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Abstract—The Tor network is currently by far the most pop-
ular system for providing anonymity on the Internet. Even
though both latency and throughput have been significantly
improved in recent years, Tor users still experience variable
delays on connecting to servers. Such delays have been shown
to be especially harmful for browsing the web and prevent
altogether the use of protocols where a certain quality of service
is indispensable.

In this paper1 we propose and evaluate methods to measure
and improve performance in the Tor network2. To estimate the
quality of circuits for future traffic, we use active Round-Trip-
Time (RTT) measurements and a-priori information of the
distribution of RTT values. In this way, slow circuits can be
discarded before having negative impact on user experience.
Using NavigaTor, our high performance measurement software
which includes a custom Tor path generator, we are the
first to conduct large-scale performance measurements on the
live Tor network, building millions of circuits within days,
without stressing the anonymity network. As part of our study,
we conduct several experiments from PlanetLab on the live
Tor network to analyze the trade-off between the quality of
protection and the quality of service. We compare our Circuit-
RTT method to the current state-of-the-art method Circuit
Build Time (CBT) and the more recently proposed congestion-
aware scheme, finding that the congestion-aware scheme in
its original design achieves only minor improvements on the
current Tor network and that Circuit-RTT improves latency
and throughput more effectively than CBT.

Index Terms—Tor, Quality of Service, RTT, Anonymity

1. Introduction

W ITH the tremendous increases in communication over
the Internet, security and privacy issues have be-

come more and more important. Much research has been
done to develop anonymous communication protocols that

1. This is a preprint of the paper to appear at IEEE European Symposium
on Security and Privacy (Euro S&P) 2016.

2. Our source code, obtained measurement data and our Tor path gen-
erator are available online under https://naviga-tor.github.io

would allow people to communicate without revealing po-
tentially identifying information, such as their computers’
IP addresses. These protocols became the technical basis
for promoting freedom of speech, achieving privacy, and
overcoming censorship on the Internet.

Presently, only very few systems exist that are of prac-
tical relevance for providing anonymity on the Internet.
The most widespread and well researched is Tor [1], a
low-latency anonymity system that is loosely based on the
onion routing [2] principle. Since it gained public notice in
2004, it has become the most popular low-latency anonymity
network, with over two million daily users [3] from over
120 different countries [4], and the platform for research
in anonymous communications. Like other anonymity de-
signs, Tor seeks to hide the relationships between commu-
nicating parties both from network observers and from the
anonymization infrastructure itself. At the same time, Tor
developers strive to achieve a reasonable balance between
the conflicting demands of performance and anonymity, to
encourage the use of the network [5].

Since Tor intentionally bounces traffic around the world
several times, end-to-end latency is by design higher than on
regular Internet connections. Even though both latency and
throughput have been significantly improved [4] in recent
years, Tor users still experience variable delays [6, 7, 8]
on connecting to servers. Such delays have been shown to
be especially harmful for browsing the web, which makes
up the vast majority of connections [9, 10] through the
Tor network, and prevent altogether the use of protocols
where a certain quality of service is indispensable. Because
anonymity systems hide users among users, keeping the
performance overhead associated with the anonymity system
as low as possible, enlarges the user base and thus ultimately
enhances the anonymity the system offers [5].

2. Background

The Tor network consists of volunteer-operated nodes
that forward traffic on behalf of users running Tor clients.
To establish an anonymous communication channel to the
user’s intended destination, a client first selects a path
through the Tor network by choosing suitable nodes among
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all active ones. A path typically consists of three nodes,
called, respectively, the entry, middle, and exit node. A
key aspect of achieving anonymity is that each node in a
path knows only its predecessor and successor, but not the
identities of both communicating parties.

Path Selection. Tor’s path selection algorithm selects nodes
according to certain constraints. For example, two nodes
whose IP addresses are in the same /16 network must not
be used in the same path. To increase performance while
still providing a reasonable level of anonymity, nodes are
additionally weighed by their bandwidth, giving a higher
selection probability to nodes with more bandwidth [11, 12].

Circuit Building. As soon as a client has selected a path,
it starts negotiating session keys with all involved nodes.
The resulting encrypted connection through the Tor network
is called circuit. Circuits are created one hop at a time;
clients negotiate symmetric keys using Diffie-Hellman key
exchange, where each partially created circuit is used to
communicate with the next node. Constructing a circuit
involves computationally expensive public-key cryptography
and multiple packet round trip times and thus can take
several seconds. To avoid burdening users with such high
delays, clients maintain preemptively built circuits. The time
required to establish a circuit does not, therefore, harm
user experience, as long as a suitable circuit is available
on request.

Cells. All packets are transmitted in fixed-size 512-byte
cells, to mitigate both website fingerprinting and traffic
analysis attacks that try to correlate packets entering and
leaving the Tor network based on the packets’ sizes. Build-
ing circuits is clearly computationally more expensive than
relaying cells, since the former involves public-key cryptog-
raphy whereas the latter uses symmetric key encryption.

Guard Nodes. Instead of selecting a new entry node for
each path, every client restricts its choice of potential entry
nodes to a small, semi-persistent set of Guard nodes. The
concept of Guard nodes was introduced to mitigate both the
efficiency of the predecessor attack [13] and the threat of
end-to-end timing correlation attacks, in which an adversary
observes users’ traffic entering and exiting the anonymity
network. The duration for which a client keeps its set of
Guard Nodes was increased from 30 to 60 days in Tor ver-
sion 0.2.4.12-alpha, and might soon change to one Guard per
client for up to 9 months [14]. The specifics, however, have
not yet been fully implemented at the time of writing [15].

Token Bucket Rate Limiting. In order to allow node oper-
ators to specify the bandwidth they are willing to provide,
nodes use the token bucket algorithm for controlling the
rate of traffic. Briefly, each node starts with a fixed number
of tokens and decrements its token count as data are sent
or received. When a node’s token count reaches zero, it
must wait until its tokens are refilled. The refill interval was
reduced from 1000 to 100 ms in Tor version 0.2.3.5-alpha,
in order to improve performance.

3. Related Work

Various methods have been proposed to measure time
and improve latency and throughput in the Tor network; this
is still an active field of research [16, 17]. In this section,
we present the work related to this paper and compare them
to our proposed Circuit-RTT method.

3.1. Circuit Build-Time

Circuit Build Time (CBT) is a client-side method that
aims to avoid congested nodes and, thus, slow circuits. The
basic idea is that the time it takes to establish a circuit gives a
hint as to how well that circuit will perform for future traffic,
given that some circuits are established within a fraction of
a second, whereas other circuits take over one minute to
build [6].

By comparing a circuit’s build-time to a timeout value,
clients discard circuits that take too long to build. Clients
calculate and continuously adapt this timeout value by track-
ing the circuits’ build-times and using a priori information
about their statistical distribution. Empirically, it was found
that build-times fit well to a Fréchet distribution. However,
estimators for this distribution converge slowly and are
difficult to calculate. For this reason, the tail of the Fréchet
distribution is approximated with a Pareto distribution, for
which estimators can be calculated quickly. The particular
timeout value is calculated using the percentile function
such that 80% of the mass of the distribution is below the
timeout value. According to this method, it is expected that
clients will accept the fastest 80% of all circuits on the
network [12].

3.2. Link-RTT

Panchenko and Renner [18] proposed a method to obtain
the Round-Trip-Time (RTT) between any two nodes. Their
measurement method intentionally violates the exit node’s
exit policy, using localhost as a dummy-destination. For
security reasons, every node refuses such connections and
returns an error message to the client without contacting
any further host. This ensures that the measured time is
very close to the RTT of the circuit, including hardly any
additional delay.

In their analysis, the authors measured latency between
every possible pair of nodes in the network. They changed
Tor’s path selection so that the probability of a path to
be selected is increased as the sum of the path’s link-
RTTs decreases and showed that latency and throughput is
improved using this scheme, although anonymity is much
lower compared to Tor’s default path selection algorithm.
The scalability of this approach is fairly limited, however,
since in a network of n hosts every client has to make n2

measurements.
We will build upon this basic method of measuring

RTT in the Tor network, but instead of inferring the link-
wise RTT between nodes, we measure the RTT of circuits.
Furthermore, in contrast to Link-RTT, Circuit-RTT scales
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very well, since the number of measurements grows only
linearly with the number of circuits a client uses and is
independent of the number of nodes in the network.

3.3. Congestion-Awareness

To reduce congestion and improve load balancing in the
Tor network, Wang et al. [8, 19] proposed a congestion-
aware scheme by which clients can isolate nodes’ congestion
delays from other delays, such as that from propagation. To
estimate the congestion of involved nodes, clients measure
the RTT of a circuit five times immediately after circuit
construction. For these active RTT measurements, a tech-
nique was used which is conceptually very similar to that
previously introduced by Panchenko and Renner. The basic
assumption in the paper is that congestion is a property of
a node that can be measured in seconds.
Their scheme consists of three different techniques:

1) Clients select the circuit with the lowest congestion
delay from three preemptively built circuits.

2) While using a circuit, clients opportunistically measure
its congestion and switch to another circuit, if the
current one becomes too congested.

3) Clients use a modified path selection algorithm which
considers the nodes’ congestion delays.

Their experiments on the live Tor network showed that
their scheme improves performance; this was also noted
by Wacek et al. [20], who simulated several schemes and
concluded that the congestion-aware scheme3 is the most ef-
fective in terms of latency, throughput, and anonymity. Thus,
we will compare our Circuit-RTT approach not only to CBT
but also to the congestion-aware scheme. For evaluating the
congestion-aware scheme, we will stick to selecting circuits
according to congestion delays and omit both the switching
of circuits and the modified path selection algorithm, since
the paper’s authors themselves found their path selection
algorithm to have less impact than the other techniques.

Like the congestion-aware scheme our Circuit-RTT ap-
proach uses active RTT measurements; it does not, however,
aim to deduce nodes’ congestion. Our approach requires
measuring the RTT only once on each circuit, rather than
five times, and requires constant memory, instead of having
memory requirements that grow linearly with the number
of nodes. Furthermore, it is difficult to analyze what exact
percentage of the network is excluded by the congestion-
aware scheme, since it dynamically calculates congestion
delay for nodes and disadvantages an unspecified number
of highly congested nodes.

3.4. Node-RTT

Panchenko, Lanze, and Engel [21] proposed a new met-
ric for path selection, aiming to enhance performance and
anonymity. According to their method, a client measures the

3. For the congestion-aware scheme, Wacek et al. implemented the first
and second technique, but not the modified path selection algorithm.

RTT of every node through a one-hop circuit. This tech-
nique of RTT measurement is again based on the concept
previously introduced by Panchenko and Renner [18]. In
terms of latency, the proposed method not only improved
performance, but also increased anonymity compared to
Tor’s bandwidth description method. However, the practical
applicability of this approach is comprised by the fact that
each client needs to perform RTT measurements for every
node.

3.5. Delays

Dhungel et al. [7] performed a detailed study of delays
in the Tor network. According to their study, the delay of a
circuit can be decomposed into link latencies between nodes,
and queuing and processing delays within nodes. They
observed that delays of circuits are most often the result of
queuing and processing delays within nodes. Furthermore,
their measurements revealed huge differences in delays in-
troduced by particular nodes, finding that a large fraction
of nodes have delays that dramatically fluctuate over time.
Therefore, simply measuring all-pairs RTTs centrally and
sending that information to clients would not be particular
beneficial. With this in mind, we will focus on a method that
allows clients to avoid nodes, which are slow at a particular
point in time.

4. Contributions

Specifically, we make the following contributions:

• We build a path generator that is identical to Tor’s
default path selection algorithm, including bandwidth
weighting and specific constraints on the selection of
paths. Applying only small, non-intrusive changes to
Tor’s source code ensures high confidence in the logical
equivalence of our path generator to Tor’s path selec-
tion algorithm. In the future, this path generator could
also be used to validate whether other path simulators
are selecting paths as Tor would.

• Since conducting large-scale performance measure-
ments on the live Tor network is a non-trivial task,
previous research examined anywhere from a few hun-
dred to fifteen thousand circuits. We were the first
to conduct large-scale measurements on the live Tor
network, using NavigaTor [22], our high performance
measurement software released under a free license;
one of NavigaTor’s core features is that it runs (nearly)
all code concurrently that involves network I/O. In
this way, it became feasible to build and measure
millions of circuits within days, without stressing the
Tor network.

• We used the NavigaTor software to validate our Circuit-
RTT scheme, in which the RTT of a circuit and a
priori information of the distribution of RTTs is used
to identify and discard slow circuits. We find Circuit-
RTT to serve as a better estimator for the quality of
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performance that circuits will provide for future traffic.
Clearly, we observe a significantly stronger correlation
with end-to-end network latency using RTTs than using
build-times or using congestion delays. We find that
Circuit-RTT improves end-to-end network latency and
throughput, compared to the current state-of-the-art
method CBT. Moreover, average latency over a circuit’s
lifetime of 10 minutes (as used by the Tor software) as
well as its standard deviation are improved compared
to CBT. We deployed NavigaTor on several hosts from
PlanetLab [23], allowing us to infer that improvements
to the path selection algorithm hold independently of
the client’s location. Gathered measurement data [22]
are provided under a free license.

• We explore whether a combination of the CBT and
the Circuit-RTT method could further improve la-
tency, finding improvements of Circuit-RTT alone to
be greater than that of a combination of both methods.

• We discover that the congestion-aware scheme in its
original design achieves only minor performance im-
provements in the current Tor network; especially con-
sidering that it drastically reduces entropy. Modifying
the congestion-aware scheme in such a way that the
same statistical approximation is used as in CBT and
Circuit-RTT, there is a larger performance gain whereas
entropy is less reduced. Nevertheless, the modified
congestion-aware scheme is still clearly outperformed
both by CBT and by Circuit-RTT.

5. RTT Measurements

In order to improve latency, the most important metric
from the users’ perspective [24], throughput, and thus the
anonymity set [25] and overall anonymity in the Tor net-
work, we implement active RTT measurements of circuits
(i.e., the time it takes for cells to go from the client through
a circuit and back). This active measurement approach in-
tentionally violates the exit node’s exit policy; in this way,
it is ensured that the RTT is indeed very close to that of the
circuit, including hardly any additional delay.

Contrary to previous approaches that aimed to use RTT
measurements to improve performance, we infer neither
congestion delays of nodes nor the RTT between a client
and every single node nor between every possible pair of
nodes in the network. Instead, we measure the RTT of a
circuit and use a priori information of the distribution of
RTTs, using a circuit’s RTT as estimator for the quality
that circuit will provide for future traffic. In this way, slow
circuits can be discarded before having a negative impact
on user experience.

Presently, clients use the CBT method to decide whether
a circuit will be used to transport traffic after it has been
established. Fig. 1 shows the timing associated with building
a circuit and measuring its RTT. While a circuit is being
established, data pass involved nodes several times. Thus, a
circuit’s build-time consists of multiple times the latencies
between the involved nodes and multiple times the queuing

Figure 1. A circuit’s build-time and its RTT.

delays within nodes. It additionally includes processing
delays, the time spent by nodes both on forwarding packets
and on computing encryption keys; these computations can
be on the order of seconds if a node is computationally
overloaded.

After a circuit has been successfully built, a client using
the Circuit-RTT method measures the RTT of that circuit by
asking the exit node to open a TCP connection to an IP ad-
dress in the 127.0.0.0/8 network. Previous approaches used
a static address from that network; using dynamic addresses
allows NavigaTor to evaluate multiple circuits at the same
time. Since all nodes refuse connections to addresses within
the 127.0.0.0/8 network for security reasons, the exit node
sends an error message back through the circuit without
contacting any further host. We define the RTT of a circuit
as the measured time interval between sending such request
and receiving the corresponding reply. The RTT includes
the latencies between the involved nodes plus the queuing
and processing delays within nodes. In contrast to CBT,
the processing delay is negligibly small, since forwarding
cells requires only symmetric-key cryptography which is
computationally inexpensive compared to building circuits,
which involves public-key cryptography.

A potential disadvantage of this approach is that a ma-
licious exit node could identify the measurement and use
this knowledge to influence the result. The CBT approach,
however, already allows every node in a circuit to easily
identify and artificially alter circuit creation, effectively
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biasing the clients circuit selection. Therefore, we argue
that no additional attack vector is added. Furthermore, it
should be noted that both approaches do trade security for
performance.

6. Evaluation

Studying the trade-off between the quality of protection
and the quality of service, we validate our assumption that a
circuit’s RTT is a better estimator for the quality that circuits
provide for future traffic.
To this end, we examine:
• how RTTs of individual circuits change over time.
• the correlation between

– a circuit’s build-time and the time until the first byte
is received from a webserver (Time-To-First-Byte
(TTFB)),

– a circuit’s RTT and the TTFB,
– a circuit’s congestion delay and the TTFB.

• whether RTTs can be approximated by a Fréchet (or
any other) distribution well.

• the impact of the CBT, Circuit-RTT, and congestion-
aware methods on the TTFB, throughput, anonymity,
and user-experienced latency changes over a duration
of 10 minutes.

• how changes to the rate of accepted circuits influence
TTFB, throughput, anonymity, and user-experienced
latency over time.

6.1. Path Generator

Since building a circuit takes anywhere from tenths of
a second to two minutes, solely establishing millions of
circuits one after the other would take several weeks – even
without making any measurement. When circuits are built
and probed, most of the time is spent waiting for network
I/O. To reduce the time required for running experiments,
NavigaTor first queries the path generator and then builds
and measures circuits concurrently instead of sequentially.
In this way, the time required for running experiments is
reduced tremendously.

First of all, a path generator identical to Tor’s default
path selection is required; i.e., given the consensus data, the
generator should produce the same paths as Tor would. Ex-
isting path generation tools, such as TorCtl [26], COGS [27],
or TorPS [28], are unsuitable in this regard for individual
reasons. For example, since the authors’ primary goal was
to simplify the modification of path selection, Tor’s path
selection algorithm is entirely reimplemented in TorPS;
such reimplementation leaves some uncertainty whether it
generates paths the same way as Tor would. Instead of
reimplementing Tor’s path selection algorithm, we make
small, non-intrusive changes to Tor’s source code so that
generating paths without actually building circuits is made
possible. This ensures high confidence in the equivalence to
Tor’s default path selection algorithm, while also keeping
our changes portable to other versions of Tor. In the future,

our path generator could also be used to validate whether
other path simulators are selecting paths as Tor would.

To facilitate the separation of path selection from circuit
building, we extend the Tor control protocol, a text-based
protocol, which allows programs to communicate with a
Tor process, with two new commands: DUMPGUARDS and
FINDPATH.

DUMPGUARDS. Since we intend to probe potentially all
nodes, different entry nodes for each path are required.
However, the probability for middle and exit nodes to be
selected depends on whether Guard nodes are enabled.
Simply disabling the use of Guard nodes is not an option,
because we also require that the selection be identical to
Tor’s default path selection algorithm, which involves Guard
nodes. To explicitly alter a Tor client’s selection of Guard
nodes during runtime, we implement a new controller com-
mand DUMPGUARDS, which makes the client clear its
internal list of selected Guard nodes and choose new ones.4

FINDPATH. We implement another control command,
FINDPATH, that makes the client choose a path and return
the particular nodes involved. Before that, there was no way
to make a client choose a path without actually building a
circuit.

6.2. Measurement Procedure

Algorithm 1 on the next page sketches the process
how NavigaTor gathers data. The main thread handles the
selection of paths and coordinates all worker threads. It
ensures that the client’s list of Guard nodes is empty by
executing the DUMPGUARDS control command. Subse-
quently, using the FINDPATH command, the associated Tor
client selects a path and returns it. In this way, the path
selection algorithm runs entirely in the Tor client process.
The main thread can request another path from the Tor client
immediately after having spawned a worker thread, because
it runs asynchronously with the worker threads. Each of
the worker threads receives only a single path from which
it builds a circuit and then measures the build-time, RTT,
TTFB, and throughput of that circuit.

We attempt to avoid interfering with the live Tor network
functionality, since the Tor network can be extremely fragile
when stressed with too many circuit creation attempts at
once. In order to minimize the effect on the Tor network,
NavigaTor keeps track of all nodes that are being probed
at any given point in time, and queues new paths if they
involve any of those nodes. In this way, a particular node
is not probed more than once at a time, which is impor-
tant considering that our approach would scale up to 1000
concurrent worker threads without any additional changes
to Tor’s source code.

4. This patch was merged into Tor version 0.2.5.1-alpha, but the name
of the command changed to DROPGUARDS.
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Algorithm 1 NavigaTor’s Measurement Procedure
1: procedure WORKER(path)
2: circuit← BUILD CIRCUIT(path)
3: CBT ← MEASURE BUILD-TIME(circuit)
4: RTT ← MEASURE RTT(circuit)
5: TTFB ← MEASURE TTFB(circuit)
6: BW ← MEASURE THROUGHPUT(circuit)
7: return (CBT,RTT , TTFB,BW )
8: end procedure

9: procedure MAIN( )
10: CONFIGURE TOR CLIENT( )
11: while NOT FINISHED( ) do
12: DUMPGUARDS( )
13: path← FINDPATH( )
14: WORKER(path) . runs asyncronously
15: end while
16: end procedure

6.3. Measurement Methods

TTFB Measurement. End-to-end network latency as ex-
perienced by users is approximated with the time elapsed
between sending a request using the HTTP HEAD method5

to google.com and receiving the first byte of the response,
the TTFB. Since google.com is served from multiple data
centers, the website responds quickly to requests indepen-
dent of the exit node’s location.

Throughput Measurement. We registered the domain
torrtt.info, and set up an HTTP server to serve a static
HTML page. Throughput is measured by the time it takes to
download that file, whose size is exactly 5 MB in accordance
with Tor’s bandwidth scanners [29]. To reduce the bias
a single webserver serving the web page introduces, the
page is delivered by CloudFlare’s Content Delivery Network
(CDN). This reduces the distance and, thus, potentially the
latency between the exit node of a particular circuit and the
destination webserver.

6.4. Anonymity Metrics

Before any performance-optimizing modification can be
integrated into Tor, it is important to study its effect on
the anonymity the system provides. In low-latency systems,
anonymity is mostly quantified by the probability that an
adversary occupies both the entry and the exit node of a
user’s circuit. We will use two different metrics to quantify
anonymity: normalized Shannon-Entropy and an adopted
Gini coefficient.

Shannon Entropy. Serjantov and Danezis [30] and Diaz et
al. [31] independently proposed evaluation frameworks that
use Shannon entropy as a metric for quantifying anonymity.

5. This method is similar to the HTTP GET method, but requests headers
only without the content body.

Entropy over all entry and exit node combinations Ψ is
defined as

E(X) = −
|Ψ|∑
i=1

pi ∗ ld(pi)

where i refers to a particular combination of entry and exit
nodes and pi to the probability that this combination is
used. The entropy is then normalized relative to the maximal
entropy ld(|Ψ|) to ensure that Enorm ∈ [0, 1]. Enorm = 1
implies that nodes are selected uniformly at random, and
Enorm < 1 implies a bias.

Gini Coefficient. Another metric for quantifying anonymity
involves the calculation of the skew in node selection. For
any other scheme than the selection uniformly at random,
the number of nodes an attacker must compromise is below
the maximum. To quantify such a disproportionality of
node selection, Snader and Borisov [32] adopted the Gini
coefficient, an equality metric commonly used in economics.
It is defined as

G = 1
µ

∫∞
0
CDF (x)(1− CDF (x)) dx

where CDF is the observed Cumulative Distribution Func-
tion, describing how often a node was selected, and µ is its
mean. A Gini coefficient G = 0 represents perfectly uniform
node selection, and G = 1 implies perfect inequality, i.e.,
the same node is always chosen.

6.5. Experimental Environment

To examine the influence of the client’s location on the
circuits’ RTTs, we deployed NavigaTor6 on several hosts
from PlanetLab [23], a testbed for computer networking
research. We restricted the number of measuring hosts, since
we want to avoid stressing the live Tor network with too
many concurrent measurements. We selected 19 nodes from
PlanetLab Europe, biasing towards diversity in terms of
geographical distribution, upstream ISP, and country. Addi-
tionally, we aimed for nodes that provide sufficient hardware
resources.

7. Results

As part of our study on the live Tor network, we
observed and analyzed the influence of the CBT, the
congestion-aware, and the Circuit-RTT methods on the
quality of circuits with regard to latency, throughput, and
anonymity. To that end, we conducted several experiments.

7.1. Continuous RTT Measurements

In the first experiment, we examined the stability of
RTT measurements on individual circuits over time. From a
single host computer, the RTT of each circuit was measured

6. We used Tor version 0.2.3.25 as basis, which was the latest stable
version when we started our experiments.
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Figure 2. Cumulative Distribution Functions (CDFs) of build-times, RTTs, and congestion delays, and the corresponding GEV approximations.

Figure 3. Scatterplots visualizing the relation of TTFB to build-times, to RTTs, and to congestion delays.

100 000 times. We observed that the RTTs fluctuate dra-
matically over time on the majority of circuits, confirming
the observations [7] mentioned in Section 3.5 on page 3.
Occasionally, we observed spikes at 100 ms and 1000 ms
intervals, which correspond to the refilling intervals of the
token bucket algorithm.

If every client were to measure the RTT of each circuit
continuously, the Tor network would not be able to handle
this additional load well; thus, the number of measurements
has to be within a reasonable limit. In an early evaluation,
we encountered that the accuracy of assessing a circuit’s
RTT is only slightly improved when increasing the number
of measurements within such reasonable limit. Therefore,
we focus on just a single RTT measurement per circuit,
considering the overall distribution alone.

7.2. Statistical Analysis

The next experiment was conducted to examine the
overall distribution of build-times, congestion delays, and
RTTs. On each of the 19 PlanetLab hosts one million circuits
were built to measure the build-time and RTT once on each
circuit, assuming that they fit the same distribution on any
client – apart from the distribution’s particular parameters.
Congestion delays were measured in a later experiment on
a single host which built 100 000 circuits.

Distribution. Fig. 2 depicts the CDFs of build-times, con-
gestion delays, and RTTs, and the corresponding Gener-
alized Extreme Value (GEV) distribution with estimated

parameters. GEV is a superset of extreme value distributions
which includes the Fréchet distribution. It is equivalent
to Fréchet, as long as its parameter ξ is greater than 0;
which it is in this case. We verified that the shape of
the CDFs across any host can be approximated closely by
a GEV distribution, using the χ2, the Anderson–Darling,
and the Kolmogorov-Smirnov test. The results support our
assumption that the probability distributions of build-times
and RTTs are identical across different clients, ignoring
the differences resulting from the distribution’s particular
parameters. Thus, every client should be able to calculate
its individual timeout value.

Correlation. To determine which of the examined schemes
is more suitable to improve end-to-end network latency, we
examine the correlation both between build-time and TTFB,
between congestion delay and TTFB, and between RTT
and TTFB. The scatterplots in Fig. 3 suggest a positive
correlation between all of them, but the correlation to be
strongest between RTT and TTFB. Since many outliers do
exist, a correlation method that is robust against outliers is
required. To quantify the correlation, we use Spearman’s
ρ, which essentially is Pearson’s r on ranked rather than
on observed values and, thus, is more robust to outliers.
The correlation coefficient ρ can range from −1 (negative
correlation) to 1 (positive correlation).

Using a p-value of 0.0000 for the hypothesis test, we
find a positive correlation with TTFB for all three schemes;
however, the correlation coefficient ρ is clearly higher for
RTTs (0.825) than both that for CBTs (0.588) and that for
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TABLE 1. MEDIAN AND 90th PERCENTILE TTFB.

PlanetLab Site Overall CBT 80% Circuit-RTT 80% CBT 50% Circuit-RTT 50%

cs.uit.no 340 ms / 614 ms 307 ms / 539 ms 299 ms / 497 ms 258 ms / 471 ms 214 ms / 384 ms

ece.upatras.gr 342 ms / 613 ms 307 ms / 536 ms 300 ms / 495 ms 257 ms / 468 ms 215 ms / 381 ms

upf.edu 332 ms / 605 ms 301 ms / 529 ms 294 ms / 488 ms 249 ms / 455 ms 209 ms / 373 ms

ait.ie 316 ms / 596 ms 289 ms / 513 ms 278 ms / 472 ms 228 ms / 431 ms 196 ms / 357 ms

cs.vu.nl 300 ms / 577 ms 269 ms / 500 ms 262 ms / 458 ms 204 ms / 406 ms 177 ms / 340 ms

virtues.fi 331 ms / 606 ms 300 ms / 529 ms 292 ms / 489 ms 244 ms / 453 ms 204 ms / 370 ms

mta.ac.il 411 ms / 714 ms 383 ms / 639 ms 372 ms / 592 ms 341 ms / 582 ms 289 ms / 469 ms

csg.uzh.ch 312 ms / 594 ms 283 ms / 511 ms 274 ms / 471 ms 219 ms / 423 ms 190 ms / 353 ms

diku.dk 307 ms / 583 ms 278 ms / 500 ms 270 ms / 460 ms 213 ms / 410 ms 186 ms / 342 ms

ple.silweb.pl 329 ms / 611 ms 299 ms / 534 ms 292 ms / 494 ms 241 ms / 453 ms 204 ms / 377 ms

eecs.qmul.ac.uk 299 ms / 565 ms 267 ms / 491 ms 259 ms / 447 ms 202 ms / 400 ms 176 ms / 333 ms

lkn.ei.tum.de 306 ms / 588 ms 276 ms / 503 ms 266 ms / 462 ms 208 ms / 416 ms 180 ms / 346 ms

fc.univie.ac.at 308 ms / 589 ms 278 ms / 505 ms 268 ms / 464 ms 214 ms / 415 ms 186 ms / 348 ms

dis.unina.it 345 ms / 623 ms 310 ms / 548 ms 306 ms / 517 ms 262 ms / 473 ms 234 ms / 419 ms

ifi.uio.no 322 ms / 600 ms 294 ms / 518 ms 284 ms / 478 ms 232 ms / 439 ms 199 ms / 365 ms

jcp-consult.net 348 ms / 632 ms 316 ms / 559 ms 305 ms / 507 ms 268 ms / 485 ms 222 ms / 398 ms

s3.kth.se 322 ms / 598 ms 298 ms / 526 ms 283 ms / 478 ms 240 ms / 447 ms 200 ms / 367 ms

iscte.pt 336 ms / 605 ms 304 ms / 529 ms 300 ms / 496 ms 254 ms / 463 ms 214 ms / 394 ms

ait.ac.th 539 ms / 815 ms 521 ms / 771 ms 505 ms / 707 ms 507 ms / 754 ms 444 ms / 604 ms

Average 339 ms / 617 ms 309 ms / 541 ms 300 ms / 499 ms 255 ms / 465 ms 218 ms / 385 ms

congestion delays (0.191). Although this result may appear
intuitive, we are the first to empirically show, not least be-
cause no tool for large-scale live Tor network measurements
existed before NavigaTor. In any case, this evidence for
a higher correlation between RTT and TTFB strengthens
our assumption that the Circuit-RTT method can be used to
improve end-to-end network latency in the Tor network.

7.3. Latency Evaluation

To test our hypothesis that Circuit-RTT can be used to
improve latency in the Tor network as experienced by users,
we explore the effect on TTFB of different acceptance rates
of circuits, using CBT, Circuit-RTT, and a combination of
both methods.

Since it seems reasonable and increases the comparabil-
ity of our results, we use 1000 values for the estimating the
parameters of the particular GEV distribution; this number
is currently also used for CBT in Tor. The timeout value is
updated every time a new measurement value is gathered;
either a circuit build-time, a RTT, or, in later experiments,
a congestion-delay. Algorithm 2 sketches that process.

We verified that only the particular timeout values vary
between PlanetLab hosts, but the overall percentage of
discarded circuits does not. Thus, we find the statistical
prediction to work well for both CBT and Circuit-RTT.

Results. Using the fastest 80% of circuits, the median TTFB
is reduced from 339 ms by 8.8% to 309 ms with CBT and
by 11.4% to 300 ms with Circuit-RTT. The 90th percentile
TTFB is reduced from 617 ms by 12.3% to 541 ms with
CBT and by 19.2% to 499 ms with Circuit-RTT. Reducing
the percentage of accepted circuits to 50%, the median
TTFB is improved by 24.9% to 255 ms with CBT and

Algorithm 2 Calculation of the timeout value

1: procedure CALCULATE TIMEOUT(values, new val)
2: timeout←∞
3: VALUES.APPEND(new val)
4: if length(values) ≥ 1000 then
5: params← ESTIMATE GEV PARAMS(values)
6: pdf ← CALCULATE GEV PDF(params)
7: timeout← CALC 80TH PERCENTILE(pdf )
8: DELETE(values[0])
9: end if

10: return timeout
11: end procedure

by 35.8% to 218 ms with Circuit-RTT. The 90th percentile
TTFB is reduced by 24.6% to 465 ms with CBT and by
37.6% to 385 ms with Circuit-RTT. Table 1 shows the
median and the 90th percentile TTFB for all circuits and
using the fastest 80% of circuits according to, respectively
the CBT and Circuit-RTT methods for all hosts.

As assumed, end-to-end network latency is improved
when the percentage of accepted circuits is reduced, accord-
ing to any of both methods. We find that Circuit-RTT has
more of an effect on the TTFB than CBT, for any accepted
percentage of circuits except very low ones, at which hardly
any circuit would be used anymore.

Fig. 4 on the next page depicts the CDFs of TTFB for all
circuits and for CBT and Circuit-RTT with the fastest 80%
and 50% of circuits respectively. It shows the performance
improvement of Circuit-RTT over CBT, especially when
reducing the percentage of accepted circuits.

Due to the sheer number of measurements, the differ-
ence in achieved TTFB with Circuit-RTT intuitively seems
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Figure 4. CDFs of TTFB for the fastest percentages of circuits.

significantly different to that achieved with CBT. To clearly
assess the significance, however, we use the non-parametric
Kruskal-Wallis test. The Kruskal-Wallis test does not as-
sume normality of the distribution for the sample pop-
ulations, as the one-way ANOVA does; it does assume,
however, that the populations have the same distribution,
which they do in our case. The lowest calculated value of
the Kruskal-Wallis test from all hosts (220.81) is greater
than the critical value for χ2 (68.76) and, thus, the TTFB
achieved with Circuit-RTT is significantly different to that
achieved with CBT.7 This difference can, therefore, not be
attributed to random influences, such as jitter.

Combination of CBT and Circuit-RTT. To explore
whether a combination of both methods could improve la-
tency further, we considered only circuits whose build-times
and RTTs were below the corresponding timeout values, and
then calculated the effective acceptance rate. We find that
Circuit-RTT improves the TTFB more than the combination
of both methods does. Hence, we focus on Circuit-RTT as
a replacement for CBT, instead of using it as an additional
method.

7.4. Anonymity Evaluation

To estimate the strength of protection that would be
achieved for end-users, we use normalized Shannon entropy
over the observed combinations of entry and exit nodes. We
additionally use the Gini coefficient to quantify the skew in
the selection of entry and exit nodes.

When using the fastest 80% of circuits, the Gini coef-
ficient is on average increased from 0.222 overall by 4.8%
to 0.232 with CBT and by 7.8% to 0.239 with Circuit-RTT.
We observe a slightly higher skew towards certain nodes
with Circuit-RTT than with CBT at the default acceptance
rate. This bias increases when reducing the acceptance rate.
Using the fastest 50% of circuits, the Gini coefficient is
increased by 16.8% to 0.259 with CBT and by 25.8% to
0.279 with Circuit-RTT.

7. For every host we get a p-value < 2.2e−16.

TABLE 2. NORMALIZED SHANNON ENTROPY

PlanetLab Site No opt. CBT 80% Circuit-RTT 80%

cs.uit.no 0.829 0.661 0.682

ece.upatras.gr 0.836 0.666 0.688

upf.edu 0.829 0.661 0.683

ait.ie 0.829 0.658 0.683

cs.vu.nl 0.834 0.659 0.691

virtues.fi 0.829 0.657 0.680

mta.ac.il 0.834 0.668 0.689

csg.uzh.ch 0.839 0.664 0.693

diku.dk 0.870 0.690 0.720

ple.silweb.pl 0.834 0.661 0.689

nrl.eecs.qmul.ac.uk 0.871 0.694 0.722

lkn.ei.tum.de 0.829 0.654 0.680

fc.univie.ac.at 0.829 0.653 0.681

dis.unina.it 0.861 0.683 0.722

ifi.uio.no 0.834 0.662 0.688

jcp-consult.net 0.849 0.694 0.712

s3.kth.se 0.829 0.659 0.683

iscte.pt 0.901 0.728 0.753

ait.ac.th 0.829 0.705 0.701

Average 0.842 0.672 0.697

The normalized Shannon entropy is decreased from
0.842 overall by 20.1% to 0.672 with CBT but only by
17.2% to 0.697 with Circuit-RTT when using the fastest
80% of circuits. Table 2 shows the normalized Shannon
entropy values for all circuits and using the fastest 80%
of circuits according to CBT and Circuit-RTT on all hosts.
Using the fastest 50% of circuits, normalized entropy is
decreased by 46.3% to 0.452 with CBT and by 48.2% to
0.436 with Circuit-RTT. Unlike the Gini coefficient, entropy
is slightly improved by Circuit-RTT compared to the values
for CBT at the default acceptance rate.

Comparing Circuit-RTT to CBT, we note a minor skew
in selecting certain nodes, but an improved selection prob-
ability over all combinations of entry and exit nodes at the
current default acceptance rate of 80%. When lowering the
acceptance rate, we observe that entropy varies only slightly
between the CBT and the Circuit-RTT method, but the Gini
coefficient increases in favor of CBT.

7.5. Throughput Evaluation

In addition to examining the effect the use of CBT or
Circuit-RTT have on latency and on anonymity, we study the
effect those methods have on achievable throughput, which
is also an important property for users. To this end, we
conducted another experiment on seven hosts from Planet-
Lab, in which each host built 100 000 circuits to measure
throughput.

Table 3 on the next page shows the median through-
put achieved on every host for all circuits and using the
fastest 80% of circuits according to CBT and Circuit-RTT.
When using the fastest 80% of circuits, median throughput
increases from 2.72 Mbit/s by 19.1% to 3.24 Mbit/s with
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TABLE 3. MEDIAN THROUGHPUT IN Mbit/s

CBT Circuit-RTT
PL Site No opt. 80% 50% 80% 50%

cs.uit.no 2.62 3.10 4.00 3.14 4.45

ece.upatras.gr 3.21 3.93 4.91 4.00 5.31

virtues.fi 2.88 3.49 4.70 3.58 5.29

csg.uzh.ch 3.21 3.92 5.69 3.98 6.34

lkn.ei.tum.de 3.13 3.88 5.77 3.94 6.32

s3.kth.se 2.71 3.07 3.61 3.11 3.80

ait.ac.th 1.28 1.31 1.40 1.32 1.39

Average 2.72 3.24 4.30 3.30 4.70

Figure 5. CDFs of throughput for all circuits and for CBT and Circuit-RTT
with the fastest 50% and 80% of circuits respectively.

CBT and by 21.1% to 3.30 Mbit/s with Circuit-RTT. The
90th percentile improves by 20.0% from 0.92 Mbit/s to
1.10 Mbit/s with CBT, and by 24.9% to 1.14 Mbit/s
with Circuit-RTT. Using the fastest 50% of circuits, median
throughput increases by 58.0% to 4.30 Mbit/s with CBT
and by 72.8% to 4.70 Mbit/s with Circuit-RTT.

Fig. 5 depicts the CDFs of throughput for all circuits and
for CBT and Circuit-RTT with the fastest 80% and 50%
of circuits respectively. It shows a slight improvement of
Circuit-RTT over CBT at the default acceptance rate of 80%
and a clear improvement when reducing the percentage of
accepted circuits to 50%.

7.6. Congestion-Aware Scheme

To compare the CBT and the Circuit-RTT methods to the
congestion-aware scheme in terms of latency, throughput,
and anonymity, we conducted another experiment. To that
end, we built 100 000 circuits on a single host and measured
the RTT of each circuit 5 times to deduce the nodes’ con-
gestion delays. We create sets of three (preemptively) built
circuits and select the circuit with the lowest congestion-
delay from each of these sets, assuming that this scheme
will improve performance significantly.

Results differ, however, as shown in Table 4; entropy
drops drastically by 67.9%, due to the low acceptance rate,

TABLE 4. COMPARISON OF CIRCUIT-RTT TO THE ORIGINAL AND THE
MODIFIED CONGESTION-AWARE SCHEMES.

Scheme TTFB in ms Throughput Entropy

No optimization 295 ±0% 4.51 ±0% 0.941 ±0%

Circuit-RTT 80% 251 -14.9% 5.08 +12.6% 0.776 -17.6%
Cong.-Aware orig 274 -7.1% 5.04 +11.6% 0.302 -67.9%
Cong.-Aware 33% 259 -12.2% 5.27 +16.9% 0.380 -59.6%

TABLE 5. LATENCY OVER TIME.

Scheme Average latency Standard deviation

No optimization 352 ms (±0%) 142 ms (±0%)
CBT 80% 315 ms (-10.6%) 128 ms (-9.5%)
Circuit-RTT 80% 307 ms (-12.9%) 127 ms (-10.4%)
Congestion-Aware 80% 339 ms (-3.9%) 125 ms (-11.9%)
CBT 50% 271 ms (-23.2%) 116 ms (-18.3%)
Circuit-RTT 50% 252 ms (-28.4%) 116 ms (-18.2%)
Congestion-Aware 50% 326 ms (-7.6%) 113 ms (-20.1%)

and median TTFB is improved only by 7.1%. In comparison,
Circuit-RTT achieves an improvement in TTFB of 14.9% at
the default acceptance rate so that entropy is reduced only
by 17.6%. Improvements in throughput by the congestion-
aware scheme are similar to those by Circuit-RTT, but,
considering the drastically reduced entropy, the congestion-
aware scheme is clearly outperformed, nevertheless.

The discrepancy between our results and those of pre-
vious research can be explained as follows: Wang et al. [8]
conducted their measurements on the live Tor network when
the token bucket refill intervall still was at 1000 ms instead
of 100 ms and, thus, delays due to congestion were sig-
nificantly larger. We think that this is the reason for us to
observe very similar median congestion delays (4 to 5 ms
vs. 3 to 5 ms), but a 90th percentile (37 to 46 ms) which is
clearly below that observed by the congestion-aware authors
(>800 ms). Additionally, it may be the case that nodes
are not that congested anymore for various reasons. Wacek
et al. [20] ran their simulations also on a Tor version with
refill interval of 1000 ms.

As shown previously in the beginning of this section,
we found that congestion delays, too, can be approximated
by a GEV distribution. We find that using this approxima-
tion to select the fastest percentage of circuits according
to their congestion delays achieves better results than the
original congestion-aware scheme, in which one out of
three preemptively built circuits is selected. As shown in
Table 4, the modified congestion-aware scheme using the
fastest 33% of circuits achieves better improvements in
TTFB and throughput, but sacrifices less entropy than the
original congestion-aware scheme. We, therefore, stick to
the modified congestion-aware scheme for detailed compar-
ison.
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7.7. Latency over Time

In this last experiment, we evaluate the influence of
the CBT, the Circuit-RTT, and the (modified) congestion-
aware schemes also on latency over time. To this end, we
additionally measured the TTFB 600 times over a duration
of about 10 minutes on each circuit, equivalent to the default
lifetime of a circuit in Tor. At the default acceptance rate
of 80%, Circuit-RTT improves the average latency most (by
12.9% from 352 to 307 ms), compared to CBT (by 10.6%
to 315 ms) and the modified congestion-aware scheme (by
3.9% to 339 ms). Although the gap is smaller, Circuit-
RTT also improves throughput more than the other schemes.
The standard deviation of latency, however, is least for the
congestion-aware scheme. When reducing the percentage of
accepted circuits to 50%, all schemes show improvements
but the gap between them widens, showing that Circuit-
RTT works best for discarding slow circuits. Table 5 on the
previous page lists the results in detail.

8. Discussion

As shown, our Circuit-RTT scheme can be used to im-
prove latency and throughput of Tor circuits. In this section
we will briefly discuss the limitations of our approach as
well as future work.

Latency Attacks. Geddes, Jansen, and Hopper [33] have
found that algorithms which improve throughput or respon-
siveness of circuits also increase the effectiveness of latency-
based attacks; especially those attacks either attempting
to identify possible Guards nodes or trying to reduce the
set of possible clients. Thus, we concede that the latency
improvements resulting from the use of Circuit-RTT would
also increase the effectiveness of latency-based attacks, but
this issue is inherent to any method that improves latency.

Simulation. Since we conducted experiments on the live
Tor network, using at most 19 clients concurrently, we
cannot predict with certainty the changes the network would
undergo if Tor adopted Circuit-RTT and every client were
to use it. Nevertheless, we maintain that clients picking
better-performance circuits would not cause the overall per-
formance to decrease but that the gain would actually be
seen by all users, because Circuit-RTT allows clients to react
quickly to changing conditions by assessing the performance
of a circuit prior use. In this way, slow circuits can be
discarded before they have a negative impact on user ex-
perience. However, to come to any definitive conclusion on
the entire Tor population of users, whole-network simulation
with ExperimenTor [34] or with Shadow [35] would be
required.

Network Adversaries. Previous research has shown that
adversaries which are able to observe Autonomous Systems
(ASs) or Internet eXchange Points (IXPs) pose a threat
to users’ anonymity. [36, 37, 38, 39, 28] Unfortunately,
the classic entropy model we used to quantify anonymity
does not cover this type of network adversaries. A path

selection algorithm that aims to protect against one type of
network adversary can potentially weaken defenses against
other threats. It becomes even more complicated when the
country or AS of both the client and the final destination
are to be considered as well. This is still an area of ongoing
research.

Improving Quality of Service. Although not generally
applicable due to the increased load on the network, ex-
tensive measurements might allow increasing quality of
service properties with regard to latency and throughput.
This improved quality of service could facilitate the use of
certain applications such as VoIP.

When conducting the experiment involving numerous
RTT measurements on individual circuits, we occasionally
encountered spikes at 100 ms and 1000 ms intervals. Since
these values correspond to the token bucket refill intervals,
it is a strong indication that one or more nodes in the circuit
is being asked to forward more traffic than it can handle.
For this reason, we assume that RTT measurements can be
used to detect circuits containing nodes which are impeded
by their bandwidth limiter.

9. Conclusion

One of the most important goals of Tor’s design is to
provide a low-latency and high-throughput transport service
that supports latency-sensitive applications, such as web
browsers, which currently make up the vast majority of
connections in the Tor network. However, users still expe-
rience variable delays on connecting to servers which has
been shown to be especially harmful for browsing the web.
Since the queuing and processing delays within many nodes
fluctuate dramatically over time, it is vital that clients can
react quickly to changing conditions.

The basic idea of our Circuit-RTT approach is that
clients create a local view of observed RTTs by actively
measuring the circuits’ RTTs. After a circuit has been es-
tablished, the client measures the circuit’s RTT and discards
that circuit if its RTT is above a client-specific, variable
timeout value, which is calculated using a priori knowledge
about the statistical distribution of RTTs. RTT measurements
are very lightweight, since they require only a single cell to
be sent from the client to the exit node and back. Hence,
the additional load on the Tor network can be assumed to
be very small.

We were the first to conduct large-scale measurements
on the live Tor network. To this end, we used our high
performance measurement software NavigaTor [22], which
enables building and measuring millions of circuits within
days, without stressing the Tor network. As part of our
study, we conducted several experiments on the live Tor
network and analyzed the influence of the current state-of-
the-art method CBT, the more recently proposed congestion-
aware scheme, and our Circuit-RTT method on the quality of
circuits with regard to latency, throughput, and anonymity.
Clearly, we observed a significantly stronger correlation
with end-to-end network latency using RTTs than using
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build-times or using congestion delays. Furthermore, we
discovered that the congestion-aware scheme in its original
design achieves only minor performance improvements in
the current Tor network and drastically reduces entropy. For
the purpose of comparing CBT to the Circuit-RTT method,
we deployed NavigaTor on several hosts from PlanetLab,
which allows us to infer that our measurement results hold
independently of the client’s location. We studied the trade-
off between the quality of protection and the quality of
service, showing that anonymity is decreased using these
schemes, but that both latency and throughput are improved
significantly. Our measurements show that, with the current
default acceptance rate of 80%, the use of the Circuit-RTT
method achieves improvements in latency and throughput
compared both to the current state-of-the-art method CBT
and to the more recently proposed congestion-aware scheme.
Decreasing the accepted percentage rate clearly improves
latency and throughput further, but with adverse effects on
anonymity.

In conclusion, we emphasize that keeping the perfor-
mance costs associated with an anonymity system as low
as possible makes it more attractive to users and, thus,
ultimately enhances the system’s anonymity properties.
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