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Abstract. Bootkits are among the most advanced and persistent tech-
nologies used in modern malware. For a deeper insight into their be-
havior, we conducted the first large-scale analysis of bootkit technology,
covering 2,424 bootkit samples on Windows 7 and XP over the past 8
years. From the analysis, we derive a core set of fundamental properties
that hold for all bootkits on these systems and result in abnormalities
during the system’s boot process. Based on those abnormalities we de-
veloped heuristics allowing us to detect bootkit infections. Moreover, by
judiciously blocking the bootkit’s infection and persistence vector, we
can prevent bootkit infections in the first place. Furthermore, we present
a survey on their evolution and describe how bootkits can evolve in the
future.
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1 Introduction

Bootkits are a class of malware specifically designed to interfere with the oper-
ating system’s (OS) boot process. They were hugely popular in the 1980s/1990s
[37], then faded into oblivion in the years after, to return with a vengeance from
2006 onward. Some of the most advanced and persistent malware today builds on
bootkit technology. Their renewed popularity is caused by modern security mech-
anisms in Windows, which forced malware authors to look for alternative ways
to “own” the OS. In particular, most of the attacks utilize bootkit technology to
circumvent common measures like the Windows driver signing policy [26], kernel
patch protection [25], but also regular AV software. Moreover, even governmen-
tal and commercial ”Remote Surveillance and Forensic Solutions”, as offered by
FinFisher and Hacking Team, apply bootkit technology in their tools [4].

Virtually all protection strategies today have a weakness in common: they
rely on the integrity of the underlying operating system, either because they use
its services (e.g., AV solutions), or because they reside in the OS itself. Conse-
quently, malware subverting the system’s initialization steps remains undetected.
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A bootkit executes early during the boot process, long before the OS protection
mechanisms kick in, allowing the bootkit to retain control throughout the in-
fected system’s boot phase. Combined with the fact that startup code is rarely
modified on a typical system, bootkits often survive and stay undetected for a
long time after the initial infection.

To this end, we developed Bootcamp, a bootkit detection, analysis and pre-
vention framework. We performed a dynamic analysis for 25,513 malware sam-
ples from 29 different bootkit relevant families, spanning almost a decade of time
(our first sample is from 2006 and our last from 2014) and analyzed their in-
fection and runtime behavior, whereof 2,424 samples revealed bootkit behavior.
To our knowledge, this makes it the single largest bootkit study ever conducted.
From our study, we extract key properties to detect and prevent bootkit infec-
tions in common computer systems. Finally, we present an overview of bootkit
technology evolution and describe how it may evolve.

Contributions. Our paper makes the following contributions:

1. We conduct the first large-scale study of 8 years worth of bootkit technology.
2. Based on the study, we propose new techniques to stop bootkit attacks.
3. We present Bootcamp, a platform to detect, analyze and prevent bootkits.

To our knowledge, the detection method we present cannot be evaded by any
known MBR, VBR, or bootloader based bootkit. Thus, it significantly raises the
bar for developers of malicious software who now have to target other compo-
nents, such as the BIOS. The focus of our study is on systems that boot from
a device’s master boot record. As there are virtually no UEFI bootkits that are
not research proof-of-concepts, we left them out of scope for our study.

2 How bootkits interfere with the boot process

Booting. Figure 1 sketches the boot process for BIOS based systems. The CPU
boots in real mode and executes the BIOS, which locates and passes control to the
Master Boot Record (MBR). The MBR is located within the first 512 bytes of the
system’s hard disk. The MBR code parses the partition table (PT) to determine
the “bootable” partition (containing the OS) and hands over control to the
Volume Boot Record (VBR). The VBR resides within the bootable partition’s
first 512 bytes and contains further information necessary for booting such as
the filesystem parameters and the bootloader’s disk location. The VBR code
then loads the bootloader’s (BL) first stage into memory and passes control to
it. Finally, the BL loads further code from the disk, switches to protected mode,
and loads and executes the kernel.
Dark regions.We define a dark region (DR) as a contiguous physical disk region
which is not part of a filesystem. Since it is not part of a filesystem, it is also not
accessible and invisible to the user during normal system operation. Examples
include the MBR, the sectors between the MBR and VBR, the bootloader, the
inter-partition gaps, and the space beyond the last partition and the end of the



3

Fig. 1. Boot sequence for BIOS based systems

physical disk (these gaps have up to several MB size on most systems). Figure 2
shows a typical disk layout and corresponding dark regions (dark regions are
colored in gray). Some of these regions (e.g., the MBR, VBR, and bootloader)
are used during system startup, while others (like inter-partition gaps) are never
used at all. What makes dark regions interesting for attackers is that only very
rare events (like major OS updates) ever modify them and current protection
mechanisms typically do not cover them, as they operate at the filesystem level.

Fig. 2. Typical dark region (DR) layout - dark regions in gray, filesystem areas in green

Bootkit infection techniques. Bootkits interfere with the startup process by
replacing any boot stage prior to the kernel’s execution (e.g., the MBR, VBR
or bootloader) with the initial infection vector. They execute malicious code
before the OS employs protection techniques and subvert the kernel to keep
control throughout the infected system’s runtime. Typically the initial infection
vector initializes the bootkit (e.g,. by hooking certain interrupts, see below),
loads further malicious code from the disk and redirects execution there. After
executing the malicious code, the bootkit returns to the original bootstrap code
continuing the intended (but now infected) boot process.

Due to the limited disk space for startup code, bootkits typically utilize fur-
ther disk areas (e.g. dark regions with sufficient space) to store configuration
settings and additional code, which is finally executed or injected into the ker-
nel’s memory (e.g. a kernel driver). Modern bootkits often encrypt those hidden
storage areas [24]. Bootkits have several hard requirements. 1) They must execute
at least once before the kernel takes control and activates defensive measures. 2)
Bootkits need to survive system restarts. 3) They must be space efficient as the
available space for the initial infection vector is highly limited. 4) The code has
to run in real and protected mode and survive mode switches. 5) They should
not delay OS startup significantly.



4

Fig. 3. An example execution flow exploiting the bootloader as initial infection vector
- infected areas in red, benign in green [14]

As an example, Figure 3 shows the execution flow for a bootkit utilizing an
infected bootloader. The BIOS passes control to the MBR code which in turn
loads and executes the VBR. The VBR code loads the infected bootloader (BL)
which executes further malicious code from the system’s disk (e.g. the dark region
at the drive’s end). The latter code performs additional malicious activity—like
interrupt hooking. Later, the bootkit executes the original bootloader in order
to load the kernel into memory. When this is done, the bootkit regains control
by means of a hooked interrupt and infects the kernel in memory. Finally, it
proceeds initializing and executing the (now infected) system.

Strictly speaking, there are more possible bootkit types. Besides the ones tar-
geting the MBR or VBR (like TDSS, Sinowal, and Pihar [3]) and the ones aiming
for the bootloader (like Cidox/Carberp [21]), bootkits could target the BIOS and
other technology also. For instance, the research PoC IceLord bootkit [2], writes
its code directly into the BIOS FLASH/ROM. At the other extreme, bootkits
may in principle target Windows specific components like boot.ini or hive [23].
As MBR, VBR, and bootloader bootkits are by far the most popular (and the
others are hardly seen in practice), we will focus on these.

Interrupt hooking. Bootkits need to regain control after the kernel is loaded
in memory by the bootloader, but before it executes, so they can infect it before
it runs. For this purpose, a bootkit hooks the system’s interrupts. Specifically,
the CPU holds a data structure known as the Interrupt Vector Table (IVT)
in the lower 1K of memory in real mode. The IVT contains 256 entries, each
representing one interrupt and containing a pointer to the corresponding Inter-
rupt Service Routine (ISR). Whenever an interrupt occurs, the CPU consults
the IVT and executes the corresponding ISR. After processing the interrupt,
the ISR returns control to the instruction executed at the time the CPU was
interrupted. Bootkits typically install interrupt hooks by overwriting the orig-
inal ISR’s address with a malicious one (e.g., interrupt 0x13 which provides
low-level disk services). This allows them to regain control after executing be-
nign code such as the original bootloader. After executing the malicious routine
they redirect control to the original so that it may continue its intended function.
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3 A large scale analysis of bootkit technology

We conducted a large scale analysis of bootkit technology using a dataset of
25,513 malware samples to get a deeper insight into bootkit behavior. This sec-
tion presents the results of the analysis, as well as the evolution of bootkit tech-
nology for a timespan of 8 years. We start by presenting the bootkit dataset,
experimental setup and containment measures. Striving for sound experimen-
tation, Table 1 shows the checklist advocated by Rossow et al. for malware
experiments [34], and to what extent we apply the suggested guidelines.

Criterion Satisfied Criterion Satisfied Criterion Satisfied
Removed Y Interpreted FPs Y Removed moot N
goodware samples
Avoided overlays Y Interpreted FNs N Real-world NA

FP exp.
Balanced families Y Interpreted TPs N Real-world NA

TP exp.
Separated dataset NA Listed malware Y Used many Y

families families
Mitigated NA Identified Y Allowed Internet Y
artifacts/biases environment
Higher privileges Y Mentioned OS Y Added user Part.

interaction
Described naming Y Used multiple Y

OSes
Described sampling Y
Listed malware Y
Described NAT Y
Mentioned trace Y
duration

Table 1. Rossow’s checklist for malware experiments [34]

Bootkit dataset for evaluation. Altogether, we utilized 25,513 malware sam-
ples from 29 different families for our experiments. The malware samples were
chosen based on their likelihood to install a bootkit [35]. The samples were se-
lected by an AV vendor’s malware label, matching one of 29 predefined families.
Table 2 outlines the annual distribution on the bootkit dataset over a times-
pan of 8 years, while Table 5 shows more details of the families and sample
set. Additionally, we analyzed 100 benign binaries to examine the behavior for
non-malicious executables.
Experimental setup. We monitored the boot process in a virtualized envi-
ronment running Windows XP SP3 and Windows 7 (both 32 bit) and extracted
defining features for bootkits. We describe in detail the virtualized analysis envi-
ronment in a Section 5. Following the guidelines from Rossow [34] we deactivated
the Windows firewall on both systems and disabled the UAC on Windows 7, as
the weaker security measures allow us to observe more malware behavior. The
evaluation was performed between September 2014 and February 2015. We pro-
vided a dedicated CPU core and a main memory size of 1024 MB for XP and
2048 MB for Win7 for each analysis environment. Each sample had about 90 sec-
onds to perform the infection. After infection, the systems were rebooted. They
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First appeared Sample count Share per year
2006 30 0.1%
2007 26 0.1%
2008 575 2.3%
2009 1,737 6.8%
2010 2,902 11.4%
2011 6,431 25.2%
2012 7,771 30.5%
2013 2,647 10.4%
2014 3,394 13.3%

25,513 100.0%

Table 2. Annual distribution of malware sample set

were allowed to use up to 2 minutes for the boot phase, which is more than
sufficient for fully booting the OS. If the OS took longer to boot, the system
was killed and marked as broken by the malware. The Win7 environment used a
disk layout (and hence dark region layout) with MBR partitioning and a single
system partition, identical to Figure 2 (Partition 2 in the figure is equivalent to
the hidden system partition Windows 7 is typically generating). The Windows
XP environment used a similar layout but with a single partition.
Containment. We performed initial experiments allowing internet access for
the samples but performed the main evaluation without. When we allowed in-
ternet access we state it next to the experiment. In general, we did not allow
internet access, as it would distort the results on the historic evolution of bootkit
technology: a dropper with internet access may fetch a new bootkit version in-
stead of installing the embedded, historic one. Furthermore, there is hardly any
difference allowing or denying internet for our sample set, as shown in Section
3.1. When allowing internet, the system was behind a NAT and rate limited.

3.1 Large-Scale Bootkit Analysis Results

We define the terms “bootkit like behavior” as samples writing to any dark re-
gion, “bootkit detected” as samples writing either the MBR, VBR or bootloader
during the bootkit infection (so bootkit detected implies bootkit like behavior but
not necessarily the other way round), “working infections” as samples satisfy-
ing bootkit detected definition and the system reboots successfully after infection
and “successful infection rate” as the rate (in %) between the number of
samples with bootkit like behavior and working infections. Table 3 compares the
results for Windows XP allowing or denying internet access to samples. Allow-
ing internet access increased the number of samples with bootkit like behavior by
16.7% on Windows XP. Interestingly the number of detected bootkits and work-
ing infections increased only by 1.4% respectively 1.1%. Hence, there is little
difference between allowing or prohibiting internet access for working infections.
This was the only experiment we performed with internet access. The other tests
denied internet access, for the reasons discussed earlier.

Table 4 outlines the analysis results separated by OS. The category XP and
Win7 defines the number of samples working on both OSes, whereas XP or Win7
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XP without internet XP with internet Difference
BK like behavior 2,405 2,888 16.7%
Bootkit detected 2,042 2,073 1.4%
Working infections 1,143 1,156 1.1%
Succ. infection rate 47.5% 40.0% 7.5%

Table 3. Comparing analysis’ outcome with and without internet access on XP

specifies the amount of executables working on at least one of both systems.
Though, we detected slightly more bootkits or XP, we observed more working
bootkit infections on Win7. Only 43.8% of the samples operate on both OSes.
258 samples work exclusively on XP, whereas 15 samples operate on Windows 7
only. Hence, nearly all samples working on Win7 are functional on XP too. This
observation does not hold for the other direction. Altogether, 2,424 samples out
of 25,513 revealed bootkit like behavior on at least one OS.

XP Win7 XP and Win7 XP or Win7
BK like behavior 2,405 2,147 2,128 2,424
Bootkit detected 2,042 1,799 1,784 2,057
Working infections 1,143 1,647 931 1,859
System boot fails 1,262 500 1,197 565
Succ. infection rate 47.5% 76.7% 43.8% 76.7%

Table 4. Experimental sample set’s operability on different operating systems

Table 5 highlights details and outlines evaluation results for each malware
family contained in our bootkit dataset. The successful infection rate strongly
varies between families and OS. Some families target only XP e.g. Finfish and
Lapka, while others like Pihar and TDSS exclusively focus on Win7, but in
general most target both OSes, as Cidox, Sinowal and Smitnyl do. Especially
most recent samples have relatively high successful infection rates as Pihar,
Sinowal, Smitnyl and TDSS have for Windows 7 and Niwa, Sinowal, Smitnyl have
for XP. Tough some families hold a high sample count they feature a very low
successful infection rates. This might have multiple explanations. For example
they might target only particular systems (e.g. a specific language), perform
anti-VM / anti-analysis techniques (as discussed in Section 7) or fail to install a
properly working bootkit for our analysis system.

Recall, bootkits have to acquire additional disk space as the initial infection
vector is typically too small for their complete code and data (requirement 3 in
Section 2). Hence, they have to store their data somewhere else. Table 6 outlines
which dark regions (DR) were exploited as data storage by the bootkits. End
of disk indicates exploitation of the space beyond the last partition (DR6 in
Figure 2), whereas between partitions includes any space between the partitions,
including the gap between MBR and VBR (DR5 and DR2 for Win7 and DR2
for XP). Sometimes bootkits use both locations to store data, indicated by both.
On average 81.1% store their data at the end of the disk, 18.2% on average utilize
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XP Win7
Malware
family

First
appeared

Last
appeared

Sample
count

Working
infections

Succ. infection
rate

Working
infections

Succ. infection
rate

Yurn 2006-05 2013-06 43 1 2.3% 1 2.3%
SST 2006-05 2012-10 61 0 0.0% 0 0.0%

Sinowal 2006-05 2014-06 2,938 678 23.1% 582 19.8%
Plite 2006-10 2014-06 3,908 1 0.0% 1 0.0%

Infinaeon 2007-10 2007-10 1 0 0.0% 0 0.0%
Trup 2007-12 2014-06 1,862 72 3.9% 50 2.7%
TDSS 2008-07 2014-06 2,945 0 0.0% 495 16.8%
Zhaba 2008-10 2010-05 5 0 0.0% 0 0.0%
Qvod 2009-03 2014-06 2,831 0 0.0% 0 0.0%
Stoned 2009-07 2014-02 23 4 17.4% 2 8.7%
Smitnyl 2009-08 2014-03 297 56 18.6% 65 21.9%
Xpaj 2009-10 2014-06 547 16 2.9% 17 3.1%
Niwa 2009-10 2014-06 38 8 21.1% 1 2.6%

Phanta 2010-03 2014-05 954 80 8.4% 27 2.8%
Wistler 2010-05 2014-06 814 1 0.1% 0 0.0%
Nimnul 2010-07 2014-06 2,499 0 0.0% 2 0.1%
Finfish 2010-10 2014-06 29 1 3.4% 0 0.0%
Fisp 2011-03 2014-04 246 0 0.0% 0 0.0%

ZAccess 2011-05 2014-07 1,948 0 0.0% 0 0.0%
Lapka 2011-06 2014-06 94 15 16.0% 0 0.0%
Cidox 2011-07 2014-06 2,858 193 6.8% 193 6.8%
Mybios 2011-07 2014-03 47 13 27.7% 0 0.0%
Pihar 2011-08 2013-03 447 0 0.0% 209 46.8%

GoodKit 2011-11 2011-11 1 0 0.0% 0 0.0%
CPD 2012-05 2014-06 38 3 7.9% 1 2.6%
Geth 2012-06 2012-10 6 0 0.0% 0 0.0%

Korablin 2012-08 2014-06 27 0 0.0% 0 0.0%
Backboot 2013-03 2013-03 1 1 100.0% 1 100.0%
Careto 2014-02 2014-02 5 0 0.0% 0 0.0%

25,513 1,143 4.8% 1,647 6.9%

Table 5. Overview on evaluation results per malware family contained in sample set

the space between partitions, while only a few samples split the data storage and
exploit both locations. In general, we observe a trend toward utilizing the space
between partitions. All samples wrote to dark region 2 or 5 on XP respectively
2, 5 or 6 on Win7 (see Figure 2). Later, we use this property in our detection
and prevention system.

XP Win7
Data storage location Count Share Count Share Avg on both
End of disk 957 83.7% 1,306 79.3% 81.1%
Between partitions 170 14.9% 337 20.5% 18.2%
Both 16 1.4% 4 0.2% 0.7%
Writes to DR 1,143 100.0% 1,647 100.0% 100.0%

1,143 100.0% 1,647 100.0% 100.0%

Table 6. Exploited dark regions as data storage locations from successful infections

Table 7 outlines the exploited initial infection vectors to gain control during
the boot process. The MBR is by far the dominant infection vector utilized by
86.1% on average, followed by the bootloader exploited by 13.8% samples on
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average. The VBR is used by hardly any sample. There is a noticeable trend
from exploiting the MBR toward utilizing the bootloader (and perhaps VBR, in
an incipient phase). We describe this shift in more detail in Section 3.2.

XP Win7
Infection vector Count Share Count Share Avg on both
MBR 948 82.9% 1,453 88.2% 86.1%
VBR 2 0.2% 1 0.1% 0.1%
BL 193 16.9% 193 11.7% 13.8%

1,143 100.0% 1,647 100.0% 100.0%

Table 7. Initial infection vectors from successful infections

The hooked interrupts are shown in Table 8. As some samples hook multiple
interrupts the sum increased to 1,172 / 1,660 (XP / Win7). The most exploited
interrupt are 0x13 (85.1%), and 0x15 (14.1%). Interrupt 0x13 is normally used
to load disk content into memory and is therefore convenient to verify whether
the kernel is loaded into memory. The obvious drawback of interrupt 0x13 is the
huge number of calls, as it is called a few thousand times during startup. On
the other hand interrupt 0x15 is typically called once during the boot phase—
to gain the system’s memory map and executed before passing control to the
kernel. Hence, it’s an excellent interrupt hooking target for bootkits. The hooks
for interrupt 0x83 and 0x85 were exploited by 8 Niwa samples on XP and one
on Win7 between 2009 and 2012. 13 Mybios samples on XP and 1 Plite on both
OSes do not hook any interrupt as those families feature a slightly different
attack model. Instead of patching the kernel directly in memory, those samples
replace explorer.exe with a malicious one on the disk, but therefore leave traces
on the filesystem [1]. We discuss these techniques in more detail in Section 3.2.

XP Win7
Hooked interrupt Count Share Count Share Avg on both
0x13 947 80.8% 1,464 88.2% 85.1%
0x15 203 17.3% 194 14.0% 14.1%
0x83 & 0x85 8 0.7% 1 0.1% 0.3%
None 14 1.2% 1 0.1% 0.5%

1,172 100.0% 1,660 100.0% 100.0%

Table 8. Exploited interrupt hooks from successful infections

3.2 Historic Perspective on the Evolution of Bootkit Technology

This subsection discusses the historic evolution of bootkits. Table 9 highlights the
historic perspective on successful infections rates. We observe a high successful
infection rate for the samples dating from 2008 and 2009, followed by intense
decline hitting the low-point in 2011. Starting with 2012 the successful infection
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XP Win7
Year BK like

behavior
Working
infections

Succ.
infections

BK like
behavior

Working
infections

Succ.
infections

2006 0 0 - 0 0 -
2007 0 0 - 0 0 -
2008 7 7 100.0% 0 0 -
2009 464 450 97.0% 453 380 83.9%
2010 422 189 44.8% 379 216 57.0%
2011 907 128 14.1% 793 577 72.8%
2012 318 127 39.9% 275 240 87.3%
2013 48 37 77.1% 37 27 73.0%
2014 239 205 85.8% 210 207 98.6%

2,405 1,143 2,147 1,647

Table 9. Overview on the historic evolution on successful infection rates

rate raised again to peak in 2014. We did not observe any working bootkit for
Win7 before 2009, since Win7 was released in the end of that year. From 2010 to
2012 the successful infection rate for XP was relatively low. This might indicate
a focus on Win7 and Win8 (which we did not evaluate in this paper) prior to
maintain operability on the older XP. But in general the trend indicates an
improvement and professionalisation in the underground malware industry for
bootkits. The historic development on used infection vectors is outlined in Figure
4. Until 2011 the MBR was the only initial infection vector exploited. In 2012 and
2013 a few samples used the VBR as initial infection vector, while the bootloader
(BL) became more popular starting with 2013. In 2014, the BL was the most
exploited infection vector. The tremendous increase in BL infections is very likely
related to the Carberp botnet’s source code leak from 2013 [21]. It contained the
source code of the Cidox bootkit which was applied by Carberp [35]. Likely
Cidox will become the new de facto standard template for bootkits as Zeus
did for banking trojans after its infamous leak in 2011 [10]. Regrettably the
Zeus leak also lead to a dramatic amount of mutations and peaked in various
highly sophisticated banking trojans like Citadel [5], SpyEye [36] or Zeus P2P
variants like ZeroAccess and Kelihos [32]. Figure 5 shows the evolution of the
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Fig. 4. Overview on initial infection vector evolution

dark region usage by bootkits. In 2008 the space between partitions and at the
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end of the disk were both utilized by bootkits to store their code and / or
data. This behavior changed dramatically in the next years, as samples almost
exclusively exploited the space beyond the last partition. In 2010 the preferred
data storage location started shifting again, resulting in equal exploitation of
space at the end of the disk and between partitions in 2014. The evolution of
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Fig. 5. Overview on dark region utilization evolution

interrupt hooking is outlined in Figure 6. In 2008 we observed the first samples
hooking interrupt 0x13. The Niwa family started hooking interrupt 0x13, 0x15,
0x83 and 0x85 in 2009. They exploited 0x83 and 0x85 to call the original ISR
for interrupt 0x13 and 0x15. Niwa is the only family we observed hooking the
interrupts 0x83 and 0x85, but we did not monitor any Niwa sample after 2012
anymore. There is a clear shift of exploiting interrupt 0x13 to utilizing 0x15

throughout the years. This shift might be explained by the Carberp leakage [21]
again, as it also exploits interrupt 0x15. Therefore interrupt 0x15 will remain the
dominant hook in the future.Mybios introduced an interesting technique in 2011.
They avoided interrupt hooking and in memory kernel patching techniques, by
replacing the original explorer.exe with a malicious one on disk during the boot
process. Though this is a highly interesting technique and simplifying bootkit
development, it did not establish itself in the scene, likely because it relies on
changing files within the filesystem leaving potential suspicious traces there. This
technique was later adopted by Plite in 2014.
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4 Detecting and Preventing Bootkit Infections

4.1 Detecting Bootkit Attacks

Bootkits are installed either (1) by a malware dropper during system operation
(which is the common case), or (2) when the physical disk is modified directly
while the target system is off. Given the characteristics of the previous section, we
propose heuristics to detect bootkit infections either during installation but also
after the system is already infected (except dark region modification heuristic).
(1) Dark region modification heuristic. As discussed, bootkits have to mod-
ify the target system’s bootstrap code located in dark regions (MBR, VBR,
bootloader) to infect the system and survive system restarts (first and second
requirements in Section 2). Furthermore, they store additional code and data in
other dark regions, as this space is typically not used under normal operation
and hence, is not in danger of being accidentally overwritten by the OS or de-
tected by filesystem based protection solutions (see requirement three). Thus,
dark region modifications (i.e. disk writes to any dark region) are indicators for
suspicious behavior. Figure 2 outlines a typical disk and dark region layout (with
two partitions). For example in an infected system the MBR (DR1 ), the gap be-
tween the MBR and the VBR (DR2 ), and the space beyond the last partition
(DR6 ) could be utilized by the bootkit.
(2) Dark region read heuristic. While booting an infected system its mali-
cious code may need to load additional content from its hidden storage (require-
ment three), e.g. at the disk’s end. Therefore a read operation from a dark region
normally not involved in the boot process is another indicator for compromise.
(3) Interrupt hooking heuristic. Bootkits must execute at least once, but
typically multiple times at different stages during the boot process. As mentioned
earlier, a good and proven solution to do so is by means of hooking. Interrupt
hooking is not performed in real mode on a clean system. Therefore, an interrupt
hook during system bootstrap is a good indicator for bootkit activity.
(4) Reuse existing code heuristic. In a clean system the BIOS loads the
MBR code at address 0000h:7C00h and starts executing it. The MBR code loads
the VBR code from the boot partition again at 0000h:7C00h, and executes the
address again. Hence, during a clean system’s startup process the number of
jumps to this fixed address is exactly two. Bootkits exploiting the MBR or VBR
as initial infection vector typically backup the original code on the disk to reuse
it. As the malicious and the benign code is both loaded to 0000h:7C00h the
number of jumps to this fixed address for infected systems is greater than two.
This heuristic was also utilized by Haukli to detect system startup anomalies [15].
Misdetection and evading the heuristics. We now look at the strength
of our heuristics. (1) Dark region modification heuristic: False positives may
occur in case of legitimate dark region updates, e.g., during a major system
upgrade, partitioning or a complete reinstallation of the system, but malware
cannot evade detection since it has to write to boot process relevant disk sectors.
Some bootkits may mark disk sectors as bad but still use them. This evasion
would fail because this heuristic checks the location of changed sectors and not
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their quality. (2) Dark region read heuristic: The bootkit may store its data in
unsuspicious disk sectors inside a filesystem. This technique would induce more
risk for the bootkit to get accidentally overwritten by the OS, as it is unaware
of the disk sectors utilized by the bootkit. Furthermore, it may be detected by
filesystem based protection solutions. (3) Interrupt hook heuristic: Samples may
not exploit interrupt hooking as discussed in Subsection 3.2. Those samples lack
the ability to regain control after executing legitimate boot code and hence rely
on a different attacker model. They change files directly within the filesystem
instead of patching / injecting code in memory, but replacing files on the disk
leaves suspicious traces within the filesystem. (4) Reuse existing code heuristic:
As discussed in Section 6.1 bootkits infecting the bootloader can circumvent
this heuristic. Those samples do not execute a malicious MBR / VBR, followed
by the benign one and therefore execute the address 0000h:7C00h just twice.
Moreover an attacker might patch the original MBR / VBR to be loaded and
executed to a different memory address or refrain from reusing existing code.
False-Positives. False positives may be induced by major OS upgrades which
change the way bootstrapping is done until now or exotic / self written boot-
loaders exploiting bootkit-like techniques but for benign purposes. Such intended
but suspicious behavior could be whitelisted for a specific system without affect-
ing detection performance, as the heuristics seek for boot process anomalies and
hence, such whitelists would redefine permitted boot behavior. For example one
could allow the bootloader to read (even write) from (to) certain additional dark
regions during the boot process. Interrupt hooks may be allowed during certain
boot stages, for particular interrupt numbers, to specific ISR target addresses
executing predefined (e.g. verified via cryptographic secure hashing) ISR code.
The reuse existing code heuristic may be adapted for deviating boot behavior by
adjusting the number of at most allowed jumps to a certain address, as reusing
code still increases this count beyond the allowed maximum.
Application Scenarios. Our detection heuristics can be divided into two types:
1) heuristics for bootkit attacks at installation time on a running system and 2)
heuristics for existing infections while booting a system, after a potential infec-
tion. Although the heuristics are implemented in a virtual machine, detecting
bootkits is not restricted to VMs. The VM with heuristics can take any disk
as input, e.g. another VM’s disk or a physical hard disk. This use case is inter-
esting in post-infection scenarios, forensics or in settings where one is not sure
whether a system is infected or not. The dark region modification heuristic de-
tects bootkits at installation time. The other three detect bootkit activity during
an infected system’s boot phase. The three heuristics can be used to detect an
infected disk even after infections.

4.2 Preventing Bootkit Infections

In this subsection we discuss a bootkit prevention technique for virtualized envi-
ronments. Full system emulators such as QEMU, Bochs, VMware or VirtualBox
are capable of implementing our proposed preventive measures directly inside the
emulated hardware. Based on the information provided in Section 2, restricting
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dark region modifications (e.g. MBR, VBR, bootloader, inter-partition space) de-
feats the bootkit’s persistence requirement (see requirements 2 and 3 in Section
2). This prevention measure blocks the initial infection vector and further data
persistence within the system’s dark regions. We can prevent write operations to
the dark regions or redirect them to another specially created shadow area, as
some malware droppers may verify whether dark region modifications succeeded
by rereading the corresponding disk sectors. Another more conservative measure
is to kill the virtual environment upon detecting a bootkit infection attempt. AV
solutions often use emulators to provide a contained environment for each scan
of a suspicious file. The described detection and prevention techniques can thus
be integrated with existing solutions. Altough the detection system can also de-
tect infections on physical machines (non VMs), the prevention system can only
be implemented in VMs.

5 Bootcamp

This section presents Bootcamp, a detection, analysis and prevention framework
implementing the detection heuristics, as well as the prevention measure pro-
posed in Section 4 and already used in production. Bootcamp is fully automated,
hence no user interaction is required during malware analysis.

Dynamic Bootkit Analysis. Armed with the heuristics described in Section 4
we distinguish two phases for dynamic bootkit analysis: a bootkit infection phase
and an bootkit execution phase. During the infection phase the malware drop-
per executes and potentially installs a bootkit. In this phase, the dark region
modification heuristic precisely describes the changes and locations within the
dark regions by the bootkit attack, i.e., the modifications for the initial infection
vector and its additional code and data. Preventive measures apply during the
infection phase to stop bootkit attacks. After a certain time, we automatically
restart the infected system to enter the bootkit execution phase. In this phase, we
monitor the bootkit’s behavior during the system’s boot process. Therefore, we
apply all previously described heuristics to detect, describe and analyze bootkit
activity during the bootstrap process.

Architecture. Figure 7 outlines Bootcamp’s components. Malicious samples
enter a central database via the submission module. The Bootcamp server dis-
tributes the malicious files to Bootcamp workers which in turn start virtual
machines (VM) to analyze the samples dynamically. Each worker starts a dif-
ferent virtual analysis environment per sample and reports the analysis’ results
into the database. The worker performs the bootkit infection phase for each sam-
ple while recording the sample’s infection behavior. After restart, the infected
virtual environment enters the bootkit execution phase applying the bootkit de-
tection heuristics to detect and analyze the potentially installed bootkit. In case
prevention measures are applied, the infection phase also implements the pre-
vention component. The analysis does not rely on any knowledge from the OS
running inside the VM and all monitoring takes place in the emulated hardware.
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Fig. 7. Bootcamp’s architecture

6 Bootcamp evaluation

To evaluate Bootcamp we utilized 32 bit Windows XP and Win7, with their
standard bootloaders NTLDR and bootmgr, respectively, and used the same
experimental setup and dataset as described in Section 3.

6.1 Bootkit Detection Results

Table 10 shows the results for our proposed bootkit detection heuristics. The dark
region read heuristic caught all bootkit infections on both OSes. This behavior
also correlates with our observation highlighted in Table 6 as every bootkit wrote
to at least one dark regions not responsible for the boot process (MBR, VBR,
BL). The interrupt hook heuristic also performed extremely well as it triggered
for 98.8% samples on XP and 99.9% on Win7. This heuristic missed infections
not employing interrupt hooking as described in Subsection 3.2. The reuse exist-
ing code heuristic caught 86.2% of infections on average. This heuristic missed
samples infecting the bootloader stage as those do not execute a malicious MBR
/ VBR, followed by the benign MBR / VBR and therefore they execute the
address 0000h:7C00h just twice. Furthermore, we analyzed 100 benign samples
utilizing our detection system and monitored the results during one hour of
typical office usage (web browsing, text processing). To see the impact on the
detection heuristics of a different bootloader, we ran Linux with GRUB. We did
not encounter any false positives for these scenarios as writes outside partitions
are very unlikely for benign samples respectively during normal system opera-
tion. There are very few executables potentially writing outside partitions (tools
to repartition a system or correct errors in the MBR/VBR/BL) like gparted
or fixmbr.exe. Thus Bootcamp’s heuristics work with setups that use 3 major
bootloaders: NTLDR, bootmgr and GRUB.
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Detection heuristic XP XP (%) Win7 Win7 (%) Avg
Dark region reads 1,143 100.0% 1,647 100.0% 100.0%
Interrupt hooks 1,129 98.8% 1,646 99.9% 99.5%
Reuse existing code 951 83.2% 1,455 88.4% 86.2%
Dark region writes 1,143 100.0% 1,647 100.0% 100.0%
(during bootkit infection phase)

Table 10. Performance of proposed detection heuristics

6.2 Bootkit Prevention Results

Finally we evaluated the dataset applying the prevention technique described in
Section 4.2. The experiment was performed for all 2,424 samples with BK like
behavior on XP or Win7. During bootkit infection phase the system prevented the
samples from writing outside of partitions and therefore hindering the bootkit’s
infection. After restarting the system and entering the bootkit execution phase
we monitored the system’s boot behavior. Applying the detection heuristics we
determined whether an infection occurred in spite of the prevention system being
in place. The system did not boot successfully after executing the malware in
2.9% of the cases on Windows XP and 7.3% on Win7. This was caused by the
malicious modifications to essential OS components located inside the filesystem.
After applying the detection heuristics on successful booting systems, we did not
detect any infections during the boot phase anymore i.e. for all successful booting
systems on both operating systems none of the detection heuristics triggered in
any case. Applying our detection heuristics, the prevention system prohibited
all 2,424 bootkit infection attempts on both OSes.

7 Discussion & Limitations

General Limitations. Bootcamp works for UEFI systems for the bootkit infec-
tion phase utilizing the heuristic for dark region tracking. The bootkit execution
phase heuristics may not be effective in this case and we did not evaluate this
scenario, as there are virtually no UEFI bootkits being not research proof-of-
concepts. Hence, we evaluated our approach with MBR/VBR and BL-based
bootkits which are the most popular bootkit types in the wild. Our heuristics
are still relevant in a UEFI world for legacy systems that cannot be migrated.
Bootkits may evade our system by directly attacking the BIOS, trying to flash a
malicious one into the system and refraining from writing to boot process sectors.
The malware can refrain attacking the boot process and stay inside the filesys-
tem, e.g., by replacing system components directly on the filesystem like classic
viruses do. However, this technique leaves suspicious tracks on the filesystem.
Evasion Techniques. There are several problems inherent to all dynamic anal-
ysis systems. Malware samples can employ techniques to detect a system emula-
tor [29] and decline malicious behavior. Malware could fingerprint our analysis
environment e.g. by MAC / IP addresses, Windows serial keys, deployed hard-
/software combinations. For now we do not perform any cloaking of our system.
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Additionally the sample might wait some time before performing the infection.
Though Kolbitsch et al. proposed a stalling code detection and mitigation [20]
it can not deal with all kinds of this awkward behavior. It is extraordinarily dif-
ficult to circumvent such behavior within limited time and resource constraints.
Therefore, we are not able to monitor malware utilizing such techniques. Evasive
techniques for the heuristics are already discussed in Section 4.1.
Future Bootkit Evolution.We estimate the following future bootkit evolution
trends: 1) Based on our results in Section 3, we expect the majority of bootkits
exploiting the bootloader as the initial infection vector in the future as it is
stealthier and offers slightly more space compared to the MBR and VBR infec-
tions. 2) Figure 5 shows a diversification of dark region utilization with
time and we expect this to expand to sections within the filesystem (e.g., meta-
data, alternate data streams, file slack space). But such techniques introduce
more complexity and risk for the bootkit. For example it could be accidentally
overwritten by the OS, as it is not aware of the disk sectors used by the bootkit.
Furthermore, the bootkit would have to be aware of the filesystem’s implemen-
tation, know the location of every single utilized file and its slack space and
monitor move, copy, update and delete operations on all utilized files to keep
the data consistent. 3) BIOS/UEFI based bootkits might be another future
trend. In 2011 the first BIOS based bootkit was detected in the wild [13], but
hardly spotted since then because they are highly complex to implement and
have to consider BIOS vendor and version specific details for their attack to
succeed. Though a few UEFI PoC bootkits exist, to the best of our knowledge
none has been spotted in the wild ever. Still they might be a future trend. 4) We
expect bootkits to increase their capabilities by using recent CPU features, e.g.
advanced virtualization instructions. This would enable VM based bootkits
applying ideas from SubVirt [18]. Already new bootkits sometimes inject kernel
drivers in order to hide bootkit data in DRs from detection systems inside the
infected host (e.g., AV software). Utilizing VM based bootkits could shift the
whole infected system into a VM leveraging the concealment to a new level, as
such systems could get along without injecting any code or data into the infected
system, but completely control the whole machine via the malicious VM.

8 Related Work

Dynamic Malware Analysis. Researchers have proposed and developed many
approaches for dynamic malware analysis. Most rely on sandboxing and execute
malware in virtual environments, e.g. Anubis [9], Argos [28] or CWSandbox [38].
Most approaches focus on capturing Windows API calls in user mode as Anu-
bis [9] or CWSandbox [38] do, while others target kernel level infections like
K-Tracer [22], dAnubis [27]. Some target network traffic produced by malware
like Sandnet [33], whereas others focus on analysis-based evasive malware detec-
tion [19]. None target bootkits or analyze them in detail. Large-scale malware
studies were performed by many papers for various goals. Most focus on scan-
ning and in depth analysis of malware samples, e.g. [7, 28, 38]. Other target the
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problem of scaling for large malware datasets like [8, 16] do. However, none of
those papers focus on the subset of malware that contains bootkit technology.
Bootkits. Li et al. [23] and Gao et al. [12] present a survey on bootkit attacking
approaches like BIOS-, MBR-, NTLDR- or other technology based bootkit infec-
tion vectors. Rodionov and Matrosov [11] outline a bootkit classification based
on their infection vector (MBR / VBR / BL) and present a bootkit threat evo-
lution overview. This evolution survey is not built on certain bootkit technology
characteristics as our historic evolution overview is, but highlights the first oc-
currence of certain technologies. Haukli [15] uses the number of jumps to address
0000h:7C00h during the system’s boot process as a heuristic to detect suspicious
behavior but does not perform an evaluation of this approach. In 2007 IceLord,
the first BIOS based bootkit PoC, was published which tries to inject a malicious
BIOS and gains control even before the MBR is executed. Research in this area
was done by Schlaikjer [31] and Wojtczuk and Tereshkin [39] in 2009 and 2013.
None of them presented a historic, large-scale and detailed bootkit analysis as
we do. Kaspersky Labs [17] studied GrayFish, an advanced malware created by
the Equation group. GrayFish has a bootkit component that modifies the VBR
and hijacks the loading of the first kernel driver. More components are loaded
afterwards from the registry. Our detection heuristics would detect GrayFish’s
VBR component and the prevention component would stop the infection.
Preventing Infections. [14] proposed a bootkit prevention system based on an
AV solution and relies on components inside of the system. Hence, an attacker
can disable the system before performing the infection. This drawback does not
apply to our proposed bootkit infection prevention approach. Bacs et al. [6] used
low level disk monitoring to recover from infections, including bootkit attacks,
and prevent persistent malicious storage inside as well as outside of the filesys-
tem. NICKLE [30], a lightweight VMM, attempts to prevent unauthorized kernel
code execution by using shadow memory. This technique may prevent bootkit
kernel level code execution but not necessarily the infection. Compared to other
defensive measures like the sometimes controversial trusted computing/boot or
TPM approaches our solution does not require UEFI or additional hardware.

9 Conclusion

We presented a large-scale bootkit analysis and proposed detection and preven-
tion mechanisms. We showed the results of a large scale bootkit analysis for
a malware dataset composed of 25,513 samples collected over the last 8 years,
whereof 2,424 samples revealed bootkit like behavior. The results give insights
into specific bootkit behavior and show the evolution of bootkit technology from
2006 until now. We detected a major shift from exploiting the MBR as infec-
tion vector to utilizing the bootloader instead. The same applies for interrupt
hooking where we detected a movement from using interrupt 0x13 to 0x15 as
preferred hooking target throughout the years. Additionally recent bootkits try
to hide their presence by exploiting the space between partitions instead of oc-
cupying the space at the very end of the disk. Furthermore, we detected that
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every bootkit in our dataset stores its data in dark regions outside partitions.
We evaluated our proposed detection heuristics with our complete dataset which
detected all bootkit infections. We did not observe any false-positives during our
evaluation with benign samples and boot processes, though false-positives may
occur as discussed in Section 4. Moreover, we showed that the proposed preven-
tion approach has successfully stopped all bootkit infections from our dataset.
Acknowledgements. The research was partly funded by the COMET K1 pro-
gram by the Austrian Research Funding Agency (FFG). Sponsored by the ERC
StG ”Rosetta” and NWO VICI ”Dowsing” projects.
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