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Abstract—Web applications have become an integral part
of the daily lives of millions of users. Unfortunately, web
applications are also frequently targeted by attackers, and
criticial vulnerabilities such as XSS and SQL injection are still
common. As a consequence, much effort in the past decade has
been spent on mitigating web application vulnerabilities.

Current techniques focus mainly on sanitization: either on
automated sanitization, the detection of missing sanitizers,
the correctness of sanitizers, or the correct placement of
sanitizers. However, these techniques are either not able to
prevent new forms of input validation vulnerabilities such as
HTTP Parameter Pollution, come with large runtime overhead,
lack precision, or require significant modifications to the client
and/or server infrastructure.

In this paper, we present IPAAS, a novel technique for
preventing the exploitation of XSS and SQL injection vul-
nerabilities based on automated data type detection of input
parameters. IPAAS automatically and transparently augments
otherwise insecure web application development environments
with input validators that result in significant and tangible secu-
rity improvements for real systems. We implemented IPAAS for
PHP and evaluated it on five real-world web applications with
known XSS and SQL injection vulnerabilities. Our evaluation
demonstrates that IPAAS would have prevented 83% of SQL
injection vulnerabilities and 65% of XSS vulnerabilities while
incurring no developer burden.

I. INTRODUCTION

Web applications have become attractive targets for at-
tackers due to the large degree of authority they possess,
their significant user populations, and the prevalence of
vulnerabilities they contain. Among the classes of vul-
nerabilities exhibited by web applications, XSS and SQL
injection remain among the most serious threats to web
application security. As such, much attention in the security
research community has focused on removing or mitigating
the effect of these vulnerabilities [2], [12], [18], [35].

XSS and SQL injection vulnerabilities both manifest at
a fundamental level as a failure to preserve the integrity
of HTML documents and SQL queries, respectively, in the
presence of untrusted input to the web application. In the
former case, an XSS vulnerability allows an attacker to inject
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dangerous HTML elements, typically including malicious
client-side code that executes in the security context of a
trusted web origin. In the latter case, a SQL injection injec-
tion vulnerability allows an attacker to modify an existing
database query — or, in some cases, to inject a completely
new one — in such a way that violates the web application’s
desired data integrity or confidentiality policies.

One particularly promising approach to preventing the
exploitation of these vulnerabilities is robust, automated
sanitization of untrusted input. In this approach, filters,
or sanitizers, are automatically applied to user data such
that dangerous constructs cannot be injected into HTML
documents or SQL queries. Automated protection against
these vulnerabilities is highly desirable due to the well-
known difficulty in manually achieving complete and correct
sanitizer coverage.

Output sanitization: A particularly promising approach
in this vein is automated output sanitization, where sanitizers
are automatically applied to data computed from untrusted
data immediately prior to its use in document or query
construction [23], [27], [36]. Output sanitization that is
automated, context-aware, and robust with respect to real
browsers and databases is an extremely attractive solution to
preventing XSS and SQL injection attacks. This is because
it provides a high degree of assurance that the protection
system’s view of untrusted data used to compute documents
and queries is identical to the real system’s view. That is,
if an output sanitizer decides that a value computed from
untrusted data is safe, then it is almost certainly the case
that that data is actually safe to render to the user or submit
to the database.

Unfortunately, output sanitization is not a panacea. In
particular, in order to achieve correctness and complete
coverage of all locations where untrusted data is used to
build HTML documents and SQL queries, it is necessary to
construct an abstract representation of these objects in order
to track output contexts. This generally requires the direct
specification of documents and queries in a domain-specific



language [23], [27], or else the use of a language amenable
to precise static analysis. While new web applications have
the option of using a secure-by-construction development
framework or templating language, legacy web applications
do not have this luxury. Furthermore, many web developers
continue to use insecure languages and frameworks for new
applications.

Input validation: In contrast to output sanitization,
another approach for preventing XSS and SQL injection
injection vulnerabilities is the use of input validation. Input
validation involves checking the inputs to the web appli-
cation against a specification of legitimate values (e.g., a
certain parameter should be an integer, or an email address,
or a URL). Input validation is more general than output
sanitization in the sense that input validation has the broader
goal of program correctness rather than preventing specific
classes of attacks. However, input validation provides less
assurance that vulnerabilities will be prevented, since it
relies on check routines to validate untrusted input, but it
may still fail to identify the input as being malicious. In
addition to that, untrusted data can also undergo potentially
arbitrary transformations, as part of application processing
prior to being output into a document or query, making input
validation ineffective.

We note, however, that despite these drawbacks, input
validation has significant benefits as well. First, even though
input validation is not necessarily focused on enforcing
security constraints, rigorous application of robust input
validators has been shown to be remarkably effective at
preventing XSS and SQL injection attacks in real, vulnerable
web applications [30], [31]. For instance, we have demon-
strated that robust input validation would have been able
to prevent the majority of XSS and SQL injection attacks
against a large corpus of known vulnerable web applications.

Second, it is comparatively simple to achieve complete
coverage of untrusted input to web applications as opposed
to the case of output sanitization. Web application inputs
can be enumerated given a priori knowledge of the language
and development framework, whereas context-aware output
sanitization imposes strict language requirements that often
conflict with developer preferences. Consequently, input val-
idation can be applied even when insecure legacy languages
and frameworks are used.

IPAAS: In this work, we present IPAAS (Input
PArameter Analysis System). IPAAS transparently integrates
robust, automated input parameter validation into the web
application development environment. Specifically, IPAAS
automatically (i) extracts the parameters for a web appli-
cation; (ii) learns types for each parameter by applying a
combination of machine learning over training data and a
simple static analysis of the application; and (iii) automati-
cally applies robust validators for each parameter to the web
application with respect to the inferred types.

We have implemented IPAAS for PHP in the form of an

OWASP WebScarab extension to extract and learn parameter
types, and a runtime PHP rewriting component to enforce
proper validation of parameter values. We evaluated our
system over five real-world PHP-based applications contain-
ing numerous XSS and SQL injection vulnerabilities, and
demonstrate that IPAAS would prevent 83% of known SQL
injection attacks and 65% of known XSS attacks against the
set of test applications.

Unfortunately, due to the inherent drawbacks of input
validation, IPAAS is not able to protect against all kind of
XSS and SQL injection attacks. However, our experiments
show that IPAAS is a simple and effective solution that
can greatly improve the security of web applications. Our
technique automatically and transparently applies input val-
idators during the development phase of a web applications.
Therefore, IPAAS helps developers that are unaware of web
application security issues to write more secure applications.

Contributions: To summarize, in this work, we make
the following contributions.

« We identify automated input validation as an effective
alternative to output sanitization for preventing XSS
and SQL injection vulnerabilities in legacy applications,
or where developers choose to use insecure legacy
languages and frameworks.

« We implement the IPAAS approach for transparently
learning types for web application parameters, and
automatically applying robust validators for these pa-
rameters at runtime.

o We evaluate our implementation for PHP, and demon-
strate its ability to prevent the exploitation of 65% of
XSS vulnerabilities and 83% of SQL injection vulnera-
bilities with a low false positive rate over five real-world
PHP applications.

The remainder of the paper is structured as follows. In §II,
we discuss our motivations for studying input validation as
a prevention mechanism for XSS and SQL injection vulner-
abilities. §III presents the IPAAS approach to automatically
applying robust input validation to web applications. §IV
evaluates our implementation of IPAAS for PHP over a test
set of vulnerable PHP applications. We present related work
in §V. In §VI, we conclude and discuss potential future work.

II. BACKGROUND

Input validation and sanitization are related techniques for
helping to ensure correct web application behavior. However,
while these techniques are related, they are nevertheless dis-
tinct concepts. Sanitization — in particular, output sanitiza-
tion — is widely acknowledged as the preferred mechanism
for preventing the exploitation of XSS vulnerabilities. In
this section, we highlight the advantages of input validation,
and thereby motivate the approach we present in following
sections.

Input validation is fundamentally the process of ensuring
that program input respects a specification of legitimate



POST /payment/submit HTTP/1.1
Host: shop.example.com

Cookie: SESSION=cbb8587c63971b8e
[...]

cc=1234567812345678&month=8&year=2012&
save=false&token=006bf047a6c97356

Figure 1. HTTP POST request containing several examples of untrusted
program input.

values. Any program that accepts untrusted input should
incorporate some form of input validation procedures, or
input validators, to ensure that the values it computes are
sensible. The validation should be performed prior to exe-
cuting the main logic of the program, and can vary greatly
in complexity. At one end of the spectrum, programs can
apply what we term implicit validation due to, for instance,
typecasting of inputs from strings to integers in a statically-
typed language. On the other hand, programs can apply
explicit validation procedures that check whether program
input satisfies complex structural specifications, such as the
Luhn check for credit card numbers.

In the context of web applications, input validation should
be applied to all untrusted input; this includes input vectors
such as HTTP request query strings, POST bodies, database
queries, XHR calls, and HTMLS postMessage invocations.
As an example, consider the POST request shown in Fig-
ure 1. The request contains several parameters, including:
cc, a credit card number; month, a numeric month; year, a
numeric year; save, a flag indicating whether the payment
information should be persisted for future use; token, a
CSRF nonce; and SESSION, a session identifier. Each of
these request parameters requires a different type of input
validation. For example, the credit card number should
contain certain characters and pass a Luhn check. The month
should be an integer between 1 and 12. The year should
be an integer value representing a year in the near future.
Finally, the save parameter should contain a boolean value
(e.g., “07, “17, “true”, “false”, or “yes”, “no”).

Input validation is concerned with a broader goal of
program correctness, while sanitization focuses on the spe-
cific goal of removing dangerous constructs from values
computed using untrusted data. Sanitation procedures, or
sanitizers, focus on enforcing a particular security policy,
such as preventing the injection of malicious JavaScript code
into an HTML document. While rigorous input validation
can provide a security benefit as a side-effect, sanitizers
should provide a strong assurance of protection against
particular classes of attacks.

Sanitizers have traditionally been applied throughout the
web application processing lifecycle, but automated output
sanitization has come to be recognized as the most attractive

<div class="msg">
<hl style="${msg.style}">${msg.title}</h1>
<p>${msg.body}</p>
</div>

Figure 2. HTML fragment output sanitization example.

form of the technique. Sanitizing untrusted data immediately
prior to its use is highly desirable because it provides a
high degree of assurance that the protection system’s view
of untrusted data is identical to the real system’s view. Input
validation in isolation, on the other hand, cannot guarantee
that an input it considers safe will not be transformed during
subsequent processing into a dangerous value.

As an example of output sanitization, consider the web
template fragment shown in Figure 2. Here, untrusted input
is interpolated as both child nodes of the hl1 and p DOM
elements, as well as in the style attribute of the h1 element.
At a minimum, a robust output sanitizer should ensure
that dangerous characters such as ‘<’ and ‘& should not
appear un-escaped in the values to be interpolated, though
more complex element white-listing policies could also be
applied. Additionally, the output sanitizer should be context-
aware; for instance, it should automatically recognize that
‘"> characters should also be encoded prior to interpolating
untrusted data into an element attribute. The output sanitizer
described here would be able to prevent attacks that might
bypass input validation. For instance, an input verified to
be valid might nevertheless be concatenated with dangerous
characters during processing before being interpolated into
a document.

III. TPAAS

In this section, we present IPAAS (Input PArameter
Analysis System), an approach to securing web applications
against XSS and SQL injection attacks using input valida-
tion. The key insight behind IPAAS is to automatically and
transparently augment otherwise insecure web application
development environments with input validators that result
in significant and tangible security improvements for real
systems.

IPAAS can be decomposed into three phases: (i) pa-
rameter extraction, (ii) type learning, and (iii) runtime en-
forcement. An architectural overview of IPAAS is shown in
Figure 3. In the remainder of this section, we describe each
of these phases in detail.

A. Parameter Extraction

The first phase is essentially a data collection step. Here, a
proxy server intercepts HTTP messages exchanged between
a web client and the application during testing. For each
request, all observed parameters are parsed into key-value
pairs, associated with the requested resource, and stored in
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Figure 3. The IPAAS architecture. A proxy server intercepts HTTP messages generated during application testing. Input parameters are classified during
an analysis phase according to one of a set of possible types. After sufficient data has been observed, IPAAS derives an input validation policy based on
the types learned for each application input parameter. This policy is automatically enforced at runtime by rewriting the application.

Type Validator

boolean  (0|1)|(truelfalse) | (yes|no)
integer  (+|-)7[0-9]+
float  (+1-)?7[0-91+(\+.[0-9]+)7

URL  RFC 2396, RFC 2732
token  static set of string literals
word [0-9a-zA-Z@_-:]+
words  [0-9a-zA-Z@_-: \r\n\t]+
free-text  none

Table 1
IPAAS TYPES AND THEIR VALIDATORS.

a database. Each response containing an HTML document is
processed by an HTML parser that extracts links and forms
that have targets associated with the application under test.
For each link containing a query string, key-value pairs are
extracted similarly to the case of requests. For each form,
all input elements are extracted. In addition, those input
elements that specify a set of possible values (e.g., select
elements) are traversed to collect those values.

B. Parameter Analysis

The goal of the second phase is to label each parameter
extracted during the first phase with a data type based on the
values observed for that parameter. The labeling process is
performed by applying a set of validators to the test inputs.

1) Validators: Validators are functions that check whether
a value meets a particular set of constraints. In this phase,
IPAAS applies a set of validators, each of which checks that
an input belongs to one of a set of types. The set of types and
regular expressions describing legitimate values are shown
in Table I. In addition to the types enumerated in Table I,
IPAAS recognizes lists of each of these types.

2) Analysis Engine: TPAAS determines the type of a
parameter in two sub-phases. In the first, types are learned
based on values that have been recorded for each parameter.

In the second, the learned types are augmented using values
extracted from HTML documents.

Learning: In the first sub-phase, the analysis begins
by retrieving all the resource paths that were visited during
application testing. For each path, the algorithm retrieves
the unique set of parameters and the complete set of values
for each of those parameters observed during the extraction
phase. Each parameter is assigned an integer score vector of
length equal to the number of possible validators.

The actual type learning phase beings by passing each
value of a given parameter to every possible type validator.
If a validator accepts a value, the corresponding entry in
that parameter’s score vector is incremented by one. In the
case that no validator accepts a value, then the analysis
engine assigns the free-text type to the parameter and
stops processing its values.

After all values for a parameter have been processed,
the score vector is used to select a type and, therefore, a
validator. Specifically, the type with the highest score in the
vector is selected. If there is a tie, then the most restrictive
type is assigned; this corresponds to the ordering given in
Table 1.

The second sub-phase uses the information extracted from
HTML documents. First, a check is performed to deter-
mine whether the parameter is associated with an HTML
textarea element. If so, the parameter is immediately as-
signed the free-text type. Otherwise, the algorithm checks
whether the parameter corresponds to an input element
that is one of a checkbox, radiobutton, or select list. In
this case, the observed set of possible values are assigned
to the parameter. Moreover, if the associated element is
a checkbox, a multi-valued select, or the name of the
parameter ends with the string [], the parameter is flagged
as a list.

The analysis engine then derives input validation policies
for each parameter. For each resource, the path is linked to



the physical location of the corresponding application source
file. Then, the resource parameters are grouped by input
type (e.g., query string, request body, cookie) and serialized
as part of an input validation policy. Finally, the policy is
written to disk.

Static Analysis: The learning sub-phases described
above can be augmented by static analysis. In particular,
IPAAS can use a simple static analysis to find parameters
and application resources that were missed during the learn-
ing phase due to insufficient training data. This analysis is, of
course, specific to a particular language and framework. We
describe our prototype implementation of the static analysis
component in Section III-D.

C. Runtime Enforcement

The result of the first two phases is a set of input validation
policies for each input parameter to the web application
under test. The third phase occurs during deployment. At
runtime, IPAAS intercepts incoming requests and checks
each request against the validation policy for that resource’s
parameters. If a parameter value contained in a request does
not meet the constraints specified by the policy, then IPAAS
drops the request. Otherwise, the application continues exe-
cution.

A request may contain parameters that were not observed
during the previous phases, either in the learning sub-
phases or static analysis. In this case, there are two possible
options. First, the request can simply be dropped. This is a
conservative approach that might, on the other hand, lead
to program misbehavior. Alternatively, the request can be
accepted and the new parameter marked as valid. This fact
could be used in a subsequent learning phase to refresh the
application’s input validation policies.

D. Prototype Implementation

Parameter extraction: We have implemented a proto-
type of the IPAAS approach for PHP. Parameter extraction is
performed by a custom OWASP WebScarab extension, and
HTML parsing performed by jsoup. WebScarab is a client-
side interceptor proxy, but this implementation choice is of
course not a restriction of IPAAS. The extractor could have
easily been implemented as a server-side component as well,
for instance as an Apache filter.

Type learning: The parameter analyzer was developed
as a collection of plugins for Eclipse and makes use of
standard APIs exposed by the platform, including JFace and
SWT. The Java DOM API was used to read and write the
XML-based input validation policy files.

Static analyzer: We implemented a simple PHP static
analyzer using the Eclipse PHP Development Tools (PDT).
The analyzer scans PHP source code to extract the set of
possible input parameters. There are many ways in which
a PHP script can access input parameters. In simple PHP
applications, the value of an input parameter is retrieved

by accessing one of the following global arrays: $_GET,
$_POST, $_COOKIE, or $_REQUEST. However, in more com-
plex applications, these global arrays are wrapped by special
library functions that are specific to each web application.

In order to collect input parameters for PHP, our static
analyzer performs pattern matching against source code and
records the name of input parameters. The location of the
name of an input parameter can be specified in a pattern.
A pattern can be specified as a piece of PHP code and is
attached to one or more input vectors (e.g., $_GET). For
example, the pattern optional_param(’$’, ’*’) spec-
ifies a pattern that we used to extract input parameters
from the source code of the Moodle web application. The
analyzer makes a best-effort attempt to find all occurrences
of function invocations of optional_param having two
parameters. The value in the first argument is recorded, and
the second argument is a “don’t care” that is ignored. The
analyzer can capture the names of input parameters in a
similar way when the input parameter is accessed via an
array.

To perform the pattern matching itself, the analyzer trans-
forms the pattern and the PHP script to be analyzed into
an abstract syntax tree (AST). Then, the tries to match the
pattern AST against the AST for the PHP script. For each
match found in the source code, the analyzer then traverses
the script’s control flow graph (CFG) to check whether the
match is reachable from the entry point of the script. For
example, when an optional_param function invocation is
observed, the analyzer checks whether a potential call chain
exists from the invocation site to the script entry point. CFG
traversal is recursive, including inclusions of other PHP files
using the require and include statements.

Runtime enforcement: The runtime component is im-
plemented as a PHP wrapper that is executed prior to
invoking a PHP script using PHP’s autoprepend mecha-
nism. The PHP XMLReader library is used to parse input
validation policies. The validation script checks the contents
of all possible input vectors using the validation routines
corresponding to each parameter’s learned type.

E. Discussion

The TPAAS approach has the desirable property that,
as opposed to automated output sanitization, it can be
applied to virtually any language or development framework.
IPAAS is can be deployed in an automated and transparent
way such that the developer need not be aware that their
application has been augmented with more rigorous input
validation. While the potential for false positives does exist,
our evaluation results in Section IV suggest that this would
not be a major problem in practice.

However, our current implementation of IPAAS has a
number of limitations. First, type learning can fail in the
presence of custom query string formats. In this case, the



Application | PHP Files | Lines of Code

Joomla 1.5 450 128930

Moodle 1.6.1 1352 365357

Mybb 1.0 152 42989

PunBB 1.2.11 70 17374

Wordpress 1.5 125 29957
Table II

PHP APPLICATIONS USED IN OUR EXPERIMENTS.

IPAAS parameter extractor might not be able to reliably
parse parameter key-value pairs.

Second, the prototype implementation of the static an-
alyzer is fairly rudimentary. For instance, it cannot infer
parameter names from variables or function invocations.
Therefore, if an AST pattern is matched and the argument
that is to be recorded is a non-terminal (e.g., a variable
or function invocation), then the parameter name cannot
be identified. In these cases, the location of the function
invocation is stored along with a flag indicating that an input
parameter was accessed in a dynamic way. This allows the
developer the opportunity to identify the names of the input
parameters manually after the analyzer has terminated, if
desired.

IV. EVALUATION

To assess the effectiveness of our approach in preventing
input validation vulnerabilities, we tested our IPAAS proto-
type on five real-world web applications shown in Table II.
Each application is written in PHP, and the versions we
tested contain many known, previously-reported XSS and
SQL injection vulnerabilities.

To run our prototype, we created a development environ-
ment by importing each application as a project in Eclipse
version 3.7 (Indigo) with PHP Development Tools (PDT)
version 3.0 installed.

A. Vulnerabilities

Before starting our evaluation, we extracted the list of
vulnerable parameters for reach application by analyzing the
vulnerability reports stored in the Common Vulnerabilities
and Exposures (CVE) database hosted by NIST [20]. For
each extracted parameter, we manually verified the existence
of the vulnerability in the corresponding application. In
addition, we manually determined the data type of the
vulnerable parameter.

Table III summarizes the results of the manual analysis,
and shows, for each web application, the number of vulner-
able parameters having a particular data type. The dataset
resulting from this analysis contains 109 XSS and 120 SQL
injection vulnerable parameters.

According to Table III, more than half of the SQL
injections are associated with integer parameters, while the
majority of the XSS vulnerabilities are exploited through

the use of parameters of type word. Interestingly, only a
relatively small number of vulnerabilities are caused by
free-text or similarly unconstrained parameters. This sup-
ports our hypothesis that IPAAS can be used in practice
to automatically prevent the majority of input validation
vulnerabilities.

B. Automated Parameter Analysis

In order to automatically label parameters with types,
IPAAS requires a training set containing examples of benign
requests submitted to the web application. We collected this
input data by manually exercising the web application and
providing valid data for each parameter.

The results of our automated analysis are summarized
in Table IV. For each application, the table reports the
number of vulnerable parameters having a particular type.
The results show that less than half of the parameters could
be identified automatically. For most, our system was able
to assign the correct type. However, in a few cases, the
parameter was part of a request or serialized in a response,
but had no value assigned to it. Hence, the type could not
be identified. These parameters are reported as having type
unknown.

Finally, IPAAS wrongly assigned the type boolean in-
stead of integer to two XSS and four SQL injection
vulnerable parameters. These misclassifications are caused
by the overlap between boolean and integer validators.
In fact, parameters having values of “0” and “1” can be
considered of type boolean as well as integer (i.e., if
only the values “0” and “1” are observed during training,
the analysis engine gives priority to the type boolean).
Collecting more data for each parameter by exercising the
same functionality of a web application multiple times can
result in different values for the same parameter. Hence,
collecting more training data would increase the probability
that our algorithm makes the correct classification.

C. Static Analyzer

To improve the detection ratio of the vulnerable parame-
ters, we ran our static analyzer on the source code of each
application.

Table V shows the number of vulnerable parameters that
were identified with the help of the static analyzer. The
tool was able to find 86% of the XSS and 87% of the
SQL injection affected parameters. By comparing these input
parameters with the ones that were detected by the analysis
engine, we see that 26% of the XSS and 51% of the SQL
injection affected parameters were missed by the analysis
engine, but were found by the static analyzer. Hence, the
static analyzer component can help in achieving a larger
coverage of the type analysis, and, thus, help prevent a larger
number of vulnerabilities.

Based on these results, we collected more input data by
testing the functionality of each web application using the



Parameter Type Joomla Moodle MyBB PunBB Wordpress Total
xss sqli | xss sqli | xss sqli | xss sqli | xss  sqli | xss sqli
word 2 4 5 10 11 14 16 2 5 0 39 (36%) 30 (25%)
integer 1 7 0 28 6 23 6 3 4 2 17 (16%) 63 (53%)
free-text 3 2 4 0 5 1 4 0 13 0 29 (27%) 3 (3%)
boolean 1 0 0 1 1 4 5 0 0 0 7 (6%) 5 (4%)
token 1 2 0 0 3 8 1 2 0 1 5 (5%) 13 (11%)
words 2 1 0 1 0 0 2 0 1 0 5 (5%) 2 (2%)
URL 0 0 0 0 1 0 1 0 3 0 5 (5%) 0 (0%)
list 0 0 0 1 1 2 1 1 0 0 2 (2%) 4 (5%)
Total | 10 16 | 9 41 | 28 52 | 36 8 |26 3 | 109 120
Table III

MANUALLY IDENTIFIED DATA TYPES OF VULNERABLE PARAMETERS IN FIVE LARGE WEB APPLICATIONS.

Parameter Type Joomla Moodle MyBB PunBB Wordpress Total
xss  sqli | xss sqli | xss sqli | xss  sqli | xss  sqli | xss sqli
word 2 4 1 0 5 7 12 1 1 0 21 (19%) 12 (10%)
integer 1 6 0 2 2 8 5 1 3 0 11 (10%) 17 (14%)
free-text 3 2 1 0 4 0 2 0 10 0 20 (18%) 2 (2%)
boolean | 1 0 0 0 it 33 4 0 1t 1t 7 (6%) 4 (3%)
token 1 2 0 0 1 3 1 2 0 1 3 (3%) 8 (6%)
words 2 0 0 0 0 0 1 0 0 0 3 (3%) 0 (0%)
URL 0 0 0 0 1 0 0 0 1 0 2 (2%) 0 (0%)
list 0 0 0 0 0 1 0 0 0 0 0 (0%) 1 (1%)
unknown | 0 0 2 0 2 1 1 0 1 0 6 (6%) 1 (1%)
Correctly Identified | 10 14 4 2 15 20 26 4 16 71 (65%) 41 (34%)
Wrongly Identified - - - - 1 3 - - 1 1 2 (1.8%) 4 (3.3%)

(*) number reported as superscript indicate the parameters identified with an incorrect type.

Table IV
TYPING OF VULNERABLE PARAMETERS IN FIVE LARGE WEB APPLICATIONS BEFORE STATIC ANALYSIS.

Type Joomla Moodle MyBB PunBB Wordpress Total
xss  sqli | xss sqli | xss  sqli | xss sqli | xss  sqli | xss sqli
Detected by static analysis 3 9 6 40 28 46 24 8 23 1 94 (86%) 104 (87%)
Missed during type analysis 0 2 2 37 10 18 10 4 6 0 28 (26%) 61(51%)
Table V

RESULTS OF ANALYZING THE CODE.

data from the static analyzer. Then, we ran IPAAS again to
determine the data types of the newly discovered parameters,
and we manually verified whether the types were correctly
identified. The results are shown in Table VI. In this case,
we obtained better coverage, with 87% of XSS and 86% of
SQL injection affected parameters being properly identified.
In addition, none of the parameters were misclassified.

Although the static analyzer helps significantly in achiev-
ing a higher coverage, a few parameters were still missed
during analysis. This problem could be improved by em-
ploying a more precise static analysis. Also, we believe that
unit testing might serve as an additional source of test input
data to help improve IPAAS’ coverage.

D. Impact

To assess the extent to which IPAAS is effective in
preventing input validation vulnerabilities in practice, we
manually tested whether it was still possible to exploit the
aforementioned vulnerabilities while IPAAS was enabled.
During our tests, we explored different ways to perform
the attacks, and to evade possible sanitization and validation
routines as reported by XSS and SQL cheatsheets available
on the Internet.

Table VII shows the number of XSS and SQL injection
vulnerabilities that are prevented by IPAAS. We observe that
most of the SQL injection vulnerabilities and a large fraction
of XSS vulnerabilities became impossible to exploit with the
input validation policies that were automatically extracted in



Type Joomla Moodle MyBB PunBB ‘Wordpress Total
xss  sqli | xss sqli | xss sqli | xss sqli | xss sqli | xss sqli
word | 2 4 | 4 7 [10 10|15 1 |5 0 |3633%) 22(18%)
integer 1 7 0 25 6 21 5 3 4 2 16 (15%) 58 (48%)
free-text 3 2 3 0 4 1 2 0 10 0 22 (20%) 3 (3%)
boolean 1 0 0 1 1 3 4 0 0 0 6 (6%) 4 (3%)
token 1 2 0 0 3 8 1 2 0 1 5 (5%) 13 (11%)
words | 2 1 |l o 1 ]0o o2 o1 0| 56% 2 2%)
URL 0 0 0 0 1 0 0 0 2 0 3 (3%) 0 (0%)
list 0 0 0 0 0 1 0 0 0 0 0 (0%) 1 (1%)
wnknown | 0 0 | 0 o | 1 o |1 o]0 0 | 202% 0 (0%)
Total | 10 16 | 7 34 | 26 44 | 30 6 | 22 3 | 95(87%) 103 (86%)
Table VI

TYPING OF VULNERABLE PARAMETERS IN FIVE LARGE WEB APPLICATIONS AFTER STATIC ANALYSIS.

Application | Vulnerabilities Prevented Vulnerabilities
Xss sql | xss sqli
Joomla 10 16 7 (70%) 14 (88%)
Moodle 9 41 4 (44%) 34 (83%)
MyBB | 28 52 21 (75%) 43 (83%)
PunBB | 36 8 27 (75%) 6 (75%)
Wordpress 26 3 12 (46%) 3 (100%)
Total | 109 120 | 71 (65%) 100 (83%)
Table VII

THE NUMBER OF PREVENTED VULNERABILITIES IN VARIOUS LARGE WEB APPLICATIONS.

our last experiment in place.

The results of this analysis are consistent with our obser-
vation that the majority of input validation vulnerabilities
on the web can be prevented by labeling the parameter
with a data type that properly constrains the range of
legitimate values. If a parameter is assigned to an unknown
or unrestricted type such as free-text, our system will still
accept arbitrary input. In these cases, the vulnerability is not
prevented by our system.

The difference in the number of prevented XSS and
SQL injection vulnerabilities is mainly due to the relatively
large number of integer parameters that are vulnerable to
SQL injection, while many XSS vulnerabilities are due to
injections in free-text parameters. We believe that the
large number of parameters vulnerable to SQL injection
that correspond to the type integer is caused by the
phenomenon that web applications frequently use integers
to identify records.

V. RELATED WORK

In this section, we place IPAAS in the context of related
work on web application security.

Input validation: Much work has been done that aims
to mitigate the impact of malicious input data without
changing the application’s source code. Scott and Sharp [32]
proposed an application-level firewall to prevent malicious
input from reaching the web server. Their approach required

a specification of constraints on different inputs, and com-
piled those constraints into a policy validation program. In
contrast, our approach automatically learns the specification
of constraints.

Automating the task of generating test vectors for exer-
cising input validation mechanisms is also a topic explored
in the literature. Sania [16] is a system to be used in
the development and debugging phases. It automatically
generates SQL injection attacks based on the syntactic
structure of queries found in the source code and tests
a web application using the generated attacks. Saxena et
al. proposed Kudzu [28], which combines symbolic exe-
cution with constraint solving techniques to generate test
cases with the goal of finding client-side code injection
vulnerabilities in JavaScript code. Halfond et al. [7] use
symbolic execution to infer web application interfaces to
improve test coverage of web applications. Several papers
propose techniques based on symbolic execution and string
constraint solving to automatically generate XSS and SQL
injection attacks and input generation for systematic testing
of applications implemented in C [4], [14], [13]. We consider
these mechanisms to be complementary to our approach, in
that they could be used to automatically generate malicious
input for “free-text” fields, or to create legitimate input for
other fields during the type learning phase.



Attack detection and prevention: Different techniques
have been proposed to detect the occurrence of XSS and
SQL injection attacks in HTTP traffic [3], [17], [24], [25].
Intrusion detection systems such as Snort [25], are config-
ured with a number of ‘signatures’ that support the detection
of web-based attacks. These systems match patterns that
are associated with known exploits against HTTP traffic
obtained while monitoring web applications. Unfortunately,
it is very difficult to keep the set of signatures up-to-date
as new signatures must be developed when new attacks or
modifications to previously known attacks are discovered.
Anomaly-based intrusion detection systems [3], [17], [24]
establish models describing the normal behavior of the
monitored system and rely on these models to identify
anomalous activity that may be associated to intrusions. The
main advantage of anomaly detection systems compared to
signature-based intrusion detection is that they can identify
unknown attacks. While anomaly-based detection systems
have the potential to protect web applications effectively
against XSS and SQL injection attacks, they suffer from a
large number of false positives. In contrast to anomaly-based
detection systems, our approach employs static analysis to
achieve a larger coverage of protected parameters to the web
application.

Preventative techniques for mitigating XSS and SQL
injection vulnerabilities focus either on client-side mecha-
nisms, or on server-side mechanisms. Client-side or browser-
based mechanisms such as Noxes [15], Noncespaces [5], or
DSI [19] make changes to the browser infrastructure aiming
to prevent the execution of injected scripts. Each of these
approaches requires that end-users upgrade their browsers
or install additional software; unfortunately, many users do
not regularly upgrade their systems [34].

Many techniques focus on the prevention of injection
attacks using runtime monitoring. For example, Wassermann
and Su [33] propose a system that checks at runtime the
syntactic structure of a query for a tautology. AMNESIA [8]
checks the syntactic structure of queries at runtime against a
model that is obtained through static analysis. XSSDS [11]
is a system that aims to detect XSS attacks by comparing
HTTP requests and responses. While these systems focus
on preventing injection attacks by checking the integrity of
queries or documents, we focus on input validation. Recent
work has focused on automatically discovering parameter
injection [1] and parameter tampering vulnerabilities [22].

Among server-side approaches, leveraging language type
systems has been proposed as an XSS and SQL defense
mechanism by Robertson et al [23]. In this approach, XSS
attacks are prevented by generating HTTP responses from
statically-typed data structures that represent web docu-
ments. During document rendering, context-aware sanitiza-
tion routines are automatically applied to untrusted values.
The approach requires that the web application constructs
HTML content using special algebraic data types.

Recent work has also focused on the correct use of
sanitization routines to prevent XSS attacks. Scriptgard [29]
can automatically detect and repair mismatches between
sanitization routines and context. In addition, it ensures
the correct ordering of sanitization routines. Samuel et
al. [27] propose a type-qualifier based mechanism that can be
used with existing templating languages to achieve context-
sensitive auto-sanitization. Both approaches only focus on
preventing XSS vulnerabilities. As we focus on automat-
ically identifying parameter data types, our approach can
help identify other vulnerabilities such as SQL injection or,
in principle, HTTP Parameter Pollution.

Vulnerability analysis: Static analysis as a tool for
finding security-critical bugs in software has also received
a great deal of attention. WebSSARI [10] was one of the
first efforts to apply classical information flow techniques
to web application security vulnerabilities, where the goal
of the analysis is to check whether a sanitization routine
is applied before data reaches a sensitive sink. Several
static analysis approaches have been proposed for various
languages [12], [18]. Unfortunately, due to the inherently
dynamic nature of scripting languages, static analysis tools
are often imprecise [37]. The IPAAS approach incorporates a
static analysis component as well as a dynamic component to
learn parameter types. While our prototype static analyzer is
simple and imprecise, our evaluation results are nevertheless
encouraging.

Runtime approaches to automatically harden web appli-
cations have been proposed for PHP [21] and Java [6].
Although these approaches can work at a finer-grained level
than static analysis tools, they incur runtime overhead. Both
approaches aim to detect missing sanitization functionality
while our focus is on the validation of untrusted user input.

The XSS cheatsheet [26] is a list of XSS vectors that can
be used to bypass many sanitization routines. Balzarotti et
al. [2] show that web applications do not always implement
correct sanitization routines. The BEK project [9] proposes
a system and languages for checking the correctness of
sanitizers.

VI. CONCLUSION

Web applications are popular targets on the Internet, and
well-known vulnerabilities such as XSS and SQL injection
are, unfortunately, still prevalent. Current mitigation tech-
niques for XSS and SQL injection vulnerabilities mainly
focus on some aspect of automated output sanitization. In
many cases, these techniques come with a large runtime
overhead, lack precision, or require invasive modifications
to the client or server infrastructure.

In this paper, we identify automated input validation as
an effective alternative to output sanitization for preventing
XSS and SQL injection vulnerabilities in legacy applica-
tions, or where developers choose to use insecure legacy
languages and frameworks. We present the IPAAS approach,



which improves the secure development of web applica-
tions by transparently learning types for web application
parameters during testing, and automatically applying robust
validators for these parameters at runtime. The evaluation
of our implementation for PHP demonstrates that IPAAS
can automatically protect real-world applications against the
majority of XSS and SQL injection vulnerabilities with a
low false positive rate.
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