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Abstract—

With over 3 billion users globally, mobile instant messaging
apps have become indispensable for both personal and profes-
sional communication. Besides plain messaging, many services
implement additional features such as delivery and read receipts
informing a user when a message has successfully reached its
target. This paper highlights that delivery receipts can pose
significant privacy risks to users. We use specifically crafted
messages that trigger silent delivery receipts allowing any user
to be pinged without their knowledge or consent. By using this
technique at high frequency, we demonstrate how an attacker
could extract private information such as following a user across
different companion devices, inferring their daily schedule, or
deducing current activities. Moreover, we can infer the number of
currently active user sessions (i.e., main and companion devices)
and their operating system, as well as launch resource exhaustion
attacks, such as draining a user’s battery or data allowance, all
without generating any notification on the target side. Due to the
widespread adoption of vulnerable messengers (WhatsApp and
Signal) and the fact that any user can be targeted simply by
knowing their phone number, we argue for a design change to
address this issue.

I. INTRODUCTION

Instant messengers serve a vast global audience with
WhatsApp alone reaching over 3 billion users [9], [28] and
handling billions of messages daily. Besides being very com-
mon in general, instant messaging services are also used
by high-profile government officials for sensitive conversa-
tions [1], [13], which adds an entirely different dimension
to privacy issues within these services. In this paper, we
present a novel privacy and availability attack vector on instant
messaging systems, leveraging the (ab)use of delivery receipts.

There are two basic ways used by instant messengers
to inform senders about message delivery, namely delivery
receipts (consisting of server ack & device ack) and read
receipts. The first acknowledges a message’s receipt at the
server or the destination device, the latter their view by the
destination device’s user. Read receipts have been misused
to spy on conversation partners [/|] and nowadays messenger
applications allow to disable them in their privacy settings.
Delivery receipts, however, cannot be deactivated due to
design choices of the underlying protocol. Previous work
has triggered delivery receipts through sending regular text
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Fig. 1: Round-trip times (RTT) of delivery receipts, which are
< 1 second for Screen On states and > 1 second and above
for Screen Off states measured on an iPhone using WhatsApp
with a sampling rate of 1 Hz.

messages in ongoing conversations and thereby showed that,
based on the measured round-trip times (RTTs), country-
level geolocation of a user’s device is feasible [21]. Regular
messages, however, trigger notifications for the target user,
potentially alerting them to the ongoing attack, particularly
when the probing messages are sent frequently.

Using techniques described in this paper, an adversary can
craft stealthy messages that enable probing a target at high
frequency (up to sub-second granularity) while not causing
any notification at the target side and also in the absence of an
ongoing conversation. With such an increased sampling rate,
we systematically show that delivery receipts can leak user
information beyond the country level.

For example, we show that the on/off state of a mobile
phone’s screen manifests in the delivery receipts’ timing, see
Figure|l| and, among others, allows to track the victim’s screen
time.

Moreover, we demonstrate that a user’s activity can be fol-
lowed across multiple devices (i.e., smartphone and companion
sessions), creating further (and more severe) monitoring and
tracking possibilities. In addition to utilizing delivery receipt
RTT as a timing side channel, we demonstrate that implemen-



tation inconsistencies across different target architectures also
leak information about the operating systems and application
clients in use.

Using the same techniques, also resource exhaustion attacks,
such as draining the battery or data quota, can be performed.
Similar to [21]] we focus our analysis on three instant messen-
ger platforms, i.e., WhatsApp and the more security-orientied
alternatives Signal and Threema.

In summary, we make the following contributions:

Stealthy Delivery Receipts. While previous work required
an ongoing conversation and consequently notified the victim
about every probing message, we show that delivery receipts
are also issued for other message types (e.g., reactions) and
furthermore can be triggered in a silent way preventing a
notification of the victim. This allows constant and high-
frequency probing (i.e., sub-second interval) of target devices
without the risk of getting noticed and blocked by the victim.

Multi-Device Amplification. We demonstrate that in multi-
device setups — in which victims use web or desktop clients for
messaging in addition to their mobile phones — each device can
be independently probed enabling comprehensive and precise
observation of user behavior across devices throughout the day.

Arbitrary Targets. For WhatsApp and Signal, we show that
it is not even required to have any kind of association with
the victim, e.g., being in their contact list or having an ex-
isting conversation. Thereby, anyone having these messenger
applications installed on their mobile phone can be selected as
a victim just by knowing their phone number and monitored
using the techniques described in this paper. With billions of
users, the number of potential victims is not only huge but
also includes potential high profile targets such as government
officials [[1]], [6[l, [13[l, [29]l.

Activity Leakage. We show that delivery receipt timings
are influenced by the phone’s activity and sleep states. This
enables us to determine whether the remote device is ac-
tively used or in standby by distinguishing between screen
on/off states and in certain scenarios even if the messaging
app is currently in foreground. Furthermore, we demonstrate
that complex routines, schedules, and activities can influence
delivery receipt timings across a user’s different devices, as
shown by an open-world measurement case conducted under
real-world conditions.

Resource Exhaustion Attacks. We show that our findings can
not only be used for the disclosure of private information, but
also in an offensive way exhausting a victim’s resources like
battery or data quota — similarly, this type of attack does not
alert the victim through notifications.

Countermeasures. We discuss how these attacks can be
mitigated, including both client and service-side mitigation
strategies.
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Fig. 2: Simplified depiction of client-fanout for Multi-Device-
Support: Alice’s message is sent to all of Bob’s devices as
well as her desktop device. Each message copy is individually
encrypted. The recipient devices inform Alice’s device of the
successful decryption via delivery receipts.

II. BACKGROUND

In prevalent end-to-end encrypted (E2EE) messaging pro-
tocols used in WhatsApp and Signal, the role of the server
is essentially reduced to forwarding encrypted messages to
their recipients, and large parts of the protocol logic are
shifted to the client side. This also includes the handling
of re-encryptions and re-submission in case of decryption
failures at the receiver, e.g., if the session state and as-
sociated keys on a recipient device have been deleted, or
rolled back. Thus, in addition to serving as a convenience
feature for users, clients also depend on information about
the successful delivery and decryption of messages from a
technical standpoint. These acknowledgments are commonly
referred to as delivery receipts. Delivery receipts indicate the
successful decryption of a message and thus allow the sender
to mark the transmitted message and the associated ephemeral
keying material for deletion. This is necessary to uphold the
security property of forward secrecy as promised by these
messaging services. As we show in this paper, this design
decision with the according shift of responsibilities to clients in
combination with the desired responsiveness and convenience
of low latency interactions can have a significant impact on
the privacy as well as the security of users.

Message Delivery. The server ack delivery receipt, usually
represented by a single checkmark (v') on client devices,
indicates that the message was queued for further transmission
at the message server. Due to E2EE, the message server does
not see the message content and thus cannot perform message
validation checks in this step. The device ack delivery receipt,
often represented by two checkmarks (v) on client devices,
highlights that the recipient has received and successfully
decrypted the message. Therefore, the delay between sending



the message and receiving the delivery receipts indicates the
time it took for sending the message first to the message
server, then from the message server to the target device (if
it is currently online) and back again. For details regarding
the message server infrastructure, the resulting RTTs and
the inferred limits for geolocation see Appendix [AT] The
read receipt (+7') is a message type returned by the target
device in case the target user accesses the message. However,
WhatsApp, Signal and Threema allow to disable this message
type in the device settings.

Multi Device Setups. There exist leader- and client-fanout
based approaches to support multi device (i.e., companion)
setups. In contrast to leader-based approaches, where one
device acts as a primary device accountable for redistributing
messages to other devices, current client-fanout implementa-
tions trigger delivery receipts by all user devices connected
to the account. This client-fanout is now implemented in
WhatsApp and Signal. Threema is currently in the process
to enable multi-device setups [25]. In client-fanout setups all
devices of the user maintain their own key pair, cf. Figure
For messaging, the sender creates an individual E2EE channel
with each device of the receiver as if messaging multiple
recipients. For remaining consistency among all devices of
the sender, the sending device also forwards the message (and
other information) to other devices of the same user [17].
This approach avoids the single point of failure inherent in
the leader-based method. However, assigning multiple keys to
an account reveals the number of devices under the control
of a user, as other accounts necessarily have to retrieve these
keys from a central inventory. Since each device has its own
unique key, the recipient can also infer from which of the
sender’s devices the message originated [2]].

Mitigation Status. Although previous work [21]] has shown
that delivery receipts introduce a timing-based side channel
that coarsely leaks a user’s location or the used access technol-
ogy (i.e., cellular, Wi-Fi), there is still no way of turning them
off at most popular messengers. Moreover, other proposed
mitigation techniques like delaying the delivery receipt by a
random delay of a few seconds were not adopted.

III. THREAT MODEL & MEASUREMENT SETUP

We assume an adversary that aims to impinge a victim’s
privacy by exploiting instant messenger services’ delivery
receipts. More specifically, we differentiate between i) three
distinct attacker goals, ii) two attacker types differing in their
relation to the victim and iii) limit our analysis to three popular
messaging services — WhatsApp and its more security-oriented
alternatives Signal and Threema.

A. Attack Goals

From an adversary’s perspective, the three goals are:

Fingerprinting the number and types of a victim’s devices
by observing received messages and delivery receipts,
thereby inferring each device’s online status and enabling
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2 E2EE for snaps, not for private messages.
b Non-default E2EE.
¢ Multi-device support for iOS only.
TABLE I: Overview over popular (>1B installations) and
security-oriented instant messaging services (Sources: an-
droidrank.org, manufacturer information).

tracking across multiple devices, locations, and behav-
ioral routines.

Monitoring a user’s behavior (e.g., screen on/off, or mes-
senger app currently in foreground) by covertly probing
the device for longer periods and analyzing relative RTT

differences of delivery receipts.

Launching offensive resource exhaustion attacks that
increase a user’s traffic, draining their battery or data
allowance, or performing denial-of-service attacks to de-
grade the usability of bandwidth-intensive applications
such as video calls on secure messaging platforms.

The adversary aims to carry out the attack as stealthily as
possible, ensuring that the victim remains unaware not only
of the source and cause, but also of the fact that an attack is
occurring at all.

B. Attacker Types

Depending on the relationship between the adversary and
the victim, we differentiate between two attacker types, namely
creepy companion and spooky stranger.

o Creepy companion: The attacker and the victim have an
active chat session containing one or more messages in
the messaging app. Such adversaries, e. g., a jealous (ex-
)partner or a nosy employer, typically also have real-life
relationship with the victim.

o Spooky stranger: There is no prior relationship — like a
previous preexisting contact or conversation — between
the attacker and the victim in the instant messaging app.
The adversary only knows the latter’s phone number.
This way, any customer of a messaging service could
be attacked just by knowing their phone number. This
could be used to spy on public figures, e. g., celebrities
or politicians, or to gather intelligence about a company’s



App Used Open Source ProjectsE]

o WhatsApp whatsmeow! (web), Cobalt! (mobile)
® signal signal-clif (uses libsignalg)

O Threema threema-android®

¢ Offical project. ! Community project (reverse-engineered).

TABLE II: Both official- and community-driven open source
projects were leveraged to get API level application access.

CEO for industrial espionage. Spooky strangers can sim-
ply use a so-called burner phone with a prepaid SIM
card to entirely hide their identity against the messaging
service.

C. Messenger Selection

Table || shows the most popular instant messenger applica-
tions including also the social networks Instagram, TikTok,
and Snapchat as they also support direct messaging. At the
table’s bottom, we listed the less prevalent but more security-
oriented messengers Signal and Threema. For our analysis,
we require messengers to support multi-device E2EE and
delivery receipts limiting the potential target applications to
five, namely WhatsApp, Facebook Messenger, Viber, Signal,
and Threema. Beyond, we need API-level access. While this is
clearly available for open-source messengers, the communica-
tion protocol and API endpoints need to be reverse engineered
for proprietary messengers. In our research, we found web
gateways enabling messaging as a non regular user, e.g.,
the Viber REST AP]B and projects emulating a webbrowser
providing automation capabilities but no in-depth access to
message delivery states. Finally, we only considered projects
that implement the full feature set of a regular client, support
E2EE key management and expose low-level API access, see
Table ]| for an overview. This left us with three messengers for
further analysis, WhatsApp, Signal and Threema. This choice
of messengers is consistent with [21]] and allows comparison
with previous work.

D. Measurement Setup

We conducted our measurements in two steps: First, we
looked at message types triggering delivery receipts (on the
iOS and Android apps) without looking at specific device
models and evaluate them based on our threat model, see
Section for details. Based on this assessment, we craft
attacks on the individual messengers and test the privacy leaks
for specific manufacturers and models in a second step, see
Section [V] details. The full list of our testing devices including
their chipsets and software versions is shown in Table in
the Appendix.

ldevelopers.viber.com/docs/api/rest-bot-api
2whatsmeow: github.com/tulir/whatsmeow
Cobalt: github.com/Auties00/Cobalt
signal-cli: github.com/AsamK/signal-cli
libsignal: .github.com/signalapp/libsignal-service—-java
threema-android: github.com/threema-ch/threema-android

Action Delivery Receipt Push Notification

) ® o ) ® 0
Message [} [} ([ [ J [ J [ ]
Reaction [ ) [ O © O (©)
Edit o ° O c’ O O
Delete [ [ @) O O (@)

@& Edits cause (silent) notifications for iOS users only (no notifications are
shown on Android).

TABLE III: Different actions notify the sender via delivery
receipt and the receiver via push notification. On WhatsApp
and Signal, reactions only cause push notifications for mes-
sages originated by the receiver but not those by other users
(hence marked with ©). For edits and deletions, WhatsApp and
Signal employ restrictions (i.e., time window, recurrence).

IV. SIDE CHANNEL VECTORS

To explore the probing capabilities and corresponding lim-
itations for exploitation, we tested for side channels based
on delivery receipts. More specifically, we analyzed i) which
actions cause delivery receipts, ii) whether delivery receipts
are also issued for messages coming from a spooky stranger,
iii) how delivery receipts are issued within multi-device setups.

A. Delivery Receipt Sources

We systematically tested which actions trigger delivery
receipts by using our custom clients to send messages to
both Android and iOS phones. Moreover, we examined which
actions notify the user (e.g., trigger a push notification or mark
a conversation as unread) and which actions remain covert.
Due to their stealth, the latter bear the potential of continuous
monitoring of target users without them being notified by the
messaging app.

More specifically, we systematically test and explore deliv-
ery receipts caused by the following actions:

« Send message: sending a normal (text) message to the
target.

« Edit message: changing the content of a previously sent
message.

« React to message: sending a message reaction (e.g., a
or @ emoji) to an existing message.

« Delete message: revoking a previously sent message for
all chat participants (“delete for everyone”).

Table shows the results. While WhatsApp and Signal
also send delivery receipts for reactions, edits, and message
deletions, Threema restricts the delivery receipts to regular
messages. Editing or deleting a message usually does not
trigger a notification on the target’s phone and could thus
be used for tracking purposes. However, both WhatsApp and
Signal impose restrictions on these actions. WhatsApp permits
message deletion for up to two days and allows unlimited edits
within 15 minutes. In Signal, the time frame for deleting and
editing messages is 24 hours with an upper limit of 10 edits
per message.
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B. Stealthy Probing (Creepy Companions)

Threema only allows reacting to someone else’s message
but users on WhatsApp and Signal can also send reactions to
their own messages. A user is only notified when somebody
reacts to a message originally sent by them. Self-reactions
do not provoke a notification for other chat participants but
nevertheless trigger a delivery receipt. Therefore, self-reactions
provide an inconspicuous way of probing a target to receive
delivery receipts. To make things worse, there are no time
or quantity restrictions on message reactions and users can
change or remove their reaction at a later point in time. Thus,
an attacker could simply react to an old message they sent
themselves to stay under the radar. Finally, removing a reaction
(i.e., sending an empty string as a message reaction) is entirely
invisible to the targeted user providing an ideal vector for
consistent monitoring.

The just described side channels do not necessarily require
full API access. An attacker could use an official client, or
manipulate the client’s state (e.g., by using developer tools
via the web app) to trigger inconspicuous reactions and ob-
serve the (encrypted) traffic to derive delivery report timingsﬂ
However, having API-level access facilitates the probing and
shows that invalid messages are generously confirmed via
delivery receipts. For example, a message deletion packet can
be sent multiple times to harvest continuous delivery receipts
(with only the first message deletion actually being effective).
Although message deletion or edits that were sent after the
official time window were not considered (i.e., executed) by
the receiving clienﬂ these messages also generated delivery
receipts, providing another stealthy side channel that could be
used for tracking purposes.

Summing up, we show that an attacker (more specifically
a creepy companion) can use the remove reaction action, or
reactions to their own messages to stealthily monitor any
target that has an existing conversation with them. The only
requirement is a conversation with at least one message for
the target that is then used by the attacker for reactions.

C. Stealthy Probing (Spooky Strangers)

Our tests showed that there is little validation done by the
receiving client and that message reactions referring to non-
existing messages also trigger delivery receipts. This removes
the prerequisite of having an existing conversation containing
a message that a reaction refers to. Therefore, this could also
be exploited by spooky strangers.

To explore this scenario we purchased a new prepaid SIM,
plugged it into a burner phone, and again used our custom
clients to probe various target phones that do not have any

3This technique is used in [21]. In contrast to this work, the authors exploit
delivery receipts of regular messages triggering notifications at the victim
device. This implies that their probing is not stealthy and cannot be applied
in a continous and high-frequent way as we do.

4Officially announced times differ from the actually enforced ones, e.g.,
deleting on WhatsApp is possible for 60 hours instead of 48 hours and editing
for 20 minutes instead of 15 minutes. For Signal, the observed time window
is 48 hours instead of 24 hours.

Messenger used for  Spooky Creepy Each

covert probing stranger companion Device
&9 WhatsApp yes yes yes
® Ssignal yes yes yes
©  Threema no no no

TABLE IV: Ability to covertly probe a target, i.e, without
triggering a notification, using delivery receipts. The last
column specifies if this is possible for each of a user’s devices
individually.

previous relation (e.g., contact, conversation, group chat) with
the attacker’s phone number.

Our results showed that both WhatsApp and Signal al-
low arbitrary targets to be stealthily monitored by a spooky
stranger via reactions referencing non-existing messages. Due
to missing self-reactions, we did not identify a covert way of
probing arbitrary targets on Threema as a spooky stranger.

D. Multi-Device Probing

Besides observing which actions can be used to probe a
target user via delivery receipts, we also analyzed how delivery
receipts are handled when the target uses multiple devices. For
both, WhatsApp and Signal, all devices (Android, iOS, Mac,
Windows, Linux, and Web) issue independent (i.e., duplicated)
delivery receipts for all tested message types. If the device is
online, delivery receipts are issued right away; if not, they are
sent as soon as the connectivity of the device is regained.
This amplification of delivery receipts further increases an
attacker’s tracking and fingerprinting possibilities (as shown in
Section as they are capable of inferring when a device
comes online from the receipt of pending delivery receipts.
On Threema, we checked for multi-device receipts by sending
normal text messages. Threema appears to synchronize issued
delivery receipts among all devices of a user causing only a
single delivery receipt per message.

E. Summary of Probing Capabilities

We summarize the identified side channels that can be used
for covert probing of user devices in Table Threema only
responds with a single delivery receipt even in settings with
multiple devices per user. Moreover, Threema does not allow
a spooky stranger or creepy companion to covertly probe a
user’s device without triggering notifications for the victim.
The only way that remains to trigger delivery receipts by a
previously unknown user is by sending a normal text message
and starting a new conversation, but this is obviously not
stealthy. Summarizing, Threema handles delivery receipts in
a restrictive way impeding stealth probing. Consequently, we
focus on the the messaging services WhatsApp and Signal in
the remainder of this paper.

V. ATTACKS & EXPLOITATION

In this section, we show the manifold potential for abuse
and exploitation of the discovered delivery receipt-based side
channels for the two vulnerable applications WhatsApp and
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Fig. 3: A device’s online status can be consistently and
stealthily monitored with second-based granularity, possibly
leaking the user’s location and daily routines.

Signal. More specifically, we use stealthy message reactions
to extract privacy-sensitive information from and for offensive
resource exhaustion attacks against the victim. Most of the
presented exploits require the attacker to continuously send
stealthy message reactions towards the victim.

A. Tracking Users Across Devices

Concurrent work [2] shows that WhatsApp’s key directory
leaks the device setup information of users and that the used
sender device can be extracted from received messages. We
validated these findings and confirmed that this is also the case
for Signal. For WhatsApp and Signal, the main device has the
lowest device index (0 and 1 respectively) enabling differen-
tiation between main- and companion devices. Monitoring a
user’s device directory and consequently observing a user’s
number of devices can be executed by spooky strangers.

B. Monitoring Device Online Status

Besides monitoring a target’s key directory on the server,
we are able to actively send packets that remain hidden to
the victim. As all devices answer individually with a delivery
receipt, continuous probing enables independent monitoring of
each device’s online status. In this use case, the attacker does
not evaluate the RTT of the delivery receipts but simply their
time of receipt to trace the online state of a device.

Main devices, i.e., mobile phones, are expected to be online
most of the time, either via Wi-Fi or a cellular connection. If
the main device ceases to respond, an attacker might deduce a
brief connection disruption or that the phone has been switched
to airplane mode. By monitoring this status over a longer
period of time, an attacker might then be able to extrapolate
the victim’s behavioral patterns. For example, absent delivery
receipts could indicate the victim being on a flight, or at
a location with no coverage, e.g., in the metro, elevator, or
basement, or simply using the phone’s airplane mode to mute
all messages during the night revealing their sleep schedule.

Companion devices (desktop or web clients) return delivery
receipts upon missed messages as soon as they come online
and the adversary will automatically be notified. This behavior
might be abused to track the victim across devices and poten-
tially expose their location, e.g., in case the companion device
is a desktop computer in the office or at home (cf. Figure [3).
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Fig. 4: WhatsApp Screen On/Off: Measured with low fre-
quency (1 ping per 20s), RTTs enable to differentiate between
inactive and active screen states.

Screen On
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While web sessions need to be initiated by opening the
corresponding website in the browser, desktop clients are often
automatically started as a system service allowing an attacker
to precisely monitor the online status of a companion device.
As presented in the previous section, WhatsApp and Signal
allow stealthy and independent pinging of all existing devices
allowing both creepy companions and spooky strangers to
exploit this attack.

C. Fingerprinting User Behavior

Besides using delivery receipts to classify a device’s (bi-
nary) online status, relative differences in the observed RTTs
can be used to derive the activity of the target device. We
found that the operating system, the smartphone’s model,
its underlying chipset, and the current environment (e.g.,
screen- and target application status or Wi-Fi vs. LTE) heavily
influence the occurring RTTs for a device.

Ping Frequency. We use different probing frequencies to
measure characteristic RTTs on testing devices. On WhatsApp,
we did not experience any rate limiting or server-side queuing
and could also send high-frequency ping messages, e.g., one
reaction every 50 ms, without any restrictions. On Signal, short
bursts were also permitted but sending multiple messages per
second continuously over an extended period caused them to
queue. Thus, we refrained from sending more than one ping
per second to circumvent rate limiting.

1) Case Study: iPhone: To investigate the feasibility of
extracting detailed statistics about the ongoing user activity
(e.g., screen time and app activity state), we systematically
measured Android and iOS phones in different environments.
Due to its dominant market share (currently, more than 50% in
the US [24]), we select the iPhone to showcase our results. In
our tests, we compared two different iPhone models (iPhone
13 Pro, iPhone 11), both showing the same characteristic
patterns for specific activities (screen on/off, application in
foreground). For our systematic measurements, we fixed the
ping rate to one packet every 2, or 20 seconds.
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Fig. 5: WhatsApp Use: RTTs are 350 ms if the application is
active (foreground). If minimized, RTTs become 500 ms for
30s before eventually returning to 1s screen on as typical for
long-term app standby.

Complete graphs of our systematic measurements compar-
ing different attacker types (spooky stranger vs. creepy com-
panion), access technologies (Wi-Fi vs. LTE), Applications
(WhatsApp vs. Signal), and iPhone models (iPhone 13 Pro,
iPhone 11) can be found in Appendix and proof the fea-
sibility of our monitoring across all tested environments. We
also uploaded a vide(ﬂ demonstrating a single measurement
case (creepy companion, 20 s interval, Wi-Fi on the iPhone 11,
video speedup 30x). Initially, we conducted our measurements
manually. However, we later automated the process using an
ESP32, which emulates a Bluetooth keyboard and executes the
keyboard inputs to switch between the required activity states.

For clarity and ease of demonstration, we isolate particular
patterns and present graphs focusing on these findings under
fixed conditions (i.e., a creepy companion using WhatsApp to
track a target connected via Wi-Fi). However, complementary
measurements (Appendix [A5) showed that these patterns gen-
eralize and can similarly be observed under varying conditions.

Showcase I: Deriving Smartphone Screen Time: While
knowing (one own’s) screen time is convenient for digital
wellbeing and parental control, it is also interesting for external
entities. For example, a nosy employer might want to know
whether their employees use their (private) phone when at
work or a marketing company might be specifically interested
in targeting users with excessive screen time. Figure 4| com-
pares the observed RTT for WhatsApp with an active and
inactive screen state on the iPhone. An inactive screen leads
to RTTs of about two seconds, an active of about one second.
Extracting the screen time only worked with less frequent
probing, e.g., one ping per 20 seconds as more frequent probes
would have prevented the phone from pivoting into a deep
sleep state.

Showcase II: Deriving IM Application Activity: Further, we
show that even the use of an application could be extracted
from the measured RTTs. In particular, we checked whether
RTTs change if the target application is open, i.e., in fore-

Shttps://drive.proton.me/urls/DHACRY X250#CLYkdE3Rb7Ho

3500
3000
2500
2000
1500
1000

500

RTT (ms)

'nro . :
0 N
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (minutes)

Tab Active

e o RTT
— RTT Mov. Avg.

Fig. 6: WhatsApp Web on Firefox (Windows): RTTs are 50 ms
for an open browser tab and 3 s if the user switches to another
tab.
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ground. An envious ex might be curious about how much time
their former partner spends on the messaging app potentially
chatting with new acquaintances. Figure [5] shows that the RTT
drops to about 300 ms as soon as the application is opened
on the phone. If the application is closed, i.e., moved to the
background, the timings dwell in an intermediary state (RTT:
500 ms) for about 30 seconds before normalizing at their initial
level (RTT: 15s) as the screen is still active. To further support
our findings, we looked for evidence of this behavior in the
iPhone’s system log (via idevicesyslog). We are able to confirm
that the application is first put on hold leading to the observed
intermediary state for 30 seconds before being moved into
standby.

2) Behavior Fingerprinting on Android Devices: For An-
droid, we likewise found characteristic patterns allowing to
differentiate between screen and application activity states on
a variety of phones. Due to the more diverse landscape of
manufacturers, chipsets, OS flavors, and software versions, the
patterns for certain activity states differ among models and
need to be individually adjusted for each target device. Yet,
some general rules hold across all tested device models, e.g.,
deeper standby states causing increased jitter and higher RTTs.

Besides identifying characteristic patterns, selecting an ap-
propriate ping frequency greatly influences a measurement’s
outcome and thus needs to be fine-tuned for specific phone
models. For example, on Samsung models, lower ping frequen-
cies (e.g., 1 ping per minute) allow the phone to enter a deep
sleep state, resulting in more distinct RTT differences between
activity states. Conversely, on Qualcomm- and MediaTek-
based Xiaomi phones, higher probing frequencies (e.g., 1 ping
per second) do not disrupt the phone’s standby behavior and
still allow for a clear separation between active and inactive
states. To compare characteristic screen on/off timings for
various manufacturers and models, we measured the RTTs for
a range of smartphones. Using a probing interval of one ping
per second (to also cover standby states on Samsung models),
we recorded delivery receipt RTTs for different screen states
on each device. For each individual phone and state, we made
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sure to gather at least 300 data points (i.e., 5 hours of capture
time). Figure [7] compares the RTT distribution for each screen
state on our testing devices. Despite distinct characteristics
across models, differentiating between screen-on and screen-
off timings appears feasible for all devices. Two detailed plots
that show characteristic patterns on Android phones can be
found in Appendix [A4]

3) Monitoring Behavior on Companion Devices: Besides
examining characteristic RTT patterns on main devices, we
analyzed the RTTs on desktop- and web-companion devices.
We tried to differentiate between the active (i.e., application
or corresponding browser tab in foreground) and inactive (i.e.,
application minimized or tab in background) state.

Figure [6] shows that it is trivial to differentiate by RTTs
between an active and inactive (i.e., browser tab46904690 in
the background on Firefox) WhatsApp Web session. While
we got immediate responses (roughly within 50 ms) in the
active state, responses took about 3s when another tab was
focused or when the browser was minimized. Moreover, the
high response times occurred as soon as another window
was fully covering the canvas of the Firefox window (i.e.,
the supposed standby mechanism kicks in as soon as the
WhatsApp window is not actively painted on the screen).
Clearly, this behavior allows sophisticated tracking of the
victim’s Whatsapp usage within their browser. For Firefox,
all tested Operating Systems (Windows, Linux, Mac) showed

0S Delivery Receipts Read Receipts
o, Android Separate Stacked
é‘ i0S Separate Stacked (Reversed)
£ Web Stacked Stacked
§ Windows  Stacked Stacked
macOS Stacked (Reversed)  Stacked (Reversed)
~  Android Separate Stacked
5 i0S Separate Stacked (Random)
& Desktop Stacked Stacked (Reversed)

TABLE V: Deivce/OS Fingerprinting: WhatsApp and Signal
show different receipt handling for different platforms.

the same behavior. For the residual companion devices (other
browsers and Desktop Apps), we did not see any obvious
distinctions.

D. Device OS Fingerprinting

Section [V-C] showed differences in RTTs that might be
abused to observe a victim’s behavior, but we also noticed
differences in the applications’ implementations for different
target architectures. This includes handling delivery- and read
receipts, e.g., receipt ordering and receipt stacking, for missed
messages due to the device being offline. Therefore, we sent
multiple messages to an offline target. As soon as the target
device went online again, the pending messages were fetched
from the server and acknowledged via delivery receipts. As
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Fig. 8: Real-World Tracking Scenario of two companion devices (web-client and native client) and the main device (smartphone)
across different access technologies (LTE, Wi-Fi and Wired LAN) and usage scenarios (active usage, voice call, screen off
phases), measured by a spooky stranger with one ping every 2s.

soon as the target opened the conversation, it sent out the
corresponding read receipts. Although the protocol supports
stacking, i.e., combining the receipt of multiple messages into
a list within one single receipt, some implementations always
issue separate receipts. Whenever summarized receipts were
used, the messages’ order was found to differ among different
implementations (natural order vs. reversed vs. randomized
order). Table [V] summarizes the found discrepancies. While
read receipts are only sent to creepy companions during an
active conversation, the behavior regarding delivery receipts
can also be measured by spooky strangers. These differences
can be viewed as information disclosure that can be used to

fingerprint a victim’s system and to refine further exploits
against the target.

E. Real World Tracking Example

While the previous examples clearly demonstrate the fea-
sibility of extracting privacy-sensitive information, they were
measured within a relatively stable and controlled environment
(i.e., within testing devices in our lab). We further show that
attacking a user’s privacy is also feasible in an open-world
scenario even with limited prior information and thus created a
measurement under real-world settings, monitoring the phone
(a Xiaomi Poco X3 NFC device) of a volunteering colleague



on their way to our lab. The volunteer afterward provided us
with information about their devices and their actions during
the capture, which was used to annotate the corresponding
Figure [8] The sending device did not have any prior relation
to the observed device, i.e., this measurement reflects the worst
attack scenario of a spooky stranger.

Before we started the measurement, we inspected our vic-
tim’s device list (cf. Section [V-A): [0, 1, 9]. We can see
that they currently have three existing sessions, one main
device (index 0), and two companion devices (index 1, 9).
Due to the (auto-incrementing) index, we know in which order
the sessions were created, i.e., the first companion device
corresponds to a relatively old and stable device, while device
9 is a newer (or potentially just temporary) session.

After starting our probing, we receive receipts from two —
currently online— devices (cf. Section [V-B): the main device
and companion device 1 (our volunteer’s desktop computer,
running WhatsApp Web in the browser). According to our
volunteer, device 1 is connected via LAN, which is reflected
in the graph by very stable RTT timings with low jitter. At
19:28, our volunteer turned off their desktop computer (thus,
no more receipts are received from this device), shortly before
leaving their flat and heading to the office. The phone switched
from Wi-Fi to LTE, which is reflected by a changed RTT
pattern (slightly higher, but more dense RTT timings). On their
walk towards the office, the victim issues a phone call, again
resulting in a more dense receipt distribution (since the phone
is in a high activity state). Finally, at 19:45, our victim arrives
at the office, as their phone switches back from LTE to Wi-
Fi. Shortly after, our volunteer turned on their work laptop
(device 9), which synchronizes all missed messages, causing it
to send a lot of receipts for the previous probing requests. Due
to the reversed ordering of the stacked delivery receipts (cf.
Section , we know that this device is a macOS computer
running the WhatsApp desktop client. Comparing the jitter
and density of the RTT patterns of the two companion devices
(devices 1 and 9) we can easily spot the difference between
LAN and Wi-Fi.

F. Resource Exhaustion Attacks

Although covert messages are not displayed on the target’s
phone, they still use resources (e.g., traffic, battery, phone stor-
age). To amplify the resource exhaustion that can be achieved
with a single message, we attempted sending different mes-
sage actions with different payload sizes, aiming to detect
server- and client-side limits. Table shows the discovered
size limits. Interestingly, WhatsApp uses different boundaries,
depending on the message size, and allows message reactions
to carry up to 1 MB of payload data. While the client-side
limit of actually handling the message seems to be much lower
(i.e., no delivery receipts are issued for reactions containing
more than 30 bytes of data), the message is still received and
processed before it is discarded.

Traffic Inflation. Our traffic inflation measurements for
WhatsApp showed that an attacker can cause 3.7MB per

Send Edit React Delete Consumable Data
b 65 65 1,000 - 13,320 MB/h
e 194 194 194 - 360 MB/h

TABLE VI: Server-side payload limits (in KB) for different
message types. (Invalid) reactions can contain arbitrary data
and are not displayed at the target. Thus, besides abusing them
for resource exhaustion, they could also be utilized as a covert
channel or for data exfiltration.

second (i.e., 13.3 GB per hourf] of data traffic for the victim
without the latter receiving any notification in the application.
This value was reached by a single client session continuously
sending message reactions with 1 MB of payload and might
be further amplified using multiple clients or sessions. The
attack covertly inflates a victim’s data bill and might use the
bandwidth planned for other applications, potentially leading
to their denial of service.

Battery Drainage. Besides using up a user’s data allowance,
receiving many and large messages additionally drains the
smartphone’s battery. We measured the battery exhaustion
on three phones by blasting large reaction messages via
WhatsApp for a period of one hour. While regular (idle)
battery drainage for all phones was less than 1 % per hour, we
were able to drain a considerable share of the battery (iPhone
13 Pro: 14 % per hour, iPhone 11: 18 % per hour, Samsung
Galaxy S23: 15% per hourﬂ During our tests the phones
were on normal standby (screen off), connected to Wi-Fi and
all attacks were executed by spooky strangers. For Signal, we
were not able to considerably drain the battery of our testing
phone (iPhone 13 Pro). Due to considerably stricter rate limits,
it only decreased by 1 % after an hour of attack.

VI. RELATED WORK

Mobile Instant Messaging Security and Privacy. Instant
messenger security has been investigated since their early
days. Schrittwieser et al. [22] analyzed attack vectors ex-
ploiting insufficient authentication in nine messenger appli-
cations. Back then, WhatsApp was found to be vulnerable
to account hijacking, the unauthorized modification of the
users’ status pages, the unlimited delivery of unrequested
SMS, and user account enumeration. A subset of attacks
continued to exist over multiple years [9]], [14], [15], [19] and
user account enumeration even become feasible for the more
security-oriented messenger Signal [[14], [15]. With the advent
of E2EE, Be’ery [2] and Gegenhuber et al. [§] discussed
undesirable leaks of multi-device architectures, relevant for
WhatsApp. For E2EE, one public key has to be maintained per
device in the application’s inventory and user behavior (i.e.,
addition or change of device) might be observed by changes

SCapture period: 2 hours. In addition to our captured traffic dump, both
the phone’s system-level data usage statistics and WhatsApp’s internal data
consumption view confirmed the volume of traffic generated.

7 Again, the system’s battery usage overview confirmed that WhatsApp was
responsible for the observed battery drain.
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in an account’s public keys. Based on the delivering session,
a receiver is also able to infer the sender’s device issuing
a message. Our research emphasizes that this also holds for
Signal. Beyond, we discovered further privacy implications by
exploiting delivery receipts as a side channel for WhatsApp
and Signal.

Delivery and Read Receipts. Instant messengers typically
acknowledge receipt and reading of a message. Reading
receipts facilitate stalking, e.g., in the context of intimate
partner abuse [[/]], even by weak adversaries that are bound
to the messenger’s regular user interface. It is now possible
to disable these reading receipts, but delivery receipts are
continuously returned by WhatsApp, Signal and Threema.
Simulating a regular WhatsApp conversation with the victim,
delivery receipts were used to narrow down user location
(e.g., UAE vs Germany) and to distinguish between cellular-
and Wi-Fi-based connections [21[]. Thereby, the adversary
requires an on-going conversation with the victim and each
probe triggers another message, i.e., the attack remains overt
to the victim. The principal idea has been transferred to
cellular networks [3], and later extended by multi-location
measurements to improve accuracy [4]. The latter approaches
rely on delivery reports of silent SMSes. Thereby, the victim
remains unaware of the attack, enabling geolocation also at
unusual time of the day or at regular intervals. In our work,
we show how to trigger delivery receipts of instant messengers
without any notification of the victim and in the absence of
an on-going conversation, rendering WhatsApp- and Signal-
based attacks as stealthy as silent SMS-based ones. Overall,
the impact on privacy is more substantial as we are not
only able to infer a user’s geolocation but also more detailed
information on device activity and user behavior (e.g., screen
on/off, browser active/inactive).

Battery Drain of Instant Messengers. Battery draining at-
tacks had already been known in the era of feature phones [20]]
exploiting MMS services to consume battery up to 22 times
faster, and only later transferred to smart phones [18]]. Regular
battery drain of instant messengers like WhatsApp has been
investigated as early as 2014, proposing message bundling to
save energy [27]. More recent work on mobile Tor use, points
into a similar direction [16]. Consumption is primarily caused
by radio transmission and might be reduced by adequate mes-
sage scheduling, whereas consumption due to cryptography is
negligible. The significance of our battery drain attacks lies in
its versatility and stealth. Two billion WhatsApp users, i.e., a
fourth of the world population, might become a victim to our
attack, again an on-going conversation with the adversary is
not a prerequisite.

Covert Channels. Camoufler uses the Signal infrastructure
as a tunnel to evade Internet censorship [23|] as censors
fear collateral damage caused by the prohibition of popular
messaging applications. Our covert channels follow a different
rationale. Instead of disguising traffic from a censor, they
evade visible representation in the messenger’s user interface.
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Security and Privacy Issues in Cellular Services. Beyond
Over-the-Top (OTT) applications like WhatsApp and Signal,
prior work has demonstrated that tracking a mobile user’s
geolocation (e.g., under roaming conditions) is possible via the
traditional cellular network [3], [4], [12]. 3GPP-standardized
messaging services that are terminated over third-party Internet
connections, such as VoWiFi and RCS, have also been shown
to be vulnerable to various security and privacy issues [10],
[11], [26], [30]]. In contrast, the present work does not rely on
native 3GPP services but instead requires an additional OTT
application to be installed on the phone.

VII. MITIGATIONS

Restricting Delivery Receipts. Our measurements show that
all three analyzed messengers also send delivery receipts
for unknown users that are not in the victim’s contact list.
Restricting this feature to real conversations and automatically
dropping messages or preventing receipts for unknown num-
bers would hinder spooky strangers from tracking arbitrary
victims. Additionally, privacy-conscious users should be able
to disable the instant transmission of delivery receipts.

Coarser Receipt Timings. Letting the sender know that
a message was successfully received can be a convenient
feature in an asynchronous conversation. However, there are
no strict real-time requirements, i.e. the perceived experience
does not change when this information is only updated after a
few seconds. Adding noise to these acknowledgment timings
would easily prevent tracking (i.e., geolocation- and activity
monitoring) based on the receipt’s RTTs.

Improve Client-side Validation. When messages are not
E2EE, they can be validated by the server and only forwarded
to the receiver when passing the validation. However, this
server-side validation is not possible with E2EE, requiring
more rigorous validation by the receiving client. For example,
many of the presented attacks are not possible when clients
properly validate the referenced message IDs and thus dis-
card invalid messages (instead of acknowledging them via
a delivery receipt). While our primary focus is on privacy-
related issues, the shift from server-validated input to E2EE
content is particularly important from a security standpoint.
Parsing unvalidated data can quickly introduce severe security
vulnerabilities.

Rate Limiting. In our measurements, we were able to drain
a user’s data quota and battery by sending large messages
over a prolonged time. In contrast, regular (text) messaging
only needs very limited bandwidth (note: media messages
are usually transmitted over separate media servers). Thus,
employing restrictive messaging rate limits on the server side
could mitigate these attacks. Moreover, receiving an excessive
amount of messages could also be automatically detected by
the receiver and then trigger a Ul notification and (temporarily)
block the corresponding phone number.

Syncronized Multi-Clients. To cope with multi-device leak-
age, devices could prioritize synchronizing their state before



issuing receipts for recent messages. While only introducing
a minor timing overhead, this would ensure that a delivery re-
ceipt is just sent once. Alternatively, other proposals for multi-
device protocols consider hiding the amount of companion
devices [5]].

Harmonizing Client Behavior. Supporting different operating
systems often requires having multiple codebases that are
written in different programming languages. In many cases,
these different implementations behaved inconsistently in how
they responded to specific messages, introducing fingerprinting
possibilities for the attacker. Harmonizing client behavior or
moving towards a single code base that can be used across
different platforms could solve this problem.

VIII. DISCUSSION

Delivery receipts have already been known as veritable
timing side channels compromising user privacy. In this work,
we discovered the existence of stealth delivery receipts in two
major messaging services — market leader WhatsApp and its
security-oriented alternative Signal. This way, an adversary
is able to trigger delivery receipts at another user’s client
without leaving a trace for the latter — indeed, stealth probing
makes long-term and high-frequency probing only possible
in the first place and surpasses previous possibilities of re-
mote observation by far. State-of-the-art E2EEE encryption,
requiring an individual encryption key per registered device,
only exacerbates the situation as it enables the attribution of
messages to a user’s different devices (mobile phone, desktop,
web). This way, we are able to remotely create comprehensive
observation profiles of victims solely by observing delivery
receipts. Beyond that, we are able to stealthily launch resource
exhaustion attacks (data quota, battery) against mobile phones.

Our attacks’ impact is significant: First, the requirements
for the attacker are low. They only need a phone number for
registration at the messaging service and a mobile phone — a
prepaid card and an older phone model are perfectly adequate.
Second, with more than two billion users on WhatsApp,
the number of potential victims is vast. According to our
results, Signal — dedicatedly developed with security and
privacy in mind — does not appear to protect its users better
and might even put high-profile users like US Senate [29]
and European Commission [|6] staff at risk. Moreover, recent
media revelations have shown that high-ranking US officials,
including the Secretary of Defense, use both Signal and
WhatsApp for personal and professional communication [13]],
and in some cases even have their phone numbers publicly
accessible online [1]], making them easy targets for such
attacks. The quality of the results varies somewhat between
different phones, but our results pinpoint that practically all of
them are affected. But even when only looking at the iPhone
with its particular clear measurement results, its worldwide
market share of 20 to 30 % renders several hundred million
people vulnerable.

From a user perspective, the situation is particularly dire
as an individual cannot take any protective measures except
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the complete deinstallation of the service. Due to the attacks’
stealth, they do not realize an ongoing attack either (with the
obvious exceptions of drained battery and overdrawn quota
as a consequence of resource exhaustion attacks). Moreover,
users are unable to locate the source of the attack — it is
important to note that the adversary does not need to be in the
victim’s contact list. It is therefore essential that the operators
of the messaging server take action and implement security
measures like those suggested in Section [VII}

A. Ethical Considerations

In the course of our research, we only probed WhatsApp,
Signal, and Threema accounts belonging to and used by the
authors of this paper, all of whom provided their explicit
consent. Most of the accounts used in our experiments were
test accounts created specifically for the purpose of these
measurements. The devices used to explore and demonstrate
the impact of various usage and environmental scenarios were
either i) dedicated lab devices intended solely for research
purposes, or ii) personal devices owned by the test operator
(i.e., one of the authors). The volunteer involved in the real-
world experiment described in Section was also one of the
authors, and was therefore fully informed about the associated
security and privacy implications. Tracking was conducted
strictly within the agreed-upon duration of the experiment.

Server Infrastructure. As the traffic is E2EE, the messenger
infrastructure remains unaware of and thus unaffected by
non-compliant messages, e.g., the deletion/modification or
reaction to nonexistent messages. The application servers only
see the overall traffic volume and pattern that is forwarded
from our sending to the receiving accounts. We assume that
the messengers’ infrastructure is laid out for massive data
forwarding, and consider our maximum rate of 3.7 MB/s, as
caused by the resource exhaustion attacks, a moderate load for
an infrastructure serving more than two billion users.

Responsible Disclosure. Our attacks heavily inflict user pri-
vacy and additionally enable resource exhaustion (data quota,
battery). Beyond, they affect all (> 3 billion) users of the
messenger platforms WhatsApp and Signal. For both mes-
senger operators, we consequently submitted our findings to
their security contacts on September 5th, 2024. On September
24th, 2024, we received a confirmation receipt from Meta,
responsible for WhatsApp, indicating that our results had been
passed on to the relevant development team but have not
received a substantive response ever since. On August 8th,
2025, more than 11 months after the initial report, we once
again received the information that the report was reviewed
by the security team and has been forwarded to the relevant
engineering team.

As of November 14th, 2024, it appears that the Firefox
activity leakage as described in Section has been fixed
but we did not receive any more detailed information.

From the Signal Technology Foundation, we did not get any
answer at all.



Open Science. We believe in open science and therefore plan
to release our modified clients in the future. However, we will
not release them at the current publication date (2025-08-14),
as the issues we identified have not yet been addressed by the
platform operators. Through the responsible disclosure pro-
cess, we expect these vulnerabilities to be resolved eventually,
ensuring that our modified clients will no longer pose any risk
of misuse.

IX. CONCLUSION

In this work, we demonstrated that modern E2EE messaging
architectures like WhatsApp and Signal unintentionally expose
privacy-sensitive information about their users. Specifically,
an adversary armed with only a target’s phone number can
determine the exact amount, type, and online status of the
target’s devices. Furthermore, detailed behavioral patterns,
such as screen time or messaging app usage duration, can
be inferred with a resolution down to the second.

This vulnerability is exploited through covert probing mes-
sages that trigger delivery receipts without generating any noti-
fication within the targeted application, akin to a stealth SMS.
Additionally, the structure of E2EE messaging, combined with
the absence of server-side message quotas, enables attackers
to misuse these capabilities for resource exhaustion attacks
draining a target’s battery or data allowance. Notably, there is
currently hardly anything a targeted user can do about this for
multiple reasons. These attacks neither cause any notification
on the targeted device, nor require an active conversation
between the attacker and the target, nor can the attacking
account be blocked or reported, nor is the deactivation of
delivery receipts entirely possible at the moment.

Our findings reveal that mechanisms embedded in modern
E2EE messaging architectures — such as delivery receipts and
multi-device support — can have significant implications on
user privacy. Consequently, it is essential to balance functional
requirements, usability and convenience with privacy and
security, particularly in E2EE applications that are inherently
privacy-sensitive per design.
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APPENDIX

A. Messenger Infrastructure Analysis

As a basis for our research, we investigated the messaging
services’ infrastructure for submitting and receiving messages
and provide novel insights. Applying source code analysis and
inspecting real-world network traffic of our mobile devices,
we discovered the relevant web endpoints and domains, see
Table |VIIl in a first step.

App Domain

o web.whatsapp.com (web), g.whatsapp.net (mobile)
® chat.signal.org

o

ds.g-xx.0.threema.ch

TABLE VII: Domain names that are used to connect to the
messaging services (all available via dual-stack). Usually a
websocket connection (port 443) is used. The only exception
are mobile WhatsApp clients connecting directly via port 5222

(xmpp).

In a second step, we investigated these endpoints from
different vantage points in the AWS cloud in a threefold
manner:

. DNS resolution of the endpoint domains,

. measurement of the application-agnostic latency by
probing with ICMP and TCP,

. measurement of application-level latency between a
messaging client and the server with the applications’
keepalive/heartbeat functionality.

While and is feasible for any domain name,
requires client emulation and thus use and adaptation of the

software projects presented in Table

O WhatsApp: WhatsApp uses GeoDNS to route traf-
fic from clients, based on their source IP address, to
different target addresses, see also previous work on
these aspects [21]. A reverse DNS lookup of the lat-
ter addresses reveal their domain names, containing the
three letter airport code of the edge locations (e.g.,
whatsapp-cdn-shv-01-viel. fbcdn.netfor Vienna,
Austria). Ensured by GeoDNS, client and edge locations are
close, leading to latencies of 1 - 10 ms when measured
from our AWS instances.

Our measurements for latencies measured with
WhatsApp keepalives are however significantly higher. Further
analysis showed, that the edge location revealed by DNS only
plays a minor role for the overall messaging RTTs, since they
only serve as an entry node to Meta’s internal network.

In fact, message delivery is handled via a lower number
of centralized messaging servers. We discovered eight such
servers (represented by a three letter location attribute), three
within Europe and six in the US:

Odense, Denmark

Clonee, Ireland

Luled, Sweden

Forest City, North Carolina, US
Altoona, Iowa, US

New Albany, Ohio, US

o rva: Sandston, Virginia, US

o v11: Huntsville, Alabama, US

: Prineville, Oregon, US (same as prn)

e odn:
e Ccln:
e 1lla:
o frc:
e atn:
e Nao.:

e CCO

The selection of the central messaging server is influenced
by the client’s routing_info cookie. If it is empty, as
for example in the very first connection attempt, a random
messaging server is assigned. Upon re-connection, the client
communicates its cookie in the connection handshake, in-
dicating the previously used (and usually closest) location,
effectively pinning the proposed server.

In conclusion, a message between two messaging clients
that are connected to the same edge location cannot be directly
forwarded, but rather takes a detour via the clients’ messaging
servers.

® Signal: Signal uses a set of static IP addresses for all

messenger clients (). Pinging these IP addresses ()
from our AWS instances results in RTT of less than 1 ms
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Device Modem Chipset  OS WhatsApp  Signal
iPhone 13 Pro Qualcomm iOS 17.6.1 2.24.17.78  7.26

iPhone 11 Intel iOS 17.6.1 2241778  7.26

Samsung Galaxy S23 Qualcomm Android 14 22417779 7154
Samsung Galaxy A54 5G  Exynos Android 14 2241779 7154
Xiaomi Poco M5s MediaTek Android 13 (MIUI 14.0.4) 2.24.16.10 7.154
Xiaomi Poco M3 Pro 5G =~ MediaTek Android 13 (MIUI 14.0.4) 2.24.16.10  7.15.4
Xiaomi POCO X3 NFC Qualcomm Android 12 (MIUI 14.0.5)  2.24.16.10  7.15.4

TABLE VIII: Overview of the devices including software versions that were used throughout our tests.

(M)essenger

Server (R)eceiver

Fig. 9: Whats App Message Flow as discovered by Schnitzler
et al. [21]. Our measurements show that these servers only
serve as entry points to the Meta network.

from all locations suggesting the use of Anycast routing. A
reverse DNS lookup reveals that these IP addresses belong to
AWS Global Accelerato a service providing a static entry
to applications hosted within the Amazon cloud. Measuring
the RTT from all 29 AWS EC2 regions suggests that
the service is hosted within us-east-1. Measuring from there,
we see an application-layer keepalive RTT of only 3 ms. In
comparison, the corresponding RTT from us-west-1 is 62 ms
and goes up to 252 ms for ap-southeast-3.

O Threema: Threema uses static unicast IP addresses for
all messenger clients ((L1)). According to their websit they
host their infrastructure in Zurich, Switzerland. Our plausi-
bility checks confirm this as we see low RTTs for measure-
ments from vantage points in Central Europe ((L2): 5 ms,
(L3): 50 ms) and increased RTT from the US (e.g., (L2): 90 ms,

(L3): 140 ms).

B. Testing Devices

We conducted our tests on seven devices from three different
vendors, of which two run 10OS and five Android. To maximize
the validity of our results, we included devices from the top
three global manufacturers for both smartphone brands (Apple,
Samsung, Xiaomi) and modem chipsets (MediaTek, Qual-
comm, Exynos). All devices operated on up-to-date software,
including both the underlying OS and target applications.

C. Geolocation with Delivery Receipts

Sending a message to a receiver triggers two acknowledg-
ments, see Figure 0] First, the messenger server acknowledges
the receipt of the message and forwards it to the receiver.

8aws.amazon.com/global—accelerator/features

9threema.ch/en/faq/server_location
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Messenger Messenger
(S)ender Server Server (R)eceiver
Sender (MSS) Receiver (MSR)
G, v
W

Fig. 10: Updated WhatsApp Message Flow: Sender and
receiver each connect to one of eight messenger servers.
Messages are forwarded by both servers to reach the intended
destination.

The receiver returns a delivery receipt to the server that
is eventually forwarded to the sender. Previous work [21]]
subtracted the RTT between message sending and receipt of
the first acknowledgment from the total RTT to estimate the
RTT between the server and the receiver. The latter is then
used for coarse geolocation of smartphones (e.g., UAE vs.
Germany). Based on our insights on messaging infrastructure,
all three messengers facilitate such coarse geolocation. For
Signal and Threema, an adversary is able to measure the
RTT between the victim and the central server in Amazon’s
us-east-1 region and Zurich, respectively.

Our infrastructure analysis however refines previous re-
sults [21] for WhatsApp, see our updated message and delivery
receipt flow in Figure [I0] First, the message is forwarded to
the sender’s messenger server triggering an acknowledgment;
then, forwarded to the receiver’s messenger server before even-
tually reaching the receiver. The latter then issues a delivery
receipt that is forwarded by both servers before reaching the
sender. At first sight, WhatsApp, providing a total of eight such
messaging servers appears to allow multilateration i.e., the
measurement from multiple vantage points for more precise
geolocation. This is however not true as the victim individu-
ally chooses its server via the routing_info cookie. The
adversary is only able to discover this server by choosing the
one with the lowest latency after iterating through all of them.
Once connected to the same server, the adversary is again able
to conduct the same coarse-grained geolocation as with Signal
or Threema.

D. Characteristic Patterns for Android Phones

On Android, different probing frequencies worked differ-
ently well, depending on the target phone model. Two char-
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acteristic examples are shown in Figure [T1] and Figure [T2}
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Fig. 11: For the MediaTek-based Xiaomi Poco M3 Pro 5G,
we used higher probing frequencies (one ping every 2 s)
to differentiate between an active and inactive screen with
second-level granularity (WhatsApp, creepy companion, Wi-
Fi).

Time (minutes)

Screen On
App in Foreground

e o RTT
— RTT Mov. Avg.

(N=5)

Fig. 12: For the Samsung Galaxy S23, we needed to lower
the probing frequency to one ping per minute, to be able to
differentiate between an active and inactive screen (WhatsApp,
creepy companion, Wi-Fi).

E. iPhone

We systematically measured the RTTs within different
environments (e.g., on an iPhone 13 Pro and iPhone 11,
and via a cellular vs. LTE data connection) and applications
(i.e., WhatsApp and Signal). The methodology was switching
between active and inactive phases. The first active phase
corresponds to a normal phone unlock (e.g., with an active
homescreen), while the second active phase corresponds to
the IM application being in the foreground. Each phase
corresponds to 2 minutes for the measurements with one ping
every 2 seconds and 10 minutes for one ping every 20 seconds
respectively.

Figure [T3] shows that for WhatsApp, the observed timings
for creepy companions and spooky strangers differ. For Signal
(cf. Figure there is no such differentiation (i.e., probing

as a spooky stranger leads to the same RTTs as probing as
a creepy companion). Comparing the plots for WhatsApp and
Signal, we see that some OS-specific patterns (e.g., application
switch from foreground to background, as presented in Fig-
ure [5) occur across both applications. Note that, WhatsApp
shows a counter-intuitive pattern for all four spooky strangers
cases (Figure |13¢e| to Figure |[13h)), since the RTTs within the
WhatsApp in Foreground phase are consistently higher than
in the Screen On phase. We verified that this is NOT a mea-
surement error, by repeating the corresponding measurements
multiple times. Further analysis on systems level as well as
access to WhatApp source code, could improve the accuracy
of predicated usage patterns.
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Fig. 13: Comparison of different probing intervals (2s, 20s), scenarios (creepy companion, spooky stranger), and access
technologies (Wi-Fi, LTE) for WhatsApp (measured on an iPhone 11)
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Fig. 14: Comparison of different probing intervals (2s, 20s), scenarios (creepy companion, spooky stranger), and access
technologies (Wi-Fi, LTE) for Signal (measured on an iPhone 13 Pro)

18



	Introduction
	Background
	Threat Model & Measurement Setup
	Attack Goals
	Attacker Types
	Messenger Selection
	Measurement Setup

	Side Channel Vectors
	Delivery Receipt Sources
	Stealthy Probing (Creepy Companions)
	Stealthy Probing (Spooky Strangers)
	Multi-Device Probing
	Summary of Probing Capabilities

	Attacks & Exploitation
	Tracking Users Across Devices
	Monitoring Device Online Status
	Fingerprinting User Behavior
	Case Study: iPhone
	Behavior Fingerprinting on Android Devices
	Monitoring Behavior on Companion Devices

	Device OS Fingerprinting
	Real World Tracking Example
	Resource Exhaustion Attacks

	Related Work
	Mitigations
	Discussion
	Ethical Considerations

	Conclusion
	References
	Appendix
	Messenger Infrastructure Analysis
	Testing Devices
	Geolocation with Delivery Receipts
	Characteristic Patterns for Android Phones
	iPhone


