supported by NTFS. A quick esti-
mation by running our scripts on a xml file chosen at random showed that
increasing the cluster size to 32kb on the same Windows Vista with more
than 90.000 files could increase file slack to 1.25 gigabytes. This is 8.11 times
larger compared to the 150 megabytes in our results with the default cluster
size of 4kb, just using the files from the operating system itself. Forensic
investigators should thus pay attention to artificially large cluster sizes, as
they can be instrumented to hide possibly very large amount of data in the
slack space.
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Operating System Initial Slack Final Slack Stability

Windows XP Pro. 22.36 MB 36.97 MB (165%) | 7.09 MB/31.7%
Windows XP Pro. SP2 26.31 MB 29.49 MB (112%) | 16.49 MB/62.7%
Windows XP Pro. SP3 18.72 MB 23.15 MB (124%) | 14.21 MB/75.9%
Vista Business 52.70 MB 147.13 MB (279%) | 19.34 MB/36.7%
Vista Business SP1 66.49 MB 119.89 MB (180%) | 50.77 MB/76.4%
Vista Business SP2 50.89 MB 82.99 MB (163%) | 48.13 MB/94.7%
Vista Ent. SP1 66.51 MB 140.35 MB (211%) | 50.82 MB/76.4%
Vista Ent. SP2 71.73 MB 113.76 MB (159%) | 67.36 MB/93.9%
Windows 7 Pro. 63.71 MB 115.16 MB (181%) | 46.96 MB/73.7%
Windows 7 Pro. SP1 65.03 MB 77.80 MB (120%) | 60.73 MB/93.4%
Windows 7 Ent. 83.33 MB 454.62 MB (546%) | 60.74 MB/72.9%
Windows 7 Ent. SP1 65.10 MB 381.56 MB (586%) | 60.77 MB/93.3%
Windows 8 RC 86.40 MB 87.06 MB (101%) | 65.10 MB/75.3%
Server 2003 R2 Std. SP2 24.42 MB 33.90 MB (140%) | 20.13 MB/82.4%
Server 2003 R2 Ent. SP2 16.55 MB 35.13 MB (212%) | 15.20 MB/91.8%
Server 2008 R2 Std. 75.16 MB 146.80 MB (195%) | 57.43 MB/76.4%
Server 2008 R2 Std. SP1 69.82 MB 73.03 MB (105%) | 69.19 MB/99.1%
Server 2012 RC 70.16 MB 70.58 MB (101%) | 70.01 MB/99.8%

Table 2: Detailed results of our file slack quantification

5.1 A Model for File Slack Space Estimation

Following we will give an estimation on the expected size of the slack space.
Let n be the number of files and k& be the cluster size (i.e. the number of
sectors inside a cluster). Furthermore, s denotes the number of bytes inside
a sector. Since only the last cluster of a file may not be filled completely
(i.e. all clusters of a file except for one do not provide slack space), the slack
space that can be expected from one file is completely independent from the
actual size of the file. Thus we arrive at the following expectation Sg for the
average slack space of a file: Sp = s E(X), where E(X) is the expectancy
with respect to the underlying statistical distribution of the fill-grade of the
last cluster.

In general it can be expected that the fill-grade of the last cluster is
equally distributed among all possible values. Since the first sector inside a
cluster is always filled in the case of the NTFS, the number of free sectors
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that can be used lies in {1,..., k — 1}, thus yielding
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Using a typical sector size of 512 bytes (s) and 8 sectors per cluster (k), we
can reduce this formula to S,, = 1792 - n.

5.2 Limitations

Our approach for measuring file slack has some limitations: for one, we
deliberately ignored the fact that modern hard drives have a default sector
size of 4 kb. This was necessary to be able to include operating systems still
in widespread use (like Windows XP) that are yet completely unaware of
the fact that hard drives can have larger sectors [15]. We also ignored user
activity and did not simulate it, as we came to the conclusion that there is
no sufficient method to simulate user activity in a realistic fashion. We also
ignored additional files that may be found on a PC, either by the user or by
software installed by the user. In particular we did not install any software
that might be commonly found on Windows PCs or additional services for
the Windows Servers to mimic real world systems, in particular Microsoft
Office, alternative browsers like Chrome or Firefox, or services like IIS or a
SQL server. Thus our results cannot be considered to be set in stone, but
should be considered a conservative upper bound for OS-specific file system
slack, and a conservative lower bound when including user data.

6 Related Work

In recent work regarding slack space, file fragmentation was used to hide
data in FAT partitions [12]. FragFS on the other hand used slack space in
$MFET entries to hide data, as SMFT entries have a fixed length of usually
1024 bytes per entry. In their estimation, a total of about 36 megabytes of
data could be hidden in $MFT slack [17] in systems running Windows XP,
as most $MFT entries use less than 450 bytes on average. Slack space in
cloud environments has been recently discussed, as it can be used to retrieve
possibly sensitive data like deleted SSH keys [1] or to hide data without
leaving traces at the client or in the log files of the service operator [16].
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Slack space was also found to be not securely deleted on the second hand
market of hard drives [9].

6.1 Future Work

For future work we want to address the limitations discussed above, and plan
to conduct a large-scale survey to measure slack space in real-world systems.
So far we have not evaluated user files and how stable they are over time.
We also plan to extend our evaluations to other modern operating systems
and file systems that use clustering of sectors, in particular HFS+ on OS X
and ext4 on Linux.

7 Conclusion

In this paper we have evaluated the amount and stability of file slack in
NTFS-based operating systems. We especially considered system updates,
and to what extend the file slack persists and evaluated it with 18 different
versions of Microsoft Windows. All operating systems that we tested offered
initial slack space in the tens of megabytes, which was largely immune to
system updates: on average 44 megabytes, respectively 78%, of initial file
slack was available after installing all available system updates, even full
service packs. Especially with newer versions of Windows like Windows 7 or
Server 2008, between 100 and 200 megabytes were available with the default
cluster size of 4 kb.
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Abstract

Digital traces found on local hard drives and in online activity have be-
come the most important data source for the reconstruction of events in
digital forensics. As such, digital alibis have already been used in court de-
cisions and during investigations. In this paper we want to show that forged
alibis can be created, which include online activity and social interactions.
We are the first to use social interactions in digital alibis, and implemented
a proof of concept that can be automated to create false digital alibis. Our
framework simulates user activity, is fully automated and able to communi-
cate using email as well as instant messaging using a chatbot. We evaluate
our framework by extracting forensic artifacts and comparing them with re-
sults of real users in a user study.

Keywords: Digital Forensics, Automated Alibis

1 Introduction

Digital forensics techniques are nowadays applied to more and more criminal
investigations due to the ever increasing prevalence of computers, smart-
phones and the involvement of modern technology in crimes. Traces like
MAC-timestamps and OS-specific log files left on hard drives and informa-
tion transmitted over network connections often are combined to produce
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a holistic reconstruction of events and for specific times of interest [3, 16].
Digital alibis as such are commonly used in reliable expert witness opinions
to charge and discharge suspects in court, as well as during the investigation
itself.

In this paper we present a framework that can fully simulate user interac-
tion and implements the automated creation of digital alibis with special fo-
cus on online social interactions like writing emails and chatting with friends.
Social interactions have been so far neglected in previous work. The frame-
work is highly configurable, and we are planning to release it under an open
source license!. Our framework is able to counter hard drive and network
forensics as it is conducted today. We evaluate our framework by comparing
it with the usage of real world users, and show that digital forensic analysis
methods are not reliable if they are specifically targeted. The goal of this pa-
per is to raise awareness that digital alibis can be forged. We want to question
the reliability of digital alibis, intend to show that digital alibis can be forged.

The rest of the paper is organized as follows: Section 2 gives an overview
of the relevant research areas of digital forensics for this paper, as well as
related work. Section 3 presents our framework which was implemented as
proof-of-concept to show the feasibility to forge digital alibis. In Section 4,
we compare and evaluate our framework compared with real-world users. We
discuss the results in Section 5, and conclude in Section 6.

2 Background

Several cases can be found where evidence for digital alibis played an impor-
tant role. In one case, Rodney Bradford was charged of armed robbery but
was released because of digital evidence that confirms that he was performing
activities on his Facebook account during the time of the crime [17]. This
digital evidence was later called an ”unbeatable alibi” [8] by his attorney.
In another case, a suspected murderer was acquitted because of digital ev-
idence [9, 7]. During the time of the crime, working activity was found on
the suspect’s laptop.

INote to the reviewers: we will include the link here once the paper is accepted for
publication
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Usually a forensic analyst is confronted with multiple hard drives that
have been imaged using hardware write blockers [2], and is asked specific
questions about user actions that have or have not been conducted on the
corresponding computers [4]. Modern communication technologies like online
social networks [15] or smartphones [14, 13] can additionally increase the
broad spectrum of digital traces. In the future, due to ever increasing storage
capacity of consumer devices and overall case complexity, automated analysis
will be crucial [12] to extract information of interest [11] in a reasonable
amount of time.

2.1 Related Work

In the literature, several concepts for the analysis as well as the automatic
construction of digital alibis can be found [10, 6] . However, existing alibi gen-
erators often use proprietary languages like Autolt (Windows) or Applescript
(OS X) and thus are specific to the underlying operating system that they
run on e.g., Android [1], OS X [7], or Windows [10, 6]. Our framework does
not rely on any os-specific components or software, and can thus run (with
minor adaptions) on any Desktop operating system that runs Python. We
implemented our prototype for Linux as there weren’t any related frameworks
available on Linux so far. We furthermore compared numerous configuration
parameters with real world users, making our approach statistically harder
to detect (with randomized values) and the persistently stored evidence more
realistic compared to related work.

The previously described approaches try to hide the program, for instance
with the help of harmless file names or on a separate storage device. Instead
of using a file wiper for post processing to remove suspicious traces, our
framework is constructed in such a way that there are no obvious traces left
behind (despite the framework itself). For a forensic analyst, it should be not
decidable if the artifacts on disc originate from the framework or a human
user as we instrument (among other things) keyboard signals and mouse click
events.
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3 Alibi Generator Framework

The goal of our framework can be put simply: to simulate user activity as
realistic and thorough as possible. To such extend, we want to simulate stan-
dard user activity: browsing the web, chatting with instant messaging soft-
ware, writing emails and creating & editing documents of various kind. The
concrete actions run by the framework should not be scripted or predictable,
but randomized yet still realistic and convincing for a forensic investigator.
Different word lists and online sources like Google Trends are used as inputs
to capture a snapshot of current online interests with the need to incorpo-
rating specific user preferences at the same time. Many factors of computer
usage are highly user dependent, and for the alibi framework to be as realistic
as possible, factors like common online social interaction partners for chat-
ting and email, language of communication as well as time delays between
actions and usual concurrent actions need to be configured beforehand. So-
cial interaction in particular is vulnerable to traffic analysis, as not only the
content of the messages is of interest, but who is communicating with whom.
The response time is also dependent on the length of the messages, which
needs to be considered when simulating social interactions.

3.1 Implementation

Our proof-of-concept was implemented on Ubuntu 12.04 LTS using Python.
The core features of the framework were chosen similar to the approaches
in [7, 6]. In essence our implementation is split into three main components:
the scheduler, the program manager and the social interaction component.
Once the framework is started, the scheduler is in charge of overall manage-
ment, it controls startup and triggers shutdown of all programs involved. It
has the purpose of deciding which actions to take, either local or online, and
when. The program manager runs and manages all applications, including
the browser, the email- and chat software. The social interaction component
consists of a chatbot for instant messaging and the email manager, responsi-
ble for email communications.

The framework can start and use local applications by sending key strokes
and mouse clicks. Our framework comes pre-configured to use and handle the
following applications in a meaningful manner: Firefox, gedit, LibreOffice,
Thunderbird, Skype, and VLC. For automation the Python libraries zau-
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tomation?, skype4py® and the chatbot implementation pyAIML* are used.
Furthermore, we use splinter® for the automation of Firefox, which is based
on Selenium®. Thus our implementation can browse the web, send and re-
ceive emails, chat in Skype, open and edit documents (LibreOffice and gedit)
and start programs like music or video players. Figure 1 shows the main
features of our proof-of-concept. Related features which are not yet imple-
mented are marked in grey. Frequency and content of alibi events were de-
rived from the analysis of several typical office workstations at our university.

/ A - “
:‘.‘ : EUU Hard Disc of Laptop
. eby  amazon G @ *

Featu’l"es “of Alibi Framework

T M

Laptop with Alibi Framework Social Interaction Server

Figure 1: Conceptional Alibi Framework

More specifically, our framework queries Google and follows suggested
links, tweets on Twitter and logs into Facebook, can search for Youtube

2http://hoopajoo.net/projects/xautomation.html
3http://sourceforge.net/projects/skypedpy
4http://pyaiml.sourceforge.net
Shttp://splinter.cobrateam.info,/
Shttp://www.seleniumhq.org
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videos and browses websites with random mouse clicks and following links.
New emails are drafted, received emails are forwarded, and answers to emails
are sent with a reasonable delay. Additionally it is possible to mark new
emails as read and delete emails. The action to be performed is chosen at
random, not every email that is read will be replied to. The subject and
content of emails can be predefined and stored in lists. Regarding instant
messaging answering to incoming messages of buddies is supported, with
the help of a chatbot. Reasonable time delays depending on the size of the
response or on a random delay are implemented. Chat templates can be
easily adapted due to the use of AIML [18]. If the timer of the scheduler
expires, the chatbot says goodbye to his buddies and shuts down. Editing
of local documents is implemented either by deleting a random amount of
content, inserting predefined texts which fits the content of document at a
random position. We implemented the use of LibreOffice by simulating key
strokes and mouse clicks, as there are no Python bindings for LibreOffice
available.

However, one post-processing step is necessary: Splinter has to use a
seperate firefox profile, and can not work on the user’s profile directly. On
startup splinter copies the user’s profile to /tmp, and we overwrite the user’s
profile on shutdown by moving it back. Depending on the user’s threat
model, additional steps might be appropriate.

4 Evaluation

To evaluate our implementation we compare the framework with real world
users. Since the particular usage is highly dependent on the person using
it, this evaluation is intended to show that the default configuration is rea-
sonable. We asked nine volunteers to use a virtual machine for 30 minutes
just like they usually use their computer, and compared it with a single run
of our framework. They were asked to browse the web, send emails, chat,
edit documents or do anything they usually would do in their own environ-
ment. Forensic analysis was applied afterwards on the image of the virtual
machine using Sleuth Kit and Autopsy, to extract data in a forensic man-
ner. For that, the timestamps of the entire file system are extracted, as well
as files that contain user data of interest are manually inspected. Manual
analysis was conducted on the browser history places.sqlite of Firefox, the
local mailbox files by Thunderbird, and the chat history main.db of Skype
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to extract timestamps, message content, conversation partner and the time
interval between messages, emails and visited websites. Network forensics
would have been an alternative approach for evaluation, by inspecting the
network traffic. However, hard drive analysis allows to extract unencrypted
as well as additional information like local timestamps, and has thus been
the evaluation method of choice. We then used different metrics to compare
our framework with real world users during the half hour period e.g., the
number of visited websites, duration of visit on websites and the number of
chat messages sent and received.

Figure 2 shows the exemplary timeline of 20 minutes framework run-
time. The social interaction can be clearly observed, in total 12 messages
are sent from the social interaction component to various recipients, either
as responses in ongoing conversations or as new messages to initialise con-
versations. The browser is directed to different websites and follows links to
simulate further browsing (not shown in the figure). This includes news sites
like nytimes.com and prominent news stories on the front page, youtube.com
and videos from the "most popular” section, as well as the top videos from
random search queries. Local timestamps as well as history logs are written
to disk in all cases. Furthermore VLC is started and a local video from the
hard drive is opened, which is also reflected in the timestamps on disk.

Start Firefox, Browse to youtube, Browse to website
browse to wikipedia watch popular video nytimes.com
Browse to Google, Start VLC,

1«

search ,java tutoria watch local video

v
T Tt oty

17:19 17:20 17:21 17:22 17:23 17:24 17:25 17:26 17:27 17:28 17:29 17:30 17:31 17:32 17:33 17:34 17:35 17:36 17:37

Answer / Send Skype Message

Figure 2: Exemplary Timeline of 20 Minutes Framework Activity
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4.1 User Survey

Regarding the browsing behavior of the user group, target websites and
time patterns have been extracted. The most popular websites have been
google.com, facebook.com as well as some Austrian news sites. The frame-
work on the other hand used a preconfigured list of websites as well as ran-
domized google queries. The five most visited websites however matched in
4 out of 5 cases between the framework and the users. Some time patterns
that were extracted can be seen in Table 1. The test users did not receive
any emails due to our setup, but were asked to send some. On average, one
email was sent per user. The maximum number of sent emails by the users
was 3, the minimum 0. The majority of test persons did not write an email.
The words in an email vary in number between 6 and 51 words, the average
number of words is 21. The time between sending emails varies between 1
minute and 15 minutes.

Browsing parameters Framework Test Persons

# Visited Websites 11 min: 1 max: 12 avg: 9
Time on Website (min) 8 sec 5 sec

Time on Website (max) 2 min 16 sec 13 min 05 sec
Time on Website (avg) 1 min 52 sec 2 min 50 sec

Table 1: Comparison of browsing patterns

Nearly all test persons did chat during their session. There are between
7 and 46 outgoing messages and between 15 and 35 incoming messages. The
shortest message is 1 word per message for each person. The highest number
of words in a chat message is 23 words. The topics in chat messages depend
strongly on the test person, there were topics such as health and small talk
as well as football or movies. The response time of chat messages was at
least 2 seconds and at most 8 minutes. The average response time is about 1
minute and 4 seconds. See Table 2 for details. The users furthermore edited
or opened one document (.ods or .pdf) during the 30 minute timeframe,
which is also consistent with the actions of the framework.
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Chatting Parameters Framework Test Persons
Outgoing chat messages 22 (7/46/19)
Incoming chat messages 23 (15/35/21)
Length of chat messages (1/18/8) (1/23/4)
Response time (28/175s/45s)  (2s/480s/64s)

Table 2: Observed chat behavior (min/max/avg)

5 Discussion

Regarding the browsing habits of the framework we could show that the
number of visited websites is reasonable compared to the results from the
test persons. The time on each website is on average shorter than the time
of the test, but this is a parameter which can be easily changed (just like the
number of websites to visit). Some test persons stayed more than 10 minutes
on one site, but in general the simulator fits into the timely patterns of the
test persons. 4 of 5 of the most visited websites of the simulator are equal
to the most visited websites of the test persons, which is a very good result
as the websites were a-priori configured. However, the sites visited actually
per person, depend strongly on user’s preferences and have to be adapted.
In summary we can say that the surfing feature is properly simulated by
framework, but needs a user-specific configuration. Table 3 shows the over-
all comparison between the alibi framework and the values of the test persons.

Regarding chat and using the social interaction server, we were able to
observe that the response time to answer chat messages fits the expected
time frame. The framework does not response to every message, and the
time it waits for sending a response is within the observations from the real
users.

5.1 Limitations and Future Work

One limitation of our prototype is the lack of sophisticated contextual analy-
sis of instant messages. While AIML can be used to generate genuine-looking
conversations for short periods of time, a forensic analysis of extended conver-
sations probably would reveal the chatbot. While this is definitely a problem
in scenarios where the disk is analyzed forensically, generated alibis would
most likely withstand network forensic analysis because most protocols such
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Feature Simulator Test persons

5, Visited homepages 11 min: 1 max: 12 \ 4
Ql’ time on homepage Im 525 min: 55 max: 2m 50s ¥
most visited homepages matching in 4/5 sites \ 4

emails (out) 1 min: 0  max: 3 \

@ emails (in) 2 min: 0  max: 0 x
length of emails (words) 6 min: 6  max: 51 Q
content of emails matching in 1/4 topics \ 4

chat messages (out) 22 min: 7  max: 46 \

chat messages (in) 23 min: 15 max: 35 \

@ length in words avg: 8 min: 1 max: 23 \ 4
response time avg: 45s  min: 2s max: lm 4s \ 4
content of conversation matching in 2/5 topics \ 4
opened documents 1 min: 0  max: 2 \ 4
document type .ods .ods, .odt, .pdf 4

Table 3: Overall comparison framework vs. survey users

as Skype implicitly encrypt messages anyway. For unencrypted email con-
versations, this limitation is more important. In future work, we thus aim at
identifying methods for more content-dependent responses.

Another limitation is adaptivity. To forge a digital alibi reliably it is nec-
essary to adapt the framework to the user’s preferences. For comparison of
efficiency of the framework, the values, ranges and preferences of results of
test systems were taken for reference values. To fit the typical system usage
of an individual, there are several possibilities to adapt the framework. Cur-
rently, most parameters of the framework are configured manually and have
to be adapted for each user. In the future the framework should be able to
adapt those parameters automatically. This may be realized by either col-
lecting the user’s specific information from user data or by collecting it over
a longer period as a learning phase. We would also like to compare long-term
runs of the framework with real user data, as 30 minutes is not particularly
long enough for all use cases where a digital alibi might be needed. Testing



137

and supporting other operating systems as well as other browsers is also a
goal for the future.

If the user has insufficient knowledge of the tools or the system it may happen
that there is unwanted evidence left behind. It is essential to continuously up-
grade and improve the framework, because operating systems and techniques
are constantly changing as well. We did not implement any obfuscation or
methods to hide the execution of the framework. Running it from external
media as suggested in [5] should be for example just one item in the list of
additional steps, as these techniques may strengthen the validity of a forged
alibi.

6 Conclusion

In conclusion, we were able to show that it is possible to forge digital alibis
with social interaction. We implemented a proof of concept and showed in
the evaluation that the results of forensic analysis of our framework meet
the range of values observed from real users. The framework has the ability
- if it is configured correctly - to simulate browsing, write and respond to
emails, chat with buddies, and opening and/or editing documents. The ex-
act execution of the simulation depends on the configurations that should be
adapted to user’s preferences. In order to show that the behavior simulated
by the framework differs from the actual user’s behavior, a very intimate
knowledge of the user’s habits and usage patterns is necessary. In the future,
we want to add a component for automatic configuration based on either ex-
isting log files, or use an additional learning phase to obtain an user-specific
configuration that is even more indistinguishable with respect to a forensic
investigator.
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