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Abstract

Many users and companies alike feel uncomfortable with execution performance of interpreters, often also
dismissing their use for specific projects. Specifically virtual machines whose abstraction level is higher than
that of the native machine they run on, have performance issues. Several common existing optimization
techniques fail to deliver their full potential on such machines. This paper presents an explanation for this
situation and provides hints on possible alternative optimization techniques, which could very well provide
substantially higher speedups.
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1 Motivation

1000 : 10 : 1. These are the slowdown-ratios of an inefficient interpreter, when
compared to an efficient interpreter, and finally to an optimizing native code com-
piler. Many interpreters were not conceived with any specific performance goals
in mind, but rather striving for other goals of interpreters, among them porta-
bility, and ease of implementation. This also means that there is a huge benefit
in optimizing an interpreter before taking the necessary steps to convert the tool
chain to a compiler. There are common optimization techniques for interpreters,
e.g. threaded code [2],[5],[8], superinstructions [9], and switching to a register based
architecture [20]. The mentioned body of work provides careful analyses and in-
depth treatment of performance characteristics, implementation details.

Those optimization techniques, however, have one thing in common: their basic
assumption is that interpretation’s most costly operation is instruction dispatch,
i.e., in getting from one bytecode instruction to its successor. While this assumption
is certainly true for the interpreters of languages analyzed in the corresponding
papers, e.g. Forth, Java, and OCaml, our recent results indicate that it is specifically
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not true for the interpreter of the Python programming language. We find that this
correlates with a difference in the virtual machine abstraction levels between their
corresponding interpreters.

In virtual machines where the abstraction level is very low, i.e., essentially a 1 : 1
correspondence between bytecode and native machine code, the basic assumption of
dispatch being the most costly operation within an interpreter is valid. Members of
this class are the interpreters of Forth, Java, and OCaml, among others. Contrary
to those, interpreters that provide a high abstraction level do not support this
assumption. The interpreters of Python, Perl, and Ruby belong here. Additionally,
we analyze the interpreter of Lua, which is somewhere in between both classes.

In their conclusion, Piumarta and Riccardi [15] suppose the following: “The
expected benefits of our technique are related to the average semantic content of a
bytecode. We would expect languages such as Tcl and Perl, which have relatively
high-level opcodes, to benefit less from macroization. Interpreters with a more RISC-
like opcode set will benefit more — since the cost of dispatch is more significant
when compared to the cost of executing the body of each bytecode.” Our work shows,
whether their expectations turn out to be correct, and we make explicit what is
only implicitly indicated by their remark. Specifically we contribute:

* We categorize some virtual machines according to their abstraction level. We
show which characteristics we consider for classifying interpreters, and provide
hints regarding other programming languages than those discussed.

e We subject optimization techniques to that categorization and analyze their po-
tential benefits with respect to their class. This serves as a guideline for a)
implementers, which can select a set of suitable optimization techniques for their
interpreter, and b) researchers which can categorize other optimization techniques
according to our classification.

2 Categorization of Interpreters

To get a big picture on the execution profile of the Python interpreter, we collected
9 million samples of instruction execution times running the pystone benchmark
on a modified version of the Python 3.0rcl interpreter, which samples CPU cycles.
We sampled Operation Execution, Dispatch and Whole Loop costs. Operation
Execution contains all cycle costs for the first machine instruction in operation im-
plementation until the last. Dispatch costs contain the number of cycles spent for
getting from one operation to another, e.g. in a switch-statement from one case to
another. Python’s interpreter, however, does not dispatch directly from one byte-
code to another, but maintains some common code section which is conditionally
executed before dispatching to the next instruction. To account for that special
case, we measured so called Whole Loop costs, which measure the CPU cycles from
the first and last instructions within the main loop.

Based on extensive previous work, [2],[5],[8],[9],[20], we expected that instruc-
tion dispatch would be the most costly interpreter activity for Python’s virtual
machine, too. Figure 1 shows our results obtained by examining CPU cycles for the
Python 3.0rcl interpreter, running on a Pentium 4, 3 GHz, with Xubuntu 8.04.
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Fig. 1. CPU cycles per code section for Minimum, 15t quartile, median, and 3¢ quartile measures.

Section Min 15t Quartile | Median | 3" Quartile
Op-Execution 75 568 1076 2052
Dispatch 84 812 1296 2084
Whole Loop 84 1576 2568 4156

able 1

Minimum, 15¢ quartile, median, and 34 quartile values for CPU cycles per code section. All values here

are inclusive, i.e., values for Dispatch include Operation Ezxecution, and Whole Loop includes values of
Dispatch, and Operation Ezecution respectively.

Our results do not support the assumption of instruction dispatch being the
most costly operation for the Python interpreter, actually operation execution is.
For a detailed explanation of why this is, we present a comparative example of one
instruction implementation of the interpreters of Java, OCaml, Python, and Lua in
Section 2.1:

Java, according to the latest Java Language Specification [10], the Java instruction
set consists of 205 operations, including reserved opcodes. Instructions are typed
for the following primitive types: integers, longs, floats, doubles, and addresses.
In our example we take a look at the Sable VM, version 1.13.

OCaml, is a derivative of ML enriched with object oriented elements [13]. Version
3.11.0 contains 146 instructions. Among those are regular stack manipulation
instructions, complemented by instructions to manipulate the environment, which
is needed for function application, and evaluation respectively. Additionally, it
contains direct support for integer operations, which are however not documented
in the corresponding documentation [3].

Python, is a multi-paradigm dynamically typed programming language, that en-
ables hybrid object-oriented/imperative programming with functional program-
ming elements [18]. It has 93 instructions in Python 3.0rcl. Most of its operations
support ad-hoc polymorphism, e.g. BINARY_ADD concatenates string operands, but
does numerical addition on numerical ones [17].
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Lua, is somewhat similar to Python according to its characteristics, a multi-
paradigm programming language that allows functional, imperative and object-
oriented (based on prototypes) programming techniques. It includes a
lightweight—it has just 38 instructions—and fast execution environment based
on a register architecture [16].

It is worth noting that our results are not restricted to those programming
languages only. Actually, we conjecture that this is true for the interpreters of
programming languages with similar characteristics, i.e., for the Python case this
also includes Perl [21], and Ruby [14].

2.1 Categorization based on the comparative addition example

Our classification scheme requires the assessment of the abstraction level of sev-
eral virtual machines interpreting different languages. In order to do so, we take a
representative bytecode instruction present in all our candidates and analyze their
implementations. This enables us to show important differences in bytecode imple-
mentation, and in consequence allows us to classify them accordingly.

The representative instruction we use for demonstration is integer addition,
e.g. for Java we take a look at IADD, for OCaml we show ADDINT, for Python
BINARY_ADD, and for Lua we inspect OP_ADD. With the notable exception of Lua, all
our candidates use a stack architecture, i.e., they need to pop their operands off
the corresponding stack, and push their result onto it before continuing execution.
In Lua’s register architecture, operand-registers and result-registers are encoded in
the instruction.

We have highlighted the relevant implementation points by using a bold font,
and use arrows for additional clarity.

case SVM_INSTRUCTION_IADD:

{
jint valuel = stack[stack size - 2].jint;
jint value2 = stack[--stack size].jint;
stack[stack _size - 1].jint= valuel 4 value2;
break;

}

Fig. 2. Implementation of Java’s integer addition operation, IADD in Sable VM v1.13.

Instruct (ADDINT):
accu = (value)((intnat) accu == _(intnat) *sp++ - 1);
Next;

Fig. 3. Implementation of integer addition in OCaml v3.11.0.

Figures 2 and 3 share an interesting characteristic. They do not implement
addition on the virtual machine level, but express the bytecode addition by lever-
aging the addition used by the compiler, i.e., expose the addition of the native
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machine. Consequently, the virtual machine addition is expressed using a single na-
tive machine instruction. This constitutes our class of a low abstraction level virtual
machines, where the interpreter is only a thin layer above a real machine.

BINARY_ADD:
w = POP();
v = TOP();

if (PyUnicode_CheckExact(v) &&
PyUnicode CheckExact(w))
x= unicode_concatenate(v, w, f, next_instr);
goto skip_decref_vx;

}

else {
x= PyNumber_ Add(v, w);

}

Py _DECREF(v);
skip_decref _vx:

Py_DECREF (w);

SET _TOP(x);
if (x == NULL) continue;
break;

Fig. 4. Implementation of integer addition in Python 3.0rcl.

Python’s case (cf. Figure 4) shows a contrary picture: the upper arrow shows
that BINARY_ADD does unicode string concatenation on string operands by calling
unicode_concatenate. On non-string operands it calls PyNumber_Add, which im-
plements dynamic typing and chooses the matching operation based on operand
types, indicated by the lower arrow. In our integer example, the control flow would
be: PyNumber_Add, binary_op, and finally long_add. If, however the operands
were float, or complex types, then binary_op would have diverted to float_add, or
complex_add respectively (cf. Figure 5).

BINARY_ADD

operands

PyNumber_Add unicode_concatenate

binary_op

long_add float_add complex_add

Fig. 5. Ad-hoc polymorphism in Python’s BINARY_ADD instruction.

Aside from this ad-hoc polymorphism, the addition in Python 3.0 has an ad-
ditional feature: it allows for unbounded range mathematics for integers, i.e., it is
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not restricted by native machine boundaries in any way. As a direct consequence,
the original Python add instruction cannot be directly mapped onto one native ma-
chine instruction in the interpreter. This constitutes our second class, namely high
abstraction level virtual machines.

OP_ADD:
if (ttisnumber(rb) && ttisnumber(rc)) {
lua_Number nb= nvalue(rb), nc= nvalue(nc);
setnvalue(ra, ((nb) 4 (nc)));

}
else {
L->savedpc = pc;
{
Arith(L, ra, rb, rc, TM_ADD);
}
base = L->base;
}

Fig. 6. Implementation of integer addition in Lua 5.1.4.

Our classes are by no means completely separated and disjoint, since interpreters
can be members of both classes, having some subset of instructions belong into one
set, and a separate subset of instructions to the other. This is exemplified in Lua
(cf. Figure 6) in which addition has characteristics of both classes.

In Lua, if operand types are numeric it delegates the actual addition implemen-
tation to the compiler, and therefore to the machine (cf. Figure 6 arrow a). No
distinction between float, double, long, and integers is necessary, because Lua uses
double as its default numeric type. So far, this would indicate a low abstraction
level. However, if operand types are non-numeric, Lua’s implementation delegates
to the Arith (cf. Figure 6, arrow b) function, which tries to convert these operand
types into a numeric representation that can be added, e.g. if given a string operand
which holds a non-ambiguous numerical value, it would extract this value and con-
tinue with regular addition. This “operand-polymorphism” is often found in other
programming languages, too—e.g. in Perl-—and constitutes a high abstraction level
instruction.

2.2 Comparison of Low and High Abstraction Level Virtual Machines

The previous section introduces our two classes of interpreters, namely:

* Low abstraction level, where operation implementation can be directly translated
to a few native machine instructions. Figure 7(a) shows the implementation of
the interpreter’s add instruction, and how the actual add is realized using a single
machine add instruction.

e High abstraction level, where operation implementation requires significantly
more native machine instructions than for low abstraction level. Analogous to
Figure 7(a), Figure 7(b) shows the relative impact of implementing a complex
add. Frequent characteristics for high abstraction level are:
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Fig. 7. Illustration of Virtual Machine Abstraction Levels. Important are the different ratios of a : b which
affects the relative optimization potential of various optimization techniques.

- Ad-Hoc Polymorphism: a) either polymorphic operations are selected for con-
crete tuples of operand types, e.g. in Python, or b) operand-type coercion into
compatible types for a given operation implementation, e.g. in Lua or Perl.

- Complex Operation Implementation: In Python’s case, this complexity directly
maps to unbounded integer range mathematics for numeric operations, or full
unicode support at the interpreter level.

3 Optimizations for Low Abstraction Level Interpreters

The well known techniques for interpreter optimization focus on reduction of instruc-
tion dispatch cost. As shown in Figure 7(a), virtual machines with low abstraction
level are particularly well suited for those techniques, since dispatch often is their
most expensive operation. Threaded code [5] reduces the instructions necessary for
branching to the next bytecode implementation. The regular switch dispatch tech-
nique requires 9-10 instructions, whereas e.g. direct threaded code needs only 3-4
instructions for dispatch [6], with only one indirect branch. Superinstructions [9]
substitute frequent blocks of bytecodes into a separate bytecode, i.e., they elimi-
nate the instruction-dispatch costs between the first and last element of the replaced
block.

Recent advances in register based virtual machines [20], however, suggest a com-
plete architectural switch from a stack-based interpreter architecture to a register
based model. This model decreases instruction dispatches by eliminating a large
number of stack manipulation operations, i.e., the frequent LOAD/STORE oper-
ations that surround the actual operation. The paper reports that 47% of Java
bytecode instructions could be removed, at the expense of growing code size of
about 25%.

Table 2 shows a list of achievable speedups for low abstraction level interpreters.

For high abstraction level virtual machines, these speedups are not nearly as
high. Vitale and Abdelrahman [22] actually report that applying their optimization
technique to Tcl has negative performance impacts on some of their benchmarks, be-
cause of instruction cache misses due to complex operation implementation leading
to excessive code growth—the main characteristic we use to identify high abstrac-
tion level virtual machines.

This, however, does not mean that these techniques are irrelevant for virtual
machines with a high abstraction level. Actually, quite the opposite is true: once
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Optimization Technique Speedup Factor Reference

Threaded Code up to 2.02 [8]

(compared to switch dispatch interpreter)

Superinstructions up to 2.45 [7]

(compared to threaded code interpreter)

Replication + Superinstructions up to 3.17 [7]

(compared to threaded code interpreter)

Register vs. Stack Architecture 1.323 avg [20]
(both using switch dispatch)

Register vs. Stack Architecture 1.265 avg [20]
(both using threaded code)

Table 2
Reference of reported speedup factors for several techniques.

techniques for optimizing the high abstraction level are implemented, the ratio of
operation-execution vs. instruction-dispatch (as indicated by the arrows a and b in
Figures 7(a) and 7(b)) has favorably changed their optimization potential. There-
fore, our categorization merely provides an ordering of relative merits of various
optimization techniques, such that considerable deviations in expected/documented
vs. actually measured speedups are not stunningly surprising anymore.

4 Optimizations for High Abstraction Level Inter-
preters

Figure 7(b) shows that many machine instructions are necessary for realizing the
high abstraction level of an interpreter instruction. Therefore we are interested
in cutting down the costs here, since they provide the greatest speedup potential.
In this situation it makes sense to provide a reminder as to what characteristics
constitute our classification into the class of high abstraction level. As already
mentioned earlier in the addition example, there are two answers to that question:

a) ad-hoc polymorphism
b) complex operation implementation (unbounded range mathematics)

Hence there are two issues to deal with. In the first case (a), a look at the
history of programming languages provides valuable insights. We are trying to find
programming languages with similar characteristics like Python’s but having more
efficient execution environments. Smalltalk fits the bill, and specifically SELF
is a prominent derivative which offered an efficient execution engine back in the
early 90s. Among the various optimizations in SELF, specifically type feedback
in combination with inline caching seems particularly matching our first problem.
Holzle and Ungar [12] report performance speedups by a factor of 1.7 using type
feedback, and give advice that languages having generic operators are ideally suited
for optimization with type feedback. Application of type feedback requires that for
a pair of operand-types the target of the actually selected operation implementation
is cached, such that consecutive calls can directly jump there, when operand-types
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match the cached pair (cf. Figure 8).
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Fig. 8. Type feedback for Python’s BINARY_ADD instruction. The gray-colored part is the system default
look-up routine from Figure 5. The dashed arrows represent querying the type feedback cache (upper

bidirectional arrow), and updating the cache with new target addresses after running through the system
look-up routine (lower unidirectional arrows).

In the second case (b), the same technique can be applied. This requires that
the actual operation implementation would be sub-structured to the following steps:

(i) Try to use the fastest possible native machine method
(ii) If i fails/overflows, apply unbounded range software algorithm

By encoding this information into separate types—e.g. int, long, arbitrary—, the
type feedback infrastructure of our first problem (a) can be reused. In such a case,
a positive check against machine boundaries and overflow errors, calling downwards
the chain of most-general implementations and updating the cache for subsequent
calls is necessary.

Aside from these optimization techniques, we want to mention a subtle issue that
comes up when comparing high abstraction level instructions with low abstraction
level instructions. When we compare the addition example of Java and Python,
we find that JVM’s integer addition bytecodes, IADD and LADD, are bound by a
maximum range of representable numbers—32-bit for integers, and 64-bit for long
integers respectively—whereas Python’s BINARY_ADD implementation is not. Since
the JVM does not offer unbounded range mathematics at the virtual machine level,
it is necessary to leverage library functionality—in our case java.math.BigInteger—
in order to have a 1 : 1 correspondence between the integer addition of both lan-
guages. In Java’s case a call to IADD, or LADD for that matter, would be substi-
tuted by a invocation of a software algorithm for unbounded range mathematics
of java.math.BigInteger—probably similar to the one implemented for Python’s
BINARY_ADD, or long_add respectively. This implies that even though a similar al-
gorithm might be used, their difference in implementation level is significant: in
Java we need a library, which generates multiple bytecodes for implementation of
the unbounded range addition, whereas the Python compiler still emits just a single
BINARY_ADD instruction.

Consequently, a high abstraction level sometimes can be considered as an op-
timization technique itself, since it can save a considerable amount of emitted low
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abstraction level instructions—we could probably say that this is a derivative, or
special case, of the superinstruction optimization technique [9]. In conclusion, this
example also illuminates that the instruction set architecture is also of significant
importance for the performance of virtual machines—probably we can also reuse the
analogy of hardware machine instruction set architecture, by recognizing the terms
RISC and CISC in context with our classification, e.g. low and high abstraction
level interpreters.

5 Related Work

Romer et al. [19] provide an analysis for interpreter systems. Their objective was to
find out whether interpreters would benefit from hardware support. However, they
conclude that interpreters share no similarities, and therefore hardware support
was not meaningful. Among other measurements, they collected average native
instructions per bytecode (Section 3 of their paper). This is a sort of a black-box
view on our classification scheme based on comparable source code examples from
bytecode implementations. Finally, there is no link to optimization techniques, too.

Contrary to Romer et al. [19], Ertl and Gregg [8] found that at least within
the subset of efficient interpreters, hardware support in the form of branch target
buffers would significantly improve performance for the indirect branch costs in-
curred in operation dispatch. Their in-depth analysis by means of simulation of a
simple MIPS CPU found that the indirect branching behavior of interpreters is a
major cause for slowdowns. Another important result of Ertl and Gregg is that a
Prolog implementation, the Warren Abstract Machine based YAP [4], is very effi-
cient, too: This implies that there is no immanent performance penalty associated
with dynamically typed programming languages. Their class of efficient interpreters
maps perfectly well to our category of low abstraction level virtual machines.

Adding to their set of efficient interpreters, they also provide results for the
interpreters of Perl, and Xlisp—both of which achieve results that do not fit within
the picture of efficient interpreters. This is where we introduce the concept of
high abstraction level interpreters, and how it correlates to optimization techniques.
Interestingly, for Xlisp Ertl and Gregg mention the following: “We examined the
[Xlisp] code and found that most dynamically executed indirect branches do not
choose the next operation to execute, but are switches over the type tags on objects.
Most objects are the same type, so the switches are quite predictable.” This directly
translates to our situation with high abstraction level interpreters (Section 4).

In his dissertation, Holzle also notes that a problem for an efficient SELF inter-
preter would be the abstract bytecode encoding of SELF [11], with a point in case
on the send bytecode, which is reused for several different things. Interestingly,
Holzle observes, that instruction set architecture plays a very important role for the
virtual machine, and conjectures that a carefully chosen bytecode instruction set
could very well rival his results with a native code compiler.
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6 Conclusions

We introduced the classes of high and low abstraction levels for interpreters, and
categorized some interpreted systems into their corresponding classes. Using them,
we subjected various known optimization techniques for their relative optimization
potential. Techniques that achieve very good speedups on low abstraction level
interpreters do not achieve the same results for high abstraction level virtual ma-
chines. The reason for this is that the ratio of native instructions needed for oper-
ation execution vs. the native instructions needed for dispatch, and therefore their
relative costs changes. In low abstraction level interpreters the ratio usually is 1 : n,
i.e., many operations can be implemented using just one machine instruction, but
dispatch requires n instructions, which varies according to the dispatch technique
applied, and is costly because of its branching behavior. Quite contrary for high ab-
straction level interpreters: here operation execution usually consumes much more
native instructions than dispatch does, which lessens the implied dispatch penalties.

Our classes are not mutually exclusive, an interpreter can have both, low and
high abstraction level instructions. For our classes of high abstraction level inter-
preters, exemplified by Python and Lua—but conjectured to be true for Perl and
Ruby, too—type feedback looks particularly promising. When faced with other
programming languages but the same situation, i.e., a discrepancy in expected and
reported speedups for low abstraction level techniques, our mileage may vary. In
such a situation, only detailed analysis of an interpreter’s execution profile can tell
us where most time is spent and which techniques are most promising with regard
to optimization potential.

In closing, we want to mention that our objectives are to demonstrate the rela-
tive optimization potential for different abstraction levels between an interpreter’s
virtual machine instruction set and the native machine it runs on.
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