
The BORG: Nanoprobing Binaries for Buffer Overreads

Matthias Neugschwandtner
Vienna University of Technology

SBA Research

Paolo Milani Comparetti
Lastline Inc.

Istvan Haller
VU University Amsterdam

Herbert Bos
VU University Amsterdam

ABSTRACT
Automated program testing tools typically try to explore, and cover,
as much of a tested program as possible, while attempting to trigger
and detect bugs. An alternative and complementary approach can
be to first select a specific part of a program that may be subject to a
specific class of bug, and then narrowly focus exploration towards
program paths that could trigger such a bug.
In this work, we introduce the BORG (Buffer Over-Read Guard),

a testing tool that uses static and dynamic program analysis, taint
propagation and symbolic execution to detect buffer overread bugs
in real-world programs. BORG works by first selecting buffer ac-
cesses that could lead to an overread and then guiding symbolic
execution towards those accesses along program paths that could
actually lead to an overread. BORG operates on binaries and does
not require source code. To demonstrate BORG’s effectiveness, we
use it to detect overreads in six complex server applications and
libraries, including lighttpd, FFmpeg and ClamAV.

1. INTRODUCTION
Buffer overreads are an increasing security concern in modern

computer systems. Virtually all of today’s major operating systems
employ advanced protection mechanisms like Address Space Lay-
out Randomization (ASLR) and Data Execution Prevention (DEP)
to prevent attackers from diverting the control flow of a program to
executable code. Because code addresses are no longer easily guess-
able, attackers rely on memory disclosures such as buffer overreads
to find them. Typically, even a single disclosure suffices to bypass
even these powerful defenses [36, 37]. Besides addresses, buffer
overreads may leak sensitive user information and lead to crashes.
A very recent example is the Heartbleed bug in OpenSSL [14] that
allows exfiltration of cleartext data.
Even so, the problem of overreads in binaries has received lit-

tle attention by the research community. The problem is that find-
ing buffer overread vulnerabilities is hard enough if the program’s
source code is available, but without the source or debug symbols,
it is almost impossible. Unfortunately, most commercial software
consists of optimized, stripped binaries. Analysis of binary pro-
grams is desirable for developers that rely on compiled third-party

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODASPY’15 March 02 - 04 2015, San Antonio, TX, USA
Copyright 2015 ACM 978-1-4503-3191-3/15/03 ...$15
http://dx.doi.org/10.1145/2699026.2699098.

COTS libraries or programs as well as security analysts auditing
binary programs.
In this work, we introduce the BORG (Buffer Over-Read Guard),

a tool for finding buffer overread bugs with guided symbolic execu-
tion. BORG is based on S2E [12] and works on binaries, with no
source code required. At the core of our system are novel techniques
for guiding the execution to a potentially vulnerable access while at
the same time trying to trigger an overread on this access. To the
best of our knowledge, BORG is the first automated bug finding
tool targeted at finding buffer overread bugs, so we believe it can
be useful in practice to harden programs against memory disclosure
vulnerabilities.

The BORG’s guided symbolic execution. Symbolic execution is
a powerful technique for finding bugs in software. By executing
a program under symbolic inputs and forking execution to explore
many different program paths, symbolic execution can automati-
cally find bugs, as well as provide concrete input values that trig-
ger them. The fundamental limitation of this approach, of course,
is that it is infeasible to explore all possible program paths. Sym-
bolic execution suffers from “path explosion”, because the number
of program paths to explore grows exponentially with the number
of branch points encountered. This problem is compounded by the
computational cost of symbolic execution: At each branch point,
a symbolic executor will invoke a costly constraint solving step to
decide which branches can be reached. This difficult problem gets
even harder when source code is not available and the solver must
reason on binary code. Furthermore, keeping track of program state
for all of the as yet unexplored paths puts pressure on memory, fur-
ther impacting performance.
Whenever symbolic execution reaches a branch point, we must

decide which branch to execute first. The strategy used to select
paths to execute is essential to the effectiveness of symbolic execu-
tion. For testing code and finding bugs, the goal of the path selec-
tion strategy is typically to improve the overall code coverage of
symbolic testing. To this end, for instance, KLEE [8] alternates be-
tween a code-coverage based path selection heuristic and random
selection.
Instead of trying to cover as much code as possible, a different

approach is to guide execution towards “interesting” parts of the
program under test. This is the approach we follow in this work.
The general idea is to first select specific parts of the tested pro-
gram that are more likely to be subject to specific bug classes, in
our cases overreads, and to then use a path selection strategy that
guides execution towards these interesting parts while trying to vi-
olate an integrity assumption.
BORG uses such guided symbolic execution to steer the program

exploration toward code that may allow for overreads. Beyond the
concrete implementation for overread detection, however, we will

argue that the proposed approach is general and can be applied to
several classes of bugs, so long as we are able to:

1. Select potential targets in the tested program that are more
likely to be vulnerable to bugs of a certain class.

2. Guide execution towards those targets.
3. Detect the occurrence of a bug as the violation of an integrity

constraint.

The techniques we introduce for item 2 (guidance) are quite gen-
eral. Furthermore, there are well-understood ways to express many
classes of bugs as the violation of an integrity constraint (item 3).
Therefore, the applicability of the techniques proposed in this paper
to different classes of bugs is restricted chiefly by item 1: That is,
by our ability to select targets that have a high enough likelihood of
being subject to such bugs.
Contributions. To summarize, the contributions of this work are
the following:

• We develop novel techniques for guiding symbolic testing of
a program towards a potentially vulnerable target while trying
to break an integrity constraint.
• We build a system called BORG that combines these tech-
niques with a selection heuristic and a detection mechanism
for potential buffer overreads to automatically discover such
vulnerabilities.
• All of the techniques we introduce work on binary code and
do not require source code.
• We apply BORG to six complex, real-world programs includ-
ing lighttpd, FFmpeg, and ClamAV, and show that our system
is able to automatically trigger buffer overreads in these pro-
grams.

2. OVERVIEW
Figure 1 shows a high-level overview of BORG. Given a binary

binary
executable

+
test input

BORG

Selection Guidance Detection bug trigger input

Figure 1: High-level overview of BORG

program and test data as an input, BORG will set out to find an
execution path that violates a security assumption and output the
corresponding malformed input. The core of our tool is an online
symbolic execution engine that runs the program and generates new
states on every conditional control-flow branch that depends on the
program’s input. Three main components that build around and on
top of this core principle are essential to BORG’s functionality:

Selection. Given a specific integrity assumption, the goal of this
first step is to identify potentially vulnerable spots, i.e. secu-
rity critical code regions that are likely to violate the integrity
assumption.

Guidance. The purpose of the guidance mechanism is to select the
most promising states produced by the symbolic execution en-
gine for exploration. Promising states are more likely to lead
to a violation of the integrity assumption. Therefore the states
are ranked based on their likelihood to (1) actually hit the
potentially vulnerable spot and (2) allow actually triggering
the bug based on the state’s path constraints. To this end the
guidance regularly assesses the states’ properties and picks
the state that is ranked highest.

Detection. While the guidance attempts to trigger a bug, the detec-
tion mechanism has to check whether the integrity assump-
tion is violated. In case of a violation BORG will terminate
the current state and output a test case for this execution path.

While the principles outlined so far are fairly general, our imple-
mentation of BORG focuses on detecting overread bugs. We will
discuss additional classes of bugs to which our approach could be
applicable in Section 8.

2.1 Testing Process
Figure 2 shows an overview of the steps and components involved

in BORG’s testing process. As input, BORG will accept a binary
executable along with test inputs. To obtain inputs for the tested
programs, we can use inputs in the program’s test suite, if available.
If the program itself does not have a test suite, provided that we
know at least which kind of protocol or data format the program
will handle, we can use test cases from existing test suites for the
corresponding protocol or data format. Concrete examples from our
evaluation are the HTTP protocol and the JPG file format. If on the
other hand the expected input format is unknown, we can start from
any real-world input data.
Preliminary Analysis. The preliminary analysis stage combines
static and dynamic analysis to gather information about the tested
program. First, we perform an instrumented, concrete execution of
the tested program for each available test input. During this execu-
tion, we use dynamic taint analysis to propagate taint from the test
input. We thus generate detailed execution traces that include taint
information for instruction operands.
The first goal of the preliminary analysis phase is to generate an

accurate model of the program’s intra- and inter-procedural Control
Flow Graph (CFG). For this, we refine a CFG obtained from static
analysis with knowledge from the dynamically generated execution
traces. The dynamic execution provides information that is not eas-
ily available from static analysis, such as possible targets of indirect
control flow transfers.
We further use the execution traces to collect buffer access pro-

files that will later be used to detect out-of-bounds buffer accesses.
Specifically, we record which buffers in the program’s memory are
accessed by which of the program’s instructions.
Target Selection. After the preliminary analysis has been com-
pleted, the next step is to select targets for testing. That is, we aim to
select specific instructions in the program under test that are more
likely to trigger a bug, so we can guide our testing towards those in-
structions. For the detection of buffer overread bugs, BORG selects
all memory reads from a tainted address: That is, from an address
that is derived from the program’s input. We also target sensitive
functions such as memcpy and strcpy if their parameters are tainted.
It is easy to see that whenever a buffer access’s address depends on
data that can be influenced by an attacker, there is a possibility that
the access will go out of bounds if we can find a program path along
which the address is not calculated or sanitized correctly. For this
reason, these accesses are good candidates for targeted testing. As
we will show, this selection strategy is already effective for finding
non-trivial bugs in real programs. On the other hand, we must point
out that it is not on its own sufficient to target all accesses that can
lead to overreads, because overreads can also happen with no direct
data flow from user inputs to addresses. Additional selection strate-
gies for potential overreads could be employed alongside this one
to obtain additional targets and find more bugs: one approach is to
rank accesses in loops based on some measure of the complexity of
the code that computes the accessed address [23].

Symbolic Execution

binary
executable

test input
Target Selection

Guidance

Bug Detection

triggering
test case

Dynamic Analysis

Static Analysis

control
flow graph

execution
traces

buffer access
profile

preliminary analysis

critical code
regions

target selection guided testing
Figure 2: Overview of the testing process executed by BORG. The preliminary analysis applies both static and dynamic analysis to the binary
program under test to produce information that is required for the components of the main testing phase. After the critical code regions have
been identified based on the dynamic execution traces, guidance can use those in combination with control flow data to home in on the targets.
At the same time, the detection component uses the buffer access profiles to detect overreads.

Guided Testing. Once the targets have been identified, we can
begin to test the program using guided symbolic execution. We
perform the guided testing step separately for each identified tar-
get. We consider as symbolic the entire program input (such as a
video file for FFmpeg, or the input from a network socket for the
lighttpd web server). Since we use an online symbolic executor,
states that capture the complete current state of the program exe-
cuted are forked whenever the execution encounters a branch point
where the branch condition is based on symbolic input.
Two components constantly interact with the symbolic executor:

guidance and detection. The guidance regularly assesses a num-
ber of characteristics of each state to establish a ranking that corre-
sponds to the likelihood of triggering a bug. The symbolic executor
will always execute the state with the highest rank. Intuitively, the
ranking is designed to prefer states that are near to the target in the
program’s control flow graph and have path constraints compati-
ble with the violation of the integrity assumption. Furthermore, the
ranking uses additional heuristics aimed at privileging execution
paths that are more likely to lead to an overread. Section 3 explains
the guidance mechanisms in detail.
To find a bug, in addition to triggering its occurrence, we also

need to detect that it was indeed triggered. Detecting a bug is not as
straightforward as executing the faulty code since silent failures are
typical for buffer overreads. To detect buffer overreads we have de-
veloped a technique that is effective for memory accesses that use
either concrete or symbolic addresses. In some cases, detecting an
overread may be trivial. As an example, if the address of a memory
access can bemade to point outside the program’s allocatedmemory
pages, it is obvious that an overread is possible. To detect a wider
class of overreads, however, we need more fine-grained detection
methods that are aware of buffer boundaries within the program’s
memory space. We will discuss in Section 4 how we obtain this
information about a binary. To detect overreads, we make use of
the buffer access profiles collected during the preliminary analysis.
This profile associates each program state with the buffers accessed
in that state during any of the the test runs in the preliminary analy-
sis phase. Here, a program state is a combination of an instruction
with the current call stack. During symbolic execution we again
check, for each memory access, whether a buffer is being accessed.
We then compare this information with the profile for the current
program state. Based on this comparison we distinguish three con-
ditions:

Valid access. If the access hits a buffer that has been recorded be-
fore in the current state’s profile, the access is clearly valid.

Buffer accesses in code that have not been covered by the
preliminary analysis (for which we have no profile) are also
regarded as valid.

Suspicious access. In cases where the access is within a buffer that
is not contained in the profile for the current program state,
we report a suspicious access. While in the case of library
functions that operate on buffers, such as memcpy, this might
be a legitimate behavior, it could also be an overread from a
neighboring buffer.

Out of bounds access. If the program accesses memory at a re-
gion outside any known buffer allocation sites, but the profile
lists buffers for this program state, an out of bounds access
is highly probable. When the referenced memory address is
a symbolic expression, even stronger conclusions can some-
times be drawn: if the expression can evaluate to both an
address within a buffer as well as outside it, an out of bounds
access is possible.

3. GUIDANCE
Instead of trying to cover all the code of the program under test,

we direct our efforts toward a specific, potentially vulnerable point
in the program. For this, precise guidance of the symbolic execu-
tion is crucial: We need to avoid getting lost in uncontrolled state-
space explosion. Instead, we want to quickly and comprehensively
explore the execution paths that are most relevant to the vulnera-
bility we are trying to trigger. This guidance takes several forms.
First of all, we can use the control flow information collected in the
preliminary analysis phase as a “map” that helps us to quickly lead
execution towards the potentially vulnerable spot. Furthermore, we
can take into account the path constraints associated with each state
in the symbolic execution. Specifically, we are interested in any
constraints on the bytes of input on which the address of the mem-
ory accesses we are testing may depend. As we will see, these con-
straints can help us reach the target program point along paths that
are interesting because they differ in the way they calculate the ad-
dress for the targeted memory access.
BORG starts by using concolic execution (Section 3.1). This pro-

vides us with an initial, successful execution of the program based
on real world input data. From then on, several assessment func-
tions evaluate each state based on criteria that are relevant for trig-
gering the target vulnerability. Depending on the importance of
each criterion, the combination of the assessment functions estab-
lishes a ranking of all the states. This ranking is computed periodi-
cally, and the top ranked state is then selected for execution.

In detail, the assessment involves the following steps:

1. Evaluate whether the target instruction is reachable from each
state.

2. Based on the path constraints, evaluate whether an out-of-
bounds access is possible from each state.

3. Rank states based on their proximity to the vulnerable spot.
4. At a branch point, evaluatewhether a newly forked statewould

either exit or stay in a loop.
5. Among freshly forked states, prefer those whose path con-

straint affects parts of the input that are involved in the tar-
geted buffer access.

Both reachability of the target instruction (1) and the satisfiabil-
ity of the out-of-bounds constraint (2) are strong selectors: we are
not going to explore states in which either the targeted access is un-
reachable, or the path constraints rule out a violation of the integrity
assumption. Therefore, such states are simply discarded. All states
that pass these filters are evaluated for further exploration. The fol-
lowing assessment criteria do not rule out states in general. Instead,
they express a preference in which states will be explored first. The
proximity metric (3) measures an approximation of the minimum
number of instructions needed to reach the target instruction from
each state. We discuss this metric in Section 3.2. To try to trigger
an overread, we prefer states that stay inside a loop to states that
exit the loop prematurely (4). Our handling of loops is discussed in
Section 3.3. Finally, we try to explore states with a variety of path
constraints involving the inputs that affect the targeted buffer access
(5). Our use of path constraints for selecting states is discussed in
Section 3.4.

3.1 Concolic Testing
Concolic testing [32] complements symbolic execution by back-

ing the symbolic input data with a concrete value assignment. This
concrete input data can be used to make a branch decision: the sym-
bolic executor will, by default, follow the branch for which the path
constraints evaluate to true based on the concrete assignment.
With BORG, we use concolic execution to get an initial, success-

ful execution path through the program that allows to explore states
deep in the program’s logic. As input we use the real-world data
from the preliminary testing phase that revealed the vulnerable spot.
Every path that is generated during symbolic execution requires a

concrete assignment that match the constraint set of the path. While
a new concrete assignment can be generated by the constraint solver,
this will likely overwrite values from the original input. With BORG
we strive to preserve as much concrete information from the origi-
nal input as possible as it contains realistic data that allowed us to
reach deep states. Therefore, whenever we pick a branch that leaves
the initial execution path, we examine the path constraint generated
by that branch and determine the exact parts of the input that caused
this path constraint. We then replace only these parts of the origi-
nal assignment with new values obtained by querying the constraint
solver.
An important side-effect of always having a valid, concrete as-

signment of the input available for every state is that it will speed up
symbolic execution significantly. During symbolic execution, the
engine often needs a concrete sample value for a given symbolic
expression, for example S2E uses this for its internal memory man-
agement. In such a case, the engine would normally issue a costly
query to the constraint solver for a value. This is of special signifi-
cance with memory operations: with plain symbolic execution, the
constraint solver needs to be queried for a valid value whenever a
memory operation depends on symbolic input and the address ex-
pression needs to be evaluated against the path constraints. If such

a memory operation is executed within a loop, this can cause a sig-
nificant slowdown. Provided that we always have a valid, concrete
assignment at hand, however, the address expression can be evalu-
ated in a straightforward manner.

3.2 Proximity Rating
To exercise the vulnerable spot as often as possible in different

execution paths, we pick states that are in close proximity to the
target instruction. The rationale behind this approach is that the
closer we are to the target, the fewer branch instructions will be in
our way that can lead us astray.
To estimate proximity, we require a distance metric between a

program’s current execution state and a target instruction. The gen-
eral requirement for the metric is an ideal tradeoff between fast and
precise computation that can be performed at every execution state
change of the program. We define an execution state as the combina-
tion of the current basic block executed and the associated callstack.
As a distance metric, BORG uses the minimum number of instruc-
tions that have to be executed to reach the target instruction from
the current execution state.
To accurately compute this distance, we require precise informa-

tion about the control flow of the program. For this, we rely on
the control flow graph that was extracted during the preliminary
analysis phase. However, standard graph search algorithms can-
not be directly applied to searching within a control flow graph,
as they do not take the call-return semantics into account: return
edges must always match their preceding call edges. The main idea
of our solution is to pre-calculate distance information for all exe-
cution states that can reach the target instruction by performing a
backward search from the target instruction. Since it is not feasi-
ble to compute reachability and exact distance to the target for all
possible program states in advance, we split the problem into two
steps:

1. Static, offline calculation before guided testing. Function
calcdist ofAlgorithm 1 calculates distance information based
on the control flow graph.

2. Lightweight on-the-spot calculation during guided testing to
calculate the actual distance to the target for a given program
state based on the distance information.

Generating Distance Information.
To address the fact that storing one distance per execution state

does not scale to large programs and that programs often call a func-
tion more than once, we devised an efficient way of storing dis-
tance information. We split the information into absolute and rel-
ative distance information. Relative distances are measured intra-
procedurally, for a given basic block they are defined as the min-
imum distance until the function returns. Absolute distances are
measured inter-procedurally, for a given basic block they are de-
fined as the minimum distance until the target instruction is reached.
To generate these different kinds of distance information, the algo-
rithm operates in two modes: If the rel parameter is set, intraproce-
dural distances are calculated, otherwise interprocedural distances
are calculated.
The calcdist function follows a typical worklist approach that

will start from the target instruction and traverse the CFG back-
wards. As input it requires the predecessors (pred) for each basic
block and knowledge about whether a basic block is a callsite (cs)
or ends a function (ret). In addition, it requires a mapping between
function exit blocks and their corresponding function heads (fh) as
well as return sites and their call site (call). All this information is
retrieved from the interprocedural CFG.

The operation of the function is based on the well-knownDijkstra
algorithm [16], with basic blocks as nodes, predecessors being their
neighbors and distance information initialized to infinity except for
the target. As long as the function F(c) of the current basic block c
is equal to that of a predecessor p, i.e. F(p) == F(c), the algorithm
proceeds like ordinary Dijkstra. However, predecessors breaching
a function boundary need special treatment:
Function return. If p is a return from F(p) to F(c) (line 13), we
recursively invoke calcdist for F(p). To calculate the minimum
distance of executing F(p), we need distances relative to p and thus
run calcdist in intraprocedural mode with p as the target. Once
F(p) is explored and calcdist returns, we continuewith the callsite
of F(p) in F(c), i.e. the intraprocedural predecessor of c (line 16).
To calculate the distance of the callsite, we sum up the distance
of the current block dist[c], the distance of the function head of
F(p), rel_dist[fh(p)] and the size of the basic block that contains
the callsite size[call[c]] (line 15). The remaining procedure is the
same as with an ordinary predecessor: If the resulting distance is
lower than a previously stored distance, we update its distance and
add it to the worklist.
Function call. If p is a call from F(p) to F(c), processing depends
on the mode the algorithm is operating in. In intraprocedural mode,
we are restricted to the scope of F(c) and thus skip p (line 12). In
interprocedural mode, we treat p like a normal predecessor as we
are calculating absolute distances.
Putting it together, calcdist is invoked in interprocedural mode

with the given target. Whenever it hits a predecessor that is return-
ing from a function, it switches to intraprocedural mode to calculate
relative distances within that function.
Since we only store the information per basic block and not per

state, memory consumption scales linearly to the size of the pro-
gram. Apart from that, we do not explore functions multiple times
once they have been covered completely.

Calculating Actual Distances.
During guided testing, we use the distance information to calcu-

late the actual distance for a given execution state. The execution
state is given by a stack of return addresses with the address of the
current basic block on top. The optimum distance to the target is
then calculated by summing up the distance information of the ba-
sic blocks on the callstack. Beginning with the item on top of the
stack, we stop at the first item for which absolute distance informa-
tion is available. If an item’s distance information is unknown (i.e.
the target is unreachable), we set it to infinity. This on-the-spot cal-
culation’s runtime is linear in the number of items on the callstack
and can thus be performed very fast.
It is possible that during the guided testing phase, execution reaches

a basic block that is not part of the CFG constructed in the prelimi-
nary analysis phase because of incomplete indirect call target infor-
mation. Such basic blocks need special treatment, because we do
not have distance information on them. For states that have reached
new code, we retain the state’s last distance assessment and dynam-
ically enhance the CFG with the new information. As soon as we
are back on a known basic block, we pause the guided testing and
re-run Algorithm 1 on the expanded CFG.

3.3 Loop Handling
Branch points within loops can lead to a massive state explosion

in symbolic execution. Thus a common guiding approach for sym-
bolic execution is to perform one loop iteration and exit as soon as
possible. While this is a reasonable strategy if just aiming for code
coverage, it is less suited for our class of bugs. Programs typically
use loops to parse and validate their inputs. Among the case stud-

Algorithm 1 Offline distance information generation.
Require: pred[bb] ∀ bb ∈ basic_blocks
Require: ret[bb] := true iff bb ends with return
Require: cs[bb] := true iff bb is a callsite
Require: call[bb] callsite for a given return site
Require: fh[bb] function head for a given function exit
1: function calcdist(target:address,rel:bool)
2: worklist← {target}

3: if rel then
4: dist← rel_dist
5: else
6: dist← abs_dist
7: dist[target]← 0
8: for c ∈ worklist do
9: worklist← worklist \ {c}

10: for p ∈ pred[c] do
11: if cs[p]∧ rel then
12: continue
13: if ret[p] then
14: calcdist(p, true)
15: d← dist[c] + size[call[c]] + rel_dist[fh[p]]

16: p← call[c]
17: else
18: d← dist[c] + size[pred]

19: if d < dist[p] then
20: dist[p] = d

21: worklist← worklist ∪ {p}

ies in this work for instance, lighttpd and SSSD use loops for input
validation, while libexif iterates over the input to return the index
of a specific marker. In all cases triggering the bug depends on a
successful, exhaustive completion of the loop.
Figure 3 shows the control flow of such an input processing loop

that iterates over every character of the input string. Branch points
B1-B3 will exit the loop prematurely on a special control charac-
ter, while branch point B4 will iterate through the loop until it en-
counters a terminator. Given a target some place after the loop exit,
proximity guidance will always pick one of the break edges as their
distance to the target is smaller than completing the iteration or even
taking the back edge. This way we would, per input character, ex-
plore three unsuccessful states before going for another iteration.

back edge

break
conditions

main loop
condition

loop
head

break edges

B1 B2 B3 B4

Figure 3: A typical input processing loop. States forked at branch
points B1-B3 will be preferred by the proximity rating over taking
the back edge.

Our solution to this issue is to prefer branch targets that stay
within the loop. To pick branch targets that stay within the loop, we
perform an intra-procedural loop detection for every branch point:
We apply theKosaraju-Sharir [34] algorithm on the intra-procedural
control flow graph to identify strongly connected components. If
the branch point is actually within such a component (i.e. loop), we
examine its branch targets. Only if one of them points outside and
one inside the loop, we mark the outside target as a loop exit.

3.4 Security Constraints
The goal of BORG is to find an execution path that performs an

out-of-bounds access, thus violating an integrity assumption. Since
we are targeting tainted accesses, the memory address accessed is
a symbolic expression that has a relationship with some parts of
the input. A typical scenario would be a pointer dereference where
the program calculates the final memory address m by adding a
symbolic offset to a concrete base address. Combining this infor-
mation with the supposed target of the access, we can create se-
curity constraints that specify an out-of-bounds condition. In the
case of a buffer that ranges from a start address s to an end address
e, the security constraint SC would read s ⩽ m ∧ m < e. By
querying the solver with the combination of the normal path con-
straints and this security constraint, we can filter any state as soon
as ¬SAT(PC∧ ¬SC).
We can also leverage another feature of security constraints for

guidance. During symbolic execution we do not just see the final
address m in case of a symbolic memory access, but the whole ex-
pression that represents all the calculation steps that involved sym-
bolic input. Knowing which input bytes are involved in a security
constraint allows us to prefer states that have been forked at branch
points whose path constraints affected those very input bytes. This
way we can explore the possible values ofm more efficiently.

4. OVERREAD DETECTION
In contrast to overread detection that works at the source-code

level like AddressSanitizer [33], BORG has to overcome the loss
of high-level semantics at the binary level: Instead of an access
expression like buf[i], which readily provides the target buffer as
well as the index of the read, BORG just sees a read access to a
memory location.
Therefore, BORG first needs to associate memory accesses with

buffers. On each memory access, it checks whether the accessed
address falls inside the range of a buffer. To do so, it needs to iden-
tify the exact locations of buffers in memory beforehand. From a
program’s point of view, buffers can be located on the stack, on the
heap or, in the case of global variables, in the bss or data segments.
While buffers on the heap, or global buffers in bss, or in the data

segment are easy to track as they stay at the same memory loca-
tion once they are allocated, stack-based buffers require more effort.
Both their addressing as well as their scope depends on the current
stack frame. They need to be validated and invalidated upon enter-
ing and exiting the function in which they have been declared. To
calculate the actual memory location we need an offset of the stack
buffer that is either relative to the base frame pointer or the stack
pointer on function entry. While we resort to DWARF information
for this special task only, the information can also be obtained for
stripped binaries by statically identifying large variables located on
the stack as suggested in [17] or by more sophisticated methods
that evaluate dynamic access patterns [35]. For heap-based buffers
we intercept all common allocation routines, such as malloc and
free. Again, we focus on general purpose allocation routines like
malloc() and mmap() in our implementation. In case of custom
memory allocators, we can use tools like MemBrush [11] to extract
these routines first.
To be able to check accesses, we need a way to refer to buffers

acrossmultiple executions of the program under test. Global buffers
can simply be identified by their absolute address. For stack buffers,
we record the allocation site (i.e. the function) as well as the off-
set from either the stack pointer or the base frame pointer. Finally,
for heap buffers, we hash the program state (callstack + program
counter) of the allocation site (i.e., where malloc was called).

Library functions that have well-known semantics and operate on
buffers allow us to use performance optimizations. For example,
memcpy contains a loop that copies four-byte chunks from source
to destination. If an address provided to memcpy is symbolic, our
system needs to perform a costly query to the constraint solver at
each iteration. However, knowing the semantics of memcpy, we
only need to intercept the function call and issue a single query
to check whether the supplied parameters would allow an out-of-
bounds access.

5. IMPLEMENTATION
The implementation of BORG’s core, the guided testing, is based

on S2E, a full-system selective symbolic execution engine [12]. S2E
itself uses the Qemu emulator [3] and modifies its dynamic transla-
tion engine TCG to translate the binary guest code to LLVM instead
of native host code. The generated LLVM code can then be run in
the KLEE [8] symbolic virtual machine. KLEE uses STP [18] as its
constraint solver. Figure 4 shows how BORG is based on S2E. The
S2E base layer links KLEE and Qemu and expands KLEE’s state
concept to the operating system level. S2E also provides a plugin
API that is used by BORG’s main components.

Qemu Klee

S2E base layer

S2E plugin API

GuidanceOverread
Detection

Semantic
Reconstruction

STPTCG
Figure 4: The BORG testing system. We implemented three exten-
sions on top of the plugin API provided by S2E: Semantic view
reconstruction restores OS concepts such as processes, overread
detection monitors the process under test for buffer overreads and
guidance tells S2E which states to execute.

The advantages of bringing symbolic execution to the operating
system level are evident: binary applications can be symbolically
executed in their native, real environment, even if they depend on li-
braries and devices. On the other hand, this high degree of symbolic
execution support and integration at a comparably low level comes
at a price. For instance, when symbolic input arrives via a network
socket, it has to pass through all of the network stack in the kernel,
adding significant overhead in symbolic execution. Similarly, even
though S2E employs a copy-on-write memory concept, it still has
to keep track of the whole OS state on a fork. Performance aside, a
problem with operating at the level below the operating system it-
self is the lack of semantic information at the system level–an issue
that we discuss in more detail presently.
Semantic view reconstruction. To improve execution performance
of unrelated code, S2E needs to know when the program under test
is executed and where it resides in memory. We implemented a plu-
gin for S2E to reconstruct this information for Linux. Whenever the
kernel starts a thread, the plugin extracts the memory layout and the
name of the new task from the guest’s memory. It then associates
this information with the task’s page table base address, which is
unique per process and thus well-suited as a process identifier. We
further track whether the program under test has terminated and we
can thus kill the corresponding state. For the special case that the
program is terminated by a signal, we additionally intercept signals
to be able to report e.g. segmentation violations.

Tracking the program state. In BORG, all buffer accesses are as-
sociated with a program state. As already mentioned in Section 2.1,
we define the program state as a combination of the address of the
current instruction and the associated callstack. To remove all pos-
sible ambiguity, the callstack is represented by the return addresses,
as they identify not only the function invoked, but also the callsite.
While determining the current instruction pointer is straightfor-

ward, the callstack needs more effort. In a nutshell, we keep track
of all function invocations and returns throughout the program exe-
cution on a per-state basis. Since programs are not bound to follow
the call-return semantics at the assembly level, we maintain the call-
stack on a best-effort basis.
The reasons for not adhering to the normal call-return convention

vary. The best known example is position independent code. Such
code may need to determine its current address; A popular way to
do so is by means of a call instruction, as it pushes the address of
the next instruction onto the stack. Besides, calls without returns
also occur in exception handlers and event-based programming. To
account for these cases, our callstack handling keeps track of the
expected return addresses. Upon executing a return instruction, we
distinguish two cases: If a return target is not contained in the call-
stack, the callstack is left untouched. Otherwise, we pop all items
from the callstack until we reach the matching return address.

Preliminary analysis. For the static phase of the preliminary anal-
ysis, we leverage the IDA Pro disassembler. Our CFG generation
script starts with the main function and descends into every called
function, splitting the code on control transfer boundaries into basic
blocks. To compensate for the shortcomings of this static approach,
we additionally explore all functions we encounter during dynamic
analysis and also extract the targets of indirect jumps.
For the dynamic phase we first run the program under test in a

modified version of the lightweight taint tracker Minemu [4]. This
will output all memory accesses encountered that depend on tainted
input data. To produce the buffer profiles, we additionally run the
tested program in S2Ewith symbolic execution completely disabled
and only the semantic reconstruction and overread detection plugins
enabled.

6. EVALUATION
To evaluate the effectiveness of BORG, we selected a number

of recent out-of-bound vulnerabilities in real-world server applica-
tions and commonly used libraries. We selected the programs by
querying the NVD database of NIST [28] for the most recent and
critical buffer overread vulnerabilities in open source programs that
S2Ewas able to execute. We used open source programs and known
bugs so we could verify the results accurately.
Table 1 lists characteristics of the programs under test as well as

results from being analyzed by BORG. The basic block count is an
indicator of both size and complexity of the program. It shows that
BORG also works on large applications such as ClamAV with over
38,000 basic blocks. The candidate column lists how many critical
accesses were identified byBORG’s target selection. For libexif our
target selection could not come up with candidates, so we chose to
use the selection strategy of Dowser [23] for this case. The size of
the symbolic input supplied to each program under test varied signif-
icantly, based on the kind of input processed by the program: While
the communication protocol of SSSD uses only a small 42 byte mes-
sage, the test input to libmagic, an MS Office document, was more
than 170 times as large. The sum of the preliminary analysis and
guided testing column states how long it took BORG to trigger a
vulnerability. Finally the state space is the number of states gener-
ated during symbolic execution and the states explored the part of

the state space that was explored by guided testing.
In the following we will provide insight on the programs and on

how BORG dealt with their vulnerabilities.
Lighttpd. Lighttpd is a lightweight, yet standards-compliant web
server that is used, amongst others, by YouTube. Using the supplied
test cases for authentication, BORG found two tainted memory ac-
cesses during preliminary analysis. One of them corresponds to a
buffer overread vulnerability specified by CVE-2011-4362. It is lo-
cated in a function that handles base64 decoding of the username
supplied in an HTTP request with basic authentication, where part
of the input is used as an offset into a conversion table:

1 static unsigned char * base64_decode(buffer *out,
const char *in) {

2 unsigned char *result = (unsigned char *)out->ptr;
3 int ch = in[0];
4 for (size_t i = 0; i < strlen(in); i++) {
5 ch = in[i];
6 if (ch == ’\0’ || ch == base64_pad) break;
7 ch = base64_reverse_table[ch];
8 if (ch < 0) continue;
9 switch(i % 4) {
10 case 0:
11 result[j] = ch << 2;
12 break;
13 ...
14 }
15 }
16 return result;
17 }
18 int http_auth_basic_check(..., const char *realm_str)

{
19 buffer *username, *password;
20 ...
21 username = buffer_init();
22 if (!base64_decode(username, realm_str)) return 0;
23 ...
24 }

The realm_str pointer (line 18, 22) directly references input
data. The base64_decode function will iterate over each byte of
the input (line 4) unless it encounters a termination character. It
decodes each character by means of the base64_reverse_table
(line 7) and writes the result to the output pointer. The problem is
the missing bounds check for ch when using it as an offset into the
array in line 7. Since the array has 256 entries one might first not
think that an overread is possible, as this perfectly matches the max-
imum value of an unsigned character. However, before being used
as an index, the character is first casted to a signed integer (line 3).
Therefore all values above 0x7f will turn into negative offsets into
the table.
Still, the generated out-of-bounds constraint does not evaluate

to true in the initial state, as the path constraints do not allow for
it. After guidance dismissed all irrelevant states using the security
constraints, the closest valid states based on the proximity ranking
pointed to a validation loop that happens at a very early stage in the
program. As it turns out, each character of the request header (line
2) is first checked for validity:

1 for (; i < con->parse_request->used && !done; i++) {
2 char *cur = con->parse_request->ptr + i;
3 ...
4 if (*cur >= 0 && *cur < 32 && *cur != ’\t’) break;

At this point we fork a state for every header character. The com-
piled assembly version of this if-clause will only pass if *cur is
negative, bigger than 0x1f or if it is not equal to 0x9. Our test in-
put passes this if-clause, because all characters’ values exceed 0x1f.
The path constraints generated corresponding to this input are the

Program Basic Blocks Candidates Symbolic Input Preliminary Analysis Guided Testing State Space States Explored
static dynamic

Lighttpd 7,139 2 63 byte 3s 1m 52s 3m 36s 369 10
FFmpeg 4,654 4 5,120 byte 2s 10m 42s 3m 54s 10 1
libmagic 512 14 7,168 byte <1s 19s 3h 46m 37s 762 1
libexif 2,506 (87) 678 byte <1s 10s 1m 45s 1,804 503
SSSD 9,938 4 42 byte 6s 2m 40s 2m 56s 116 7
ClamAV 38,037 12 3,505 byte 51s 5m 26s 12h 40m 09s 3,792 1

Table 1: Programs analyzed using BORG. For libexif, we used Dowser’s selection strategy.

reason why an invalid offset was not possible for the initial path:
they effectively limit the possible range for values to 0x1f-0x7f.
By taking a different branch that allows for a different set of input
characters, BORG can trigger the vulnerability. In this case loop
handling prefers states that do not lead to the break condition.
Given the depth of the bug and the fact that BORG forks hun-

dreds of states until it triggers the vulnerability, an uninformed ex-
ploration strategy is highly likely to fail – each path that does not hit
or trigger the bug will fork off a large number of new states during
exploration.
SSSD. The System Security Services Daemon (SSSD) is installed
per default on Fedora-related Linux distributions. It provides re-
mote access to various identity and authentication resources through
a common framework. We tested the SSH-module, which is sus-
ceptible to a buffer overread specified in CVE-2013-0220. As the
supplied test suite is only targeted at testing the internal database,
we intercepted network traffic from the supplied client. Based on
this test input, BORG identified four target candidates, all of them
located in a function that parses the incoming request.

1 static errno_t ssh_cmd_parse_request(struct
ssh_cmd_ctx *cmd_ctx) {

2 struct cli_ctx *cctx = cmd_ctx->cctx;
3 uint8_t *body;
4 size_t body_len;
5 size_t c = 0;
6 uint32_t flags, name_len, alias_len;
7 char *name;
8
9 sss_packet_get_body(cctx->creq->in, &body,

&body_len);
10 memcpy_c(&flags, body+c, body_len, &c);
11 memcpy_c(&name_len, body+c, body_len, &c);
12 if (flags > 1) {return EINVAL;}
13 if (name_len == 0) {return EINVAL;}
14 name = (char *)(body+c);
15 if (!sss_utf8_check(name, name_len-1) ||

name[name_len-1] != 0) {
16 return EINVAL;
17 }
18 c += name_len;
19 ...
20 if (flags & 1) {
21 memcpy_c(&alias_len, body+c, body_len, &c);
22 ...

The body pointer used in this function references part of the data
received from the network. The memcpy_c function is a wrapper
around the ordinary memcpy that will add the length parameter to
its last parameter. The problem is the name_len variable that is
parsed from the input data in line 11 and, without any further vali-
dation, used as an offset in lines 15, 18 and 21. However, the out-
of-bounds constraint does not evaluate to true on the initial path,
because the sss_utf8_check function in line 15 generates path con-
straints that limit name_len to the actual length of the corresponding
part of the input. Proximity rating and security constraints take us

back to the states that have been forked last in the validation loop
in sss_utf8_check. Loop handling dismisses numerous states that
would exit the loop prematurely. One of the high-ranked states trig-
gers a different behavior of sss_utf8_check: if the length param-
eter is negative, it assumes a zero terminated string and returns true
if the characters up to the termination character are in conformance
to UTF8. Since this is the case, name_len is now negative and all
subsequent accesses that use it as part of their offset potentially over-
read. This case shows that BORG is also effective using observed
real-world input data when no test cases are available.
FFmpeg. FFmpeg is a collection of libraries that provide function-
ality to record, convert and stream audio and video of various for-
mats. Since it is not a standalone program, we implemented a very
basic test program that will open, identify and read a file. As con-
crete test input we used a typical stream in the DV format, truncated
to a limited number of frames. Among the four candidates given by
BORG’s target selection was the overread vulnerability specified
by CVE-2011-3936.

1 static const uint8_t *dv_extract_pack(uint8_t *frame,
enum dv_pack_type t) {

2 int offs;
3 switch (t) {
4 case dv_audio_source:
5 offs = (80*6 + 80*16*3 + 3);
6 break;
7 ...
8 }
9 return frame[offs] == t ? &frame[offs] : NULL;
10 }
11 static int dv_extract_audio(uint8_t *frame, ...) {
12 ...
13 as_pack = dv_extract_pack(frame, dv_audio_source);
14 if (!as_pack) return 0;
15 freq = (as_pack[4] >> 3) & 0x07;
16 size = (sys->audio_min_samples[freq] + smpls) * 4;
17 }

In this case, part of the input is modified by a number of logic
operations before it is used as an array offset: The frame pointer
passed to dv_extract_audio is a direct reference to the supplied
input. Since our input has the dv_audio_source type set at the
offset required by dv_extract_pack, symbolic execution follows
the else branch of the conditional and continues. Now freq is cal-
culated by masking a value of as_pack (that refers directly to the
input) with 0x7. In line 16, freq is used as an offset into the au-
dio_min_samples array that only contains three entries, although
the bitmask allows values up to seven. Since no (path) constraints
apply to the value in as_pack[4], the out-of-bounds constraint we
generate is already satisfiable and BORG reports the possible over-
read and outputs a test case without exploring additional states.
Libmagic. Libmagic is the library behind the popular “file” com-
mand line tool that will try to determine the type of a given file based
on its content. It is also used by larger programs such as the Apache
web server. While most file types are covered by magic bytes con-

tained in the magic database, libmagic performs further processing
for a limited number of file types, such as CDF, Microsoft Office’s
composite document format. Since libmagic does not come with a
testfile for the CDF format, we used Microsoft Office to produce
an empty CDF document. BORG’s target selection identified 14
candidates, one of them being an overread specified by CVE-2012-
1571. In this case, the overread is caused by lacking validation of
the source pointer on a call to memcpy. Again, BORG is able to
query the constraint solver for a test case that triggers the vulnera-
bility in the first state, since the path constraints allow for it.
The comparably long time it took until the vulnerability was trig-

gered is caused by the combination of a rather large symbolic in-
put size and the large number of constraints generated. This causes
queries to the constraint solver to take up to 90s each.
Libexif. Libexif reads and writes EXIF metadata information from
and to JPG image files. It is a popular library used by various image
processing applications such as ImageMagick. Being a library, we
tested its main functionality that extracts EXIF data from a memory
region. As input we used a sample JPG image shipped with the
libexif library.
In this case, BORG’s target selection could not come up with

candidates because none of the buffer accesses used tainted input
for the address calculation. Having the source code available, we
chose to try Dowser’s selection heuristic in this case. While being
based on taint tracking as well, it employs special methods to han-
dle implicit flows. Indeed, it provided us with an access affected by
CVE-2012-2836 that is ranked at place 13 out of 87 loops. In the
following BORG’s guided testing managed to trigger the vulnera-
bility, showing the effectiveness of the proximity rating.
Compared to the other examples, the bug in libexif is located at

a rather shallow position in the program’s logic. Still, when we
turned off our guiding enhancements and ran libexif with concolic
execution and a standard depth-first exploration guidance, the bug
was not triggered within 29 hours.
ClamAV. ClamAV is a widely used anti-virus engine that offers its
capabilities in a library. When used on a password-protected PDF
file, target selection identified 12 security critical accesses. This is
in accordance with CVE-2013-2021, which indicates an overread
vulnerability with encrypted PDF files: The user password check-
ing function in ClamAV’s PDF scanner passes user input directly to
memcpy as a length parameter. Since the out-of-bound constraints
already hold in the first state, BORGwas able to generate a test case
for the overread right away. As ClamAV is by far the biggest pro-
gram we applied BORG on, its size is being reflected by the long
time it took to trigger the bug compared to the other programs.

7. RELATED WORK
The use of symbolic execution to find bugs in programs has been

subject to a substantial body of recent research, includingCUTE [32],
DART [19], EXE [9], KLEE [8], SAGE [20]. Other than SAGE,
these approaches require source code. Unlike BORG, their goal is
to achieve high code coverage of the tested program and find bugs
throughout the program.
SE targeted at specific bugs. A number of papers investigate how
symbolic execution can be applied in a more targeted fashion to
attempt to detect specific bugs.
In [23] we present Dowser, a guided symbolic execution strategy

geared towards buffer overflow bugs. It uses static analysis to iden-
tify possible locations for buffer overflow bugs within loops and
ranks them based on a metric that evaluates the complexity of the
access. Dowser’s static analysis techniques heavily rely on the ex-
pressiveness of source code, porting them to support binaries rep-

resents a challenge in itself that we leave to future work. While
Dowser’s heuristics for target selection can enhance BORG’s effi-
ciency, it is not sufficient by itself, as it only focuses on accesses
within loops. It thus fails in all our evaluation examples except for
the libexif case.
Cui et al. [15] aim to discover bugs in the enforcement of higher

level policies, such as heap or file descriptor misuse. They use path
slicing to statically infer execution paths that are not relevant for the
given testing run. While the paper demonstrates the effectiveness
on coarse-grained bugs, program slicing is less suitable for dealing
with fine-grained bugs like memory errors: In a typical application
that first parses the input before the program logic takes effect, the
parser will be data-dependent on the whole input, thus leaving noth-
ing for path slicing to prune. The same applies to DiSE [29] and its
simplification based on “unaffected” nodes. Program slicing is also
significantly more difficult to perform on stripped binaries where
pointer aliasing is an unsolvable problem.
In Zesti [27] the authors use symbolic execution to improve test-

ing of sensitive instructions. They limit their exploration to paths
that do not exceed a certain fork depth, measured backwards from
a targeted sensitive instruction. In order to scale, they use a fork
depth of ten forks. Thus their approach would fail with programs
such as lighttpd where the path constraint that allows for a bug to
occur is in a validation loop “far” (in terms of fork depth) from the
actual bug.
Babić et al. [2] describe a guided analysismethod similar to BORG

that, in contrast to the aforementioned systems, also works on bina-
ries. The authors use a data-flow graph to identify possible vulner-
abilities first, and a shortest-path distance heuristic based on a con-
trol flow graph as a second step to guide symbolic execution to the
vulnerabilities. In contrast to this work, BORG’s selection strategy
also uses dynamic analysis to both resolve indirect call targets and
dynamically allocated memory. BORG additionally uses security
constraints for guidance and employs a more fine grained distance
metric that uses the current basic block and the runtime call stack,
while this system only uses the current basic block. Finally, unlike
BORG, this work has not been tested on real-world programs, but
only historic and simplified vulnerabilities.
SE aimed at known vulnerabilities. Symbolic execution has also
been leveraged to replay or extend existing vulnerabilities. Such ap-
proaches typically involve strong guidance strategies, but are based
on stronger assumptions regarding existing information about faulty
application behavior. ESD by Zamfir et al. [39] applies a distance
based guidance strategy aiming to replicate inputs responsible for
crashes based on existing core dumps. Even though their distance
heuristic is rather coarse, their method proves that distance based
guidance is a strong tool for eliminating the potential exponential ex-
plosion of symbolic execution. On a similar note, some researchers
aim to increase the threat level of existing bugs using guided sym-
bolic execution. Avgerinos et. al. [1] and Cha et al. [10] developed
techniques for guided symbolic execution with the purpose of ex-
ploit generation. They assume knowledge about existing bugs that
are considered benign from a security perspective and transform
them into full blown security exploits.
Approaches to guidance. The general idea of using the program’s
structure in form of a CFG for guiding symbolic execution was in-
troduced by [7]. Ma et al. [26] show that distance calculation is gen-
erally suited to navigate symbolic execution towards specific target
instructions, but might lead to inferior results when a longer path
is required. While they propose a form of backward symbolic exe-
cution that is not feasible with an online symbolic executor, BORG
addresses these problems by its additional guiding techniques. Both
Rungta and Cho [13, 30] leverage program models for guidance.

While models are suited to guide symbolic execution to specific
high-level states, they are only a coarse approximation of the real
program that is possibly incomplete and might thus miss specific
bugs. Fitnex [38] selects those paths that are more likely to satisfy
a certain target predicate. BORG does not use fitness guidance be-
cause a measure of how well an access is within bounds does not
relate to how likely the access might go out-of-bounds. In contrast,
BORG’s boolean security constraints prune states that are in bound
and put much less strain on the constraint solver.
Improving symbolic execution. A significant body of research fo-
cusing on improving symbolic execution in general. Approaches
include parallelization [5], swapping states to disk [10], efficient
handling of array accesses in loops [31], summarizing loops [21]
and state merging [6, 25]. By extending the underlying symbolic
execution engine with the techniques presented above, the overall
performance of BORG would improve, enabling even larger appli-
cations to be tested. The benefit of guidance would still be relevant
since it is offers a relative improvement to the underlying symbolic
execution engine.

8. EXTENDING BORG
Our overall approach and the guidance techniques discussed in

Section 3 have applications beyond the oneswe address in this work,
which only targets a specific class of bugs (buffer overreads), and
the subset of bugs in this class that can be targeted by the selection
strategy we propose.
To be able to effectively apply our guided symbolic execution

approach to a class of bugs, we need to have at least one target
selection strategy that is able to identify a limited number of pro-
gram instructions that could potentially trigger a bug of that class.
Note that, to be useful, a target selection strategy does not need to
be able to target all possible bugs within a class: It is enough that
it can target some bugs that would be hard to find with unguided
testing. A comprehensive, practical approach to automated bug de-
tection could then be to execute both unguided testing runs that aim
to maximize code coverage, and guided testing runs led by a num-
ber of selection strategies for different types of bugs. In the follow-
ing, we will discuss a few possible selection strategies for different
classes of bugs.
Buffer Boundary Violations. All of the techniques that BORG
applies to buffer overreads can trivially be adapted to similarly de-
tect buffer overflows. As discussed, our target selection strategy
for this application targets memory accesses that use tainted mem-
ory address. To detect additional overread and overwrite bugs, we
could introduce additional selection strategies, such as the one pro-
posed in Dowser [22, 23].
Format String Vulnerabilities. Comparable to buffer boundary vi-
olations, format string vulnerabilities can also be exploited to write
to or read from a program’s memory in unexpected and potentially
harmful ways. These vulnerabilities occur when attackers are able
to control the format string provided as input to functions in the
printf family and to introduce unexpected modifiers, such as %x or
%n. Format string modifiers can cause the function to read data
from and write data to arbitrary memory regions.
For this class of bug, an effective selection strategy is to target all

invocations of functions in the printf family where the format string
is derived from user input. Often logging functions turn out to be
such candidates. During exploration, guidance can automatically
assess whether the path constraints allow for certain modifiers to
end up in format strings at all. Finally, whenever a candidate func-
tion is executed, the detection component can check whether it will
actually access memory regions it is not supposed to.

Control Flow Integrity. If an offset into a jump table is calculated
based on program input, malformed input that is not sufficiently val-
idated may cause a violation of control flow integrity: The program
could either pick a target in the table it is not supposed to jump to at
this moment, or, if the final address is not bounds-checked against
the size of the table, it could jump to an arbitrary memory location.
One selection strategy for this class of bugs can be to target all

indirect control flow transfer instructions whose target depends on
user input. During symbolic execution, guidance prefers states whose
path constraints are relaxed enough to allow for a wide range of pos-
sible offsets. In the preliminary analysis phase we construct a pro-
file of valid jump targets for every control flow transfer. Whenever
a control flow transfer happens, the detection component can then
check whether we can pick a target outside the ones recorded.

9. LIMITATIONS AND FUTURE WORK
BORG’s effectiveness or applicability is limited by the target se-

lection method. While the evaluation shows that the current selec-
tion method allows it to find deep bugs in complex, real-world pro-
grams, there is certainly room for improvement. One issue is that
BORG’s current selection strategy does not track implicit flows,
which prevented it from finding candidates in the libexif case, as
well as CVE-2012-1798 of libmagick andCVE-2012-3425 of libpng.
We plan to look into possible solutions that have been proposed for
this issue [24]. Another issue is BORG’s dependence on concrete
input: it cannot find bugs in code that is not covered by any test
input. This limitation can be alleviated by introducing additional
selection strategies that are based purely on static analysis.
Our overall approach and the guidance techniques discussed in

Section 3 have applications beyond the ones we address in this work.
In future work, we plan to develop a number of additional selection
strategies as outlined in Section 8.
Finally, our implementation of symbolic execution, which is based

on S2E, is rather slow and uses a large amount of memory per state.
This prevented us from evaluating BORG on CVE-2012-2141 of
net-snmp. Amore efficient implementation of the core engine could
allow BORG to find more bugs faster.

10. CONCLUSION
In this paperwe presentedBORG, a tool for finding out-of-bounds

buffer accesses in binaries. Unlike many testing techniques, BORG
does not aim to cover as much code as possible in the tested pro-
gram. Instead, it selects specific points in the program that may be
vulnerable, and then proceeds to thoroughly test them by exploring
program paths that lead to those points, while trying to trigger and
detect a bug. For this, we introduce techniques to guide symbolic
execution and make it focus on execution paths that are most rel-
evant to the selected targets and the bugs that may lurk there. As
a result, BORG can output concrete program inputs that trigger a
buggy behavior. Our novel guidance approach allows BORG to
reach and trigger bugs deep in the logic of the programs under test
as we show in case studies on six real-world applications.
While BORG focuses on detecting overread bugs, the guidance

techniques we introduce could be used to target different classes of
bugs, such as buffer overflows, format strings vulnerabilities and
control flow integrity violations.

Acknowledgments
The research leading to these results has received funding from the
EuropeanUnion Seventh Framework Programme under grant agree-
ment 257007 (SysSec), the European Research Council through

project ERC-2010-StG 259108 (ROSETTA), theMSR Ph.D. Schol-
arship 2011-049 and the FFG – Austrian Research Promotion under
grant COMET K1.

11. REFERENCES
[1] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley. AEG:

Automatic Exploit Generation. In Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2011.

[2] D. Babić, L. Martignoni, S. McCamant, and D. Song.
Statically-directed dynamic automated test generation. In
Proceedings of the Symposium on Software Testing and Analysis
(ISTA), 2011.

[3] F. Bellard. Qemu, a fast and portable dynamic translator. In
Proceedings of the USENIX Annual Technical Conference (USENIX
ATC), 2005.

[4] E. Bosman, A. Slowinska, and H. Bos. Minemu: The World’s Fastest
Taint Tracker. In Proceedings of the Symposium on Research in
Attacks, Intrusions and Defenses (RAID), 2011.

[5] S. Bucur, V. Ureche, C. Zamfir, and G. Candea. Parallel symbolic
execution for automated real-world software testing. In Proceedings
of the European conference on Computer systems (EuroSys), 2011.

[6] S. Bugrara and D. Engler. Redundant State Detection for Dynamic
Symbolic Execution. In Proceedings of the USENIX Annual
Technical Conference (USENIX ATC), 2013.

[7] J. Burnim and K. Sen. Heuristics for scalable dynamic test
generation. In Proceedings of the IEEE/ACM Conference on
Automated Software Engineering (ASE), 2008.

[8] C. Cadar, D. Dunbar, and D. Engler. Klee: unassisted and automatic
generation of high-coverage tests for complex systems programs. In
Proceedings of the USENIX Conference on Operating Systems
Design and Implementation (OSDI), 2008.

[9] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler.
Exe: Automatically generating inputs of death. In Proceedings of the
ACM Conference on Computer and Communications Security (CCS),
2006.

[10] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley. Unleashing
mayhem on binary code. In Proceedings of the IEEE Symposium on
Security and Privacy (S&P), Washington, DC, USA, 2012.

[11] X. Chen, A. Slowinska, and H. Bos. Who allocated my memory?
Detecting custom memory allocators in C binaries. In Proceedings of
the Working Conference on Reverse Engineering (WCRE), Koblenz,
Germany, 2013.

[12] V. Chipounov, V. Kuznetsov, and G. Candea. S2e: a platform for
in-vivo multi-path analysis of software systems. In Proceedings of
the Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2011.

[13] C. Y. Cho, D. Babić, P. Poosankam, K. Z. Chen, E. X. Wu, and
D. Song. MACE: Model-inference-Assisted Concolic Exploration for
Protocol and Vulnerability Discovery. In Proceedings of the USENIX
Security Symposium (USENIX SEC), 2011.

[14] Codenomicon. The Heartbleed Bug. heartbleed.com.
[15] H. Cui, G. Hu, J. Wu, and J. Yang. Verifying systems rules using

rule-directed symbolic execution. In Proceedings of the Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2013.

[16] E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1959.

[17] C. Eagle. The IDA Pro Book. William Polloc, 2011.
[18] V. Ganesh and D. L. Dill. A decision procedure for bit-vectors and

arrays. In Proceedings of the Conference on Computer Aided
Verification (CAV), 2007.

[19] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed automated
random testing. In Proceedings of the ACM Conference on
Programming Language Design and Implementation (PLDI), 2005.

[20] P. Godefroid, M. Levin, and D. Molnar. Automated whitebox fuzz
testing. In Proceedings of the Network and Distributed System
Security Conference (NDSS), 2008.

[21] P. Godefroid and D. Luchaup. Automatic partial loop summarization
in dynamic test generation. In Proceedings of the Symposium on
Software Testing and Analysis (ISTA), 2011.

[22] I. Haller, A. Slowinska, and H. Bos. Dowser: a guided fuzzer to find
buffer overflow vulnerabilities. In Proceedings of the European
Workshop on System Security (Eurosec), 2013.

[23] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos. Dowsing
for overflows: A guided fuzzer to find buffer boundary violations. In
Proceedings of the USENIX Security Symposium (USENIX SEC),
2013.

[24] M. G. Kang, S. McCamant, P. Poosankam, and D. Song. DTA++:
Dynamic Taint Analysis with Targeted Control-Flow Propagation. In
Proceedings of the Network and Distributed System Security
Symposium (NDSS), 2011.

[25] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea. Efficient state
merging in symbolic execution. In Proceedings of the ACM
Conference on Programming Language Design and Implementation
(PLDI), 2012.

[26] K.-K. Ma, K. Y. Phang, J. S. Foster, and M. Hicks. Directed symbolic
execution. In Proceedings of the Conference on Static Analysis, 2011.

[27] P. D. Marinescu and C. Cadar. make test-zesti: a symbolic execution
solution for improving regression testing. In Proceedings of the
International Conference on Software Engineering (ICSE), 2012.

[28] NIST. National Vulnerability Database. web.nvd.nist.gov.
[29] S. Person, G. Yang, N. Rungta, and S. Khurshid. Directed

Incremental Symbolic Execution. In Proceedings of the ACM
Conference on Programming Language Design and Implementation
(PLDI), 2011.

[30] N. Rungta, E. Mercer, and W. Visser. Efficient testing of concurrent
programs with abstraction-guided symbolic execution. InModel
Checking Software, LNCS. 2009.

[31] P. Saxena, P. Poosankam, S. McCamant, and D. Song. Loop-extended
symbolic execution on binary programs. In Proceedings of the
Symposium on Software Testing and Analysis (ISTA), 2009.

[32] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit testing
engine for C. In Proceedings of the European Software Engineering
Conference, 2005.

[33] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov.
Addresssanitizer: A fast address sanity checker. In Proceedings of the
USENIX Annual Technical Conference (USENIX ATC), 2012.

[34] M. Sharir. A strong connectivity algorithm and its applications to
data flow analysis. In Computers and Mathematics with Applications,
1981.

[35] A. Slowinska, T. Stancescu, and H. Bos. Howard: a dynamic
excavator for reverse engineering data structures. In Proceedings of
the Network and Distributed System Security Symposium (NDSS),
2011.

[36] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A.-R. Sadeghi. Just-in-time code reuse: On the effectiveness of
fine-grained address space layout randomization. In Proceedings of
the IEEE Symposium on Security and Privacy (S&P), 2013.

[37] A. Sotirov and M. Dowd. Bypassing Browser Memory Protections:
Setting back browser security by 10 years. In Blackhat, 2008.

[38] T. Xie, N. Tillmann, P. de Halleux, and W. Schulte. Fitness-guided
path exploration in dynamic symbolic execution. In Proceedings of
the Conference on Dependable Systems and Networks (DSN), 2009.

[39] C. Zamfir and G. Candea. Execution synthesis: a technique for
automated software debugging. In Proceedings of the European
conference on Computer systems (EuroSys), 2010.

