
Information and Software Technology 56 (2014) 1289–1308
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Model-driven specification and enforcement of RBAC break-glass
policies for process-aware information systems
http://dx.doi.org/10.1016/j.infsof.2014.04.010
0950-5849/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: Competence Center for IT-Security, University of
Applied Sciences Campus Vienna, Austria. Tel.: +43 1 606 68 77 2134.

E-mail addresses: sigrid.schefer-wenzl@fh-campuswien.ac.at (S. Schefer-Wenzl),
mark.strembeck@wu.ac.at (M. Strembeck).
Sigrid Schefer-Wenzl a,b,⇑, Mark Strembeck b,⇑
a Competence Center for IT-Security, University of Applied Sciences Campus Vienna, Austria
b Institute for Information Systems and New Media, WU Vienna, Austria

a r t i c l e i n f o
Article history:
Received 11 April 2013
Received in revised form 10 February 2014
Accepted 7 April 2014
Available online 18 April 2014

Keywords:
Access control
Business process modeling
Model-driven development
UML
a b s t r a c t

Context: In many organizational environments critical tasks exist which – in exceptional cases such as an
emergency – must be performed by a subject although he/she is usually not authorized to perform these
tasks. Break-glass policies have been introduced as a sophisticated exception handling mechanism to
resolve such situations. They enable certain subjects to break or override the standard access control
policies of an information system in a controlled manner.
Objective: In the context of business process modeling a number of approaches exist that allow for the
formal specification and modeling of process-related access control concepts. However, corresponding
support for break-glass policies is still missing. In this paper, we aim at specifying a break-glass extension
for process-related role-based access control (RBAC) models.
Method: We use model-driven development (MDD) techniques to provide an integrated, tool-supported
approach for the definition and enforcement of break-glass policies in process-aware information
systems. In particular, we provide modeling support on the computation independent model (CIM) layer
as well as on the platform independent model (PIM) and platform specific model (PSM) layers.
Results: Our approach is generic in the sense that it can be used to extend process-aware information
systems or process modeling languages with support for process-related RBAC and corresponding
break-glass policies. Based on the formal CIM layer metamodel, we present a UML extension on the
PIM layer that allows for the integrated modeling of processes and process-related break-glass policies
via extended UML Activity diagrams. We evaluated our approach in a case study on real-world processes.
Moreover, we implemented our approach at the PSM layer as an extension to the BusinessActivity library
and runtime engine.
Conclusion: Our integrated modeling approach for process-related break-glass policies allows for specify-
ing break-glass rules in process-aware information systems.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Process-aware information systems (PAIS) can be configured via
process models that define all expected execution paths for each
business process (see, e.g., [65]). Corresponding access control pol-
icies specify which subjects are authorized to perform the tasks
that are included in the business processes (see, e.g.,
[58,60,64,67]). While this approach is well suited for process
instances that conform to one of the expected execution scenarios,
we encounter problems when dealing with exceptional situations,
e.g., when no authorized subject is available to execute a particular
task in case of emergency (see, e.g., [45,69]). Exception Handling
refers to actions that are executed when deviations appear
between what is planned and what is actually happening (see,
e.g., [15,16,40,65]).
1.1. Motivation

In recent years, role-based access control (RBAC) [22,38] has
developed into a de facto standard for access control in both,
research and industry. In RBAC, roles correspond to different job-
positions and scopes of duty within a particular organization or
information system [58]. Access permissions are assigned to roles
according to the tasks this role has to accomplish, and subjects
(e.g., human users) are assigned to roles according to their work

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.04.010&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.04.010
mailto:sigrid.schefer-wenzl@fh-campuswien.ac.at
mailto:mark.strembeck@wu.ac.at
http://dx.doi.org/10.1016/j.infsof.2014.04.010
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

1290 S. Schefer-Wenzl, M. Strembeck / Information and Software Technology 56 (2014) 1289–1308
profiles. Thereby, each subject acquires all permissions that are
necessary to fulfill its duties. Several extensions for RBAC exist
for different application domains. In a business process context,
RBAC has been extended to consider access permissions for tasks
included in a business process (see, e.g., [25,32,60,64,67]).

In many organizational environments some critical tasks exist
which – in exceptional cases – must be performed by a subject
although he/she is usually not authorized to perform these tasks.
For example, if a deadline is about to expire and the senior-lawyer
is not available, a junior lawyer may be authorized to submit a
written objection to the court in order to avoid damage to the com-
pany. In case of emergency, machine operators are authorized to
switch production machines into an emergency state to ensure
safety for personnel and machinery. In a hospital context, a
junior-physician shall be able to perform certain tasks of a
senior-physician in case of emergency. Accordingly, a PAIS has to
provide mechanisms that help to coordinate exception handling
activities.

Break-glass policies have been introduced as a sophisticated
exception-handling mechanism. They supplement ordinary access
control policies in order to allow the controlled overriding of access
rights (see, e.g., [4,12,13,24,28,41]). Break-glass (the term is a met-
aphor relating to the act of breaking the glass to pull a fire alarm)
refers to the possibility for a subject who is not authorized to exe-
cute a task to gain authorization for this task in exceptional cases.
Therefore, subjects should only make use of break-glass policies if
a regular task execution is not possible (e.g., no authorized subject
is available). If a break-glass policy is triggered, the resulting task
executions must be carefully recorded for later audit and review.
Typically, a special review process is triggered to monitor such
break-glass executions.

To effectively enforce processes and related break-glass defini-
tions in PAIS, we need to integrate the different concepts into a
consolidated modeling approach. Although a number of sophisti-
cated approaches exist that allow for the formal specification and
analysis of process-related access control policies and constraints
(see, e.g., [8,42,71]), corresponding modeling support for process-
related break-glass policies is largely missing. In this paper, we
integrate the notion of break-glass policies into a business process
context and thereby support the exception handling of access
control policies in PAIS.

1.2. Approach synopsis

We apply model-driven development (MDD) techniques (see,
e.g., [54–56]) to support the integrated modeling and execution
of break-glass policies and business processes. In MDD, domain-
specific languages (DSLs) can be defined that provide domain
abstractions as first-class language elements (see, e.g., [29,62]).
Business Proce
(including break-gla

Domain-specifi
(including process-
 break-glass RBAC

Executable Mo
(runtime structures

<?xml version="1.0" encoding="UTF-8">
<definitions

 xmlns="http://sche"
 xmlns:corr="http://www.m"

 xmlns:plnk="http://schem""])
 xmlns:soap="http://sc"

 xmlns:this="http://www.mdd4s"
 xmlns:types="http://www.mdd4"

 xmlns:xs="http://www.w3\"])
 name="applicant"

 targetNamespace="http://ww">
</definitions><?xml version="1.0" encoding="UTF-8">

<definitions
 xmlns="http://sche"

 xmlns:corr="http://www.m"
 xmlns:plnk="http://schem""])

 xmlns:soap="http://sc"
 xmlns:this="http://www.mdd4s"

 xmlns:types="http://www.mdd4"
 xmlns:xs="http://www.w3\"])

 name="applicant"
 targetNamespace="http://ww">

</definitions>

<?xml version="1.0" encoding="UTF-8">
<definitions

 xmlns="http://sche"
 xmlns:corr="http://www.m"

 xmlns:plnk="http://schem""])
 xmlns:soap="http://sc"

 xmlns:this="http://www.mdd4s"
 xmlns:types="http://www.mdd4"

 xmlns:xs="http://www.w3\"])
 name="applicant"

 targetNamespace="http://ww">
</definitions>

<?xml version="1.0" encoding="UTF-8">
<definitions

 xmlns="http://sche"
 xmlns:corr="http://www.m"

 xmlns:plnk="http://schem""])
 xmlns:soap="http://sc"

 xmlns:this="http://www.mdd4s"
 xmlns:types="http://www.mdd4"

 xmlns:xs="http://www.w3\"])
 name="applicant"

 targetNamespace="http://ww">
</definitions>

<?xml version="1.0" encoding="UTF-8">
<definitions

 xmlns="http://sche"
 xmlns:corr="http://www.m"

 xmlns:plnk="http://schem""])
 xmlns:soap="http://sc"

 xmlns:this="http://www.mdd4s"
 xmlns:types="http://www.mdd4"

 xmlns:xs="http://www.w3\"])
 name="applicant"

 targetNamespace="http://ww">
</definitions>

<?xml version="1.0" encoding="UTF-8">
<definitions

 xmlns="http://sche"
 xmlns:corr="http://www.m"

 xmlns:plnk="http://schem""])
 xmlns:soap="http://sc"

 xmlns:this="http://www.mdd4s"
 xmlns:types="http://www.mdd4"

 xmlns:xs="http://www.w3\"])
 name="applicant"

 targetNamespace="http://ww">
</definitions>

Check credit
worthiness

Credit
application [else]

Credit application process

Credit
application

Check
application form

[Check passed]

[else]

Reject
application

Contract

Contract
Negotiate contract

Approve contract

[approved]

BA

DME: Approve contract
SBind: Check credit

 worthiness DME: Negotiate contract

B
B B[Form Ok]

[else]

SBind: Negotiate
 contract

Task: Check credit worthiness, Negotiate contract, Approve credit application

RBankClerk
«rrAssign»J

RBankManager
Task: Define credit policy

Tr
an

sf
or

m
at

io
n

Sp
ec

ifi
ca

tio
n

Fig. 1. Model-driven dev
A DSL can either be a standalone language or it is embedded into
a host language to extend it with domain-specific language
abstractions. The aim of this paper is to provide domain-specific
modeling support for the model-driven specification of process-
related break-glass policies at the business process modeling-level
(see Fig. 1).

In the MDD context, a computation-independent model (CIM)
defines a certain domain (or subdomain) at a generic level. The
CIM is independent of a particular modeling language or technol-
ogy. A CIM can be used to build a platform-independent model
(PIM) of the corresponding domain. While it is independent of
any platform, and thereby neutral from an implementation point
of view, the PIM is typically specified in a particular modeling lan-
guage (for example via MOF-based languages such as BPMN or
UML [33,35,36]) and describes the structure of a system, the ele-
ments/results that are produced by a system, or the control and
object flow in a system. Finally, a platform-specific model (PSM)
describes the realization/implementation of a software system
via platform-specific technologies and tools. The intention for
choosing a model-driven approach is to separate the business/
application logic from the underlying platform technology (see,
e.g., [54–56]).

The main contribution of this paper is an integrated approach
for the specification and enforcement of break-glass policies in
process-related RBAC models. Our integrated modeling approach
for process-related break-glass policies and corresponding busi-
ness processes serves as an enabler to document and communicate
which break-glass policies can be applied when executing a certain
process in case of emergency. To achieve this, we extend our pre-
vious contributions from [50,52]: Our approach is based on a meta-
model which formally integrates the core elements of process
models and break-glass policies at the CIM layer. This metamodel
was presented in [52]. In addition, we introduced modeling sup-
port at the PIM layer for process-related break-glass RBAC models
in [50] via extended UML2 Activity diagrams. In this paper, we con-
solidate the results from [50,52] and present the following novel
contributions:

� We define the dynamic semantics of our metamodel at the CIM
layer via a set of generic algorithms and procedures, which
check and ensure the runtime consistency of our extended pro-
cess models. These algorithms are independent of a particular
programming language and/or software platform and can be
used to implement consistency checks for our formal
metamodel.
� We implemented a break-glass extension to the Business Activ-

ity Library and Runtime engine (see [59,60]) to provide support
for platform specific models (PSM). All concepts introduced at
the CIM and PIM layers can be seamlessly mapped to the
sses
ss policies)

c Models
related
 models)

dels
)

Computation-independent model (CIM)
Process-Related Break-Glass RBAC Models

Platform-independent model (PIM)
BusinessActivities UML extension

Platform-specific model (PSM)
BusinessActivities Library and Runtime engine

elopment approach.

S. Schefer-Wenzl, M. Strembeck / Information and Software Technology 56 (2014) 1289–1308 1291
corresponding runtime models that are managed with our
software platform. The source code of the Business Activity
Library and Runtime Engine is available for download from [1].
� Moreover, we report on the findings of a case study that we

conducted to evaluate the applicability of our approach on
real-world processes.

The remainder of this paper is structured as follows. Section 2
gives an overview of process-related RBAC models and introduces
a motivating example for integrating break-glass policies into busi-
ness processes. Section 3 presents our formal CIM layer metamodel
for break-glass RBAC models in business processes. Subsequently,
Section 4 introduces our extension for modeling break-glass mod-
els at the PIM layer via extended UML2 Activity diagrams. More-
over, we formally define the semantics of our newly introduced
modeling elements via OCL constraints. Section 5 presents the
results from a case study demonstrating the practical applicability
of our approach for real-world business processes. Furthermore,
Section 6 gives an overview of our extended software platform to
manage process-related break-glass RBAC models at the PSM layer.
Section 7 discusses related work and illustrates how our approach
can be used to specify tailored break-glass policies for certain
application domains. Section 8 concludes the paper.
2. Background

In this Section, we will first give an overview of process-related
RBAC models introduced in [60]. Subsequently, we will present a
motivating example for integrating break-glass policies into the
generic metamodel from [60].
2.1. Process-related RBAC models

Each task in a process (e.g., to edit a patient record) is typically
associated with certain access permissions (e.g., to read and write
the patient record). Therefore, subjects participating in a workflow,
i.e. human users or software-agents, must be authorized to per-
form the tasks needed to complete the process (see, e.g., [25,32]).
In RBAC, a role is an abstraction containing the tasks of a certain
subject-type (see, e.g., [57,67]).

In addition, RBAC supports the definition of different types of
entailment constraints. A task-based entailment constraint places
some restriction on the subjects who can perform a taskx given that
a certain subject s1 has performed tasky. Thus, task-based entail-
ment constraints have an impact on the combination of subjects
and roles who are allowed to execute particular tasks (see, e.g.,
[19,44,49,59,60,63,68,72]). Examples of entailment constraints
include static mutual exclusion (SME), dynamic mutual exclusion
(DME), subject-binding (SB), and role-binding (RB) constraints. A
SME constraint defines that two statically mutual exclusive tasks
must never be assigned to the same subject. In turn, DME tasks
can be assigned to the same role, but within the same process
instance they must be executed by different subjects. A SB constraint
defines that two bound tasks must be performed by the same
Fig. 2. Simplified medical
individual within the same process instance. A RB constraint
defines that bound tasks must be performed by members of the
same role, but not necessarily by the same individual.

Moreover, in an IT-supported workflow, context constraints can
be defined as a means to consider context information in access
control decisions (see, e.g. [7,61]). Typical examples for context
constraints in organizational settings regard the temporal or spa-
tial context of task execution, user-specifc attributes, or the task
execution history of a user (see, e.g., [20]). RBAC supports the def-
inition of context constraints on various parts of an RBAC model
(see, e.g., [25,61,68]). In this paper, a context constraint is a mod-
eling level concept to support conditional task execution. In partic-
ular, context constraints define that certain contextual attributes
must meet certain predefined conditions to permit the execution
of a specific task (see [61]).

In [60], we present the BusinessActivities framework which
presents an approach for the model-driven specification of pro-
cess-related RBAC models. Several extensions to this framework
exist, considering, for example, context constraints [51], process-
related duties/obligations [46], secure object flows [26], or the del-
egation of roles, tasks, and duties [47,53]. The approach presented
in this paper further extends the BusinessActivities framework
with support for process-related break-glass policies.

2.2. A motivating example

For visualizing process-related RBAC models including mutual-
exclusion, binding, and context constraints we use the BusinessAc-
tivities UML extension presented in (see [51,60]). Fig. 2 shows a
simplified medical examination process (modeled as a BusinessAc-
tivity) which will serve as a running example in this paper. The
process from Fig. 2 starts when a patient arrives at the hospital.
Subsequently, the ‘‘Medical examination’’ task (t1) is conducted
to reach a medical diagnosis. Next, the ‘‘Determine treatment
options’’ task (t2) is executed to devise an appropriate treatment
plan. This treatment plan has to be confirmed by a second
physician (t3). In case the treatment plan includes errors or is
incomplete, it must be revised before it is resubmitted for confir-
mation. Finally, the ‘‘Medical treatment’’ task (t4) is performed.

In the example, we define a subject-binding between the tasks
t1 and t2 to ensure that the same physician who performed the
examination in the ‘‘Medical examination’’ task also evaluates
appropriate medical treatment options. This subject-binding is
indicated via SBind entries in the corresponding task symbols
(see Fig. 2). Furthermore, we define a dynamic mutual exclusion
(DME) constraint on the tasks t2 and t3 to enforce the four-eyes-
principle on medical treatment decisions. DME tasks can be
assigned to the same role but must not be allocated to the same
individual in the same process instance (see, e.g., [9,59,63]). Thus,
for each medical examination the ‘‘Determine treatment options’’
and the ‘‘Confirm treatment’’ tasks must always be conducted by
two different individuals. This is an essential quality and safety
measure in hospitals to guard against mistakes and malpractice.
Moreover, a context constraint (CC) is defined on t3 which specifies
examination process.

Fig. 3. Example RBAC and break-glass assignments.

Fig. 4. Example review process.

1292 S. Schefer-Wenzl, M. Strembeck / Information and Software Technology 56 (2014) 1289–1308
several conditions that must be met in order to successfully con-
firm a treatment plan.

Fig. 3a shows the roles and subjects assigned to the tasks of the
medical examination process from Fig. 2. Members of the junior
physician role rj are permitted to perform the tasks t1 (‘‘Medical
examination’’), t2 (‘‘Determine treatment options’’), and t4 (‘‘Medi-
cal treatment’’). Task t3 (‘‘Confirm treatment’’) can only be per-
formed by subjects assigned to the senior physician role rs. This
RBAC configuration also is consistent with all entailment con-
straints defined on the tasks in the medical examination process.

Let us consider three potential emergency scenarios for the med-
ical examination process. Without introducing certain exception
handling mechanisms, they would lead to a critical delay during
process execution.

(1) In a case of medical emergency, no senior-physician is avail-
able. However, because only members of rs are allowed to
perform t3, the start of the medical treatment task (t4) is
delayed.

(2) In an emergency situation, only a senior-physician is avail-
able. However, the two DME tasks t2 and t3 must be exe-
cuted by different subjects. Again, the start of t3 and of all
subsequent tasks is delayed until a (second) authorized sub-
ject is available to perform t3.

(3) The context constraint defined on task t3 cannot be fulfilled
in an emergency case. Yet, if the physician assesses the treat-
ment plan as appropriate for this particular emergency case,
he needs to be able to override this context constraint in
order to proceed with the next task.

Break-glass policies can be used to resolve the above emergency
scenarios:

(1) To be able to start the medical treatment (t4), we can define
a break-glass policy for members of rj which authorizes
junior-physicians to perform t3 in a case of medical emer-
gency (see Fig. 3b).

(2) A break-glass policy authorizes physicians to override DME
constraints in the event of an emergency.
(3) A break-glass policy authorizes physicians to override con-
text constraints in emergency situations.

Note that all override actions need to be recorded for later
reviews. A review process is triggered each time after a break-glass
override is registered. An example review process for the medical
examination process is shown in Fig. 4. In particular, a physician
(who was not involved in the medical examination process) is
appointed to perform the following tasks: After checking the over-
ride alerts for a particular process, the physician checks the medi-
cal examination results and validates the medical treatment plan.
If the treatment plan is successfully validated, the override alerts
are closed. Otherwise, an investigation process is started (see
Fig. 4).
3. Process-related break-glass policies

To support the definition of break-glass policies in a business
process context, we formally embed them into our generic CIM
layer metamodel for process-related RBAC models [60]. In particu-
lar, we specify that certain breakable tasks can be performed by
subjects who are usually not allowed to execute these tasks. Note
that specifying explicit DENY policies in our model is not possible.
Thus, tasks have to be defined as being breakable in order to be able
to apply a break-glass override rule. For this purpose, override
rules regulate that members of a certain role are permitted to per-
form a certain task in an exceptional case (breakable-by-role over-
ride). In addition to role-based break-glass rules, our approach
enables the definition of subject-specific break-glass rules, i.e. only
a certain subject is authorized to execute a task in an exceptional
case (breakable-by-subject override). Breakable-by-subject override
rules are used in cases where only certain members of a role have
all necessary competencies to perform the breakable task. The
most prominent example of an exceptional case that requires the
use of a break-glass privilege is probably an emergency that
demands an immediate action in order to prevent harm to people
or to an organization. However, in our approach the use of a break-
glass privilege is not restricted by some external state (such as an

S. Schefer-Wenzl, M. Strembeck / Information and Software Technology 56 (2014) 1289–1308 1293
‘‘emergency’’). Every subject who owns a break-glass privilege is
free to use this privilege whenever it seems suitable. To prevent
misuse of break-glass privileges, each break-glass execution will
be recorded and subsequently be monitored via a corresponding
review process.

We also implemented the extended metamodel presented in
Section 3 as well as the corresponding consistency checks and
algorithms provided in Appendix A as a break-glass extension to
the BusinessActivity library and runtime engine (available for
download at [1]).

The subsequent definitions provide a generic framework for
integrating break-glass policies into a business process context.
For the purposes of this paper, Definition 1 repeats some of the def-
initions for process-related RBAC models (for details see [51,60]).
New definitions for process-related break-glass RBAC models are
introduced in Definitions 2–5.

Definition 1 (Process-related RBAC model). Let S be a set of
subjects, R a set of roles, PT a set of process types, PI a set of
process instances, TT a set of task types, TI a set of task instances,
and CC a set of context constraints. A Process-Related RBAC Model
PRM ¼ ðE;Q ;DÞ where E ¼ S [R [PT [PI [TT [TI refers to pair-
wise disjoint sets of the model, Q ¼ rsa [tra [ptd [pi [ti [es [er
[ar to mappings that establish relationships, and D ¼ sme [dme
[sb [rb [linkedCC[fulfilledCC to mutual exclusion, binding, and
context constraints. For the partial mappings of the meta-model
(P refers to the power set):

1. The mapping rh : R # PðRÞ is called role hierarchy. For
rhðrsÞ ¼ Rj, we call rs senior role and Rj the set of direct junior
roles. The transitive closure rh� defines the inheritance in the
role-hierarchy such that rh�ðrsÞ ¼ Rj� includes all direct and
transitive junior-roles that the senior-role rs inherits from.
The role-hierarchy is cycle-free, i.e. for each r 2 R : rh�ðrÞ\
frg ¼ ;.

2. The mapping rsa : S # PðRÞ is called role-to-subject assign-
ment. For rsaðsÞ ¼ Rs, we call s 2 S subject and Rs # R the set
of roles assigned to this subject (the set of roles owned by s).

3. The mapping rown : S # PðRÞ is called role ownership and
returns all direct and inherited roles for a subject. The map-
ping rown�1 : R # PðSÞ determines all subjects owning a par-
ticular role, directly or transitively via the role-hierarchy.

4. The mapping tra : R # PðTTÞ is called task-to-role assign-
ment. For traðrÞ ¼ Tr , we call r 2 R role and Tr # TT is called
the set of tasks assigned to r.

5. The mapping town : R # PðTTÞ is called task ownership and
returns all tasks for a role. The mapping town�1 : TT # PðRÞ
determines the set of roles a particular task is assigned to,
directly or transitively via the role-hierarchy.

6. The mapping ptd : PT # PðTTÞ is called process type defini-
tion. For ptdðpTÞ ¼ TpT

, we call pT 2 PT process type and
TpT

TT the set of task types associated with pT .
7. The mapping pi : PT # PðPIÞ is called process instantiation.

For piðpTÞ ¼ Pi, we call pT 2 PT process type and Pi # PI the
set of process instances instantiated from process type pT .

8. The mapping ti : ðTT � PIÞ# PðTIÞ is called task instantia-
tion. For tiðtT ; pIÞ ¼ Ti, we call Ti # TI set of task instances,
tT 2 TT is called task type and pI 2 PI is called process
instance.

9. The mapping es : TI # S is called executing-subject map-
ping. For esðtÞ ¼ s, we call s 2 S the executing-subject and
t 2 TI is called the executed task instance.

10. The mapping er : TI # R is called executing-role mapping.
For erðtÞ ¼ r, we call r 2 R the executing-role and t 2 TI is
called the executed task instance.
11. The mapping ar : S # R is called active role mapping. For
arðsÞ ¼ r, we call s the subject and r the active-role of s.

12. The mapping sb : TT # PðTTÞ is called subject-binding. For
sbðt1Þ ¼ Tsb, we call t1 the subject-binding task and Tsb # TT

the set of subject-bound tasks.
13. The mapping rb : TT # PðTTÞ is called role-binding. For

rbðt1Þ ¼ Trb, we call t1 the role-binding task and Trb # TT

the set of role-bound tasks.
14. The mapping sme : TT # PðTTÞ is called static mutual exclu-

sion. For smeðt1Þ ¼ Tsme with Tsme # TT , we call each pair t1

and tx 2 Tsme statically mutual exclusive tasks.
15. The mapping dme : TT # PðTTÞ is called dynamic mutual

exclusion. For dmeðt1Þ ¼ Tdme with Tdme # TT , we call each
pair t1 and tx 2 Tdme dynamically mutual exclusive tasks.

16. The mapping linkedCC : TT # PðCCÞ is called context con-
straint to task linkage. For linkedCCðtÞ ¼ CCT , we call t 2 TT

constrained task and CCT # CC the set of context constraints
linked to this task.

17. The mapping fulfilledCC : CC # BOOLEAN is called context
constraint fulfillment. For fulfilledCCðccÞ ¼ boolean, we call
cc 2 CC context constraint. The mapping follows a two-val-
ued logic returning exactly one truth value (true or false).
Thus, the fulfilledCC mapping returns true iff all conditions
linked to the context constraint are true.

The subsequent definitions provide an extension to the meta-
model for process-related RBAC models defined in [60]. Definition 2
first specifies the new elements for process-related break-glass RBAC
models.

Definition 2 (Process-related break-glass RBAC model). Let
PRBGM = (E,Q,D,BG) be a Process-Related Break-Glass RBAC Model
as specified in Definition 1. Below, we define the additional
mappings for break-glass policies BG (P refers to the power set):

1. To define which role is authorized to perform a certain task,
task types are assigned to roles via task-to-role assignments
(see Definition 1.4). In addition, breakable tasks that are
assigned to roles can be executed in a break-glass scenario.
For example, in the medical examination process from
Fig. 2, task t3 can usually only be performed by members
of role rs. A break-glass policy can extend this configuration
by defining that in case of emergency, members of role rj are
also authorized to execute t3 (see Fig. 3b):
The mapping bbr : R # PðTTÞ is called breakable-by-role
override. For bbrðrÞ ¼ Tb, we call r 2 R role and Tb # TT is
called the set of breakable tasks assigned to r. The mapping
bbr�1

: TT # PðRÞ returns all roles a particular task is
assigned to via the bbr-mapping.

2. The breakable-by-role override mapping demands a map-
ping to determine all breakable tasks that are assigned to
a particular role. Thus, for a particular role rs this mapping
not only returns all breakable tasks which are directly
assigned to rs but also those breakable tasks which are
assigned to junior roles of rs (and thus are also breakable
by members of rs):
The mapping btown : R # PðTTÞ is called break-glass task
ownership. For each r 2 R, the tasks inherited from its
junior-roles are included, i.e. btownðrÞ ¼

S
rinh2rh�ðrÞbbrðrinhÞ

[bbrðrÞ.
The mapping btown�1

: TT # PðRÞ determines the set of
roles a task is assigned to via a break-glass override assign-
ment (directly or transitively via a role hierarchy). The
btown mapping complements the task ownership mapping
(town) from Definition 1.5.

1294 S. Schefer-Wenzl, M. Strembeck / Information and Software Technology 56 (2014) 1289–1308
3. Breakable tasks can also be directly assigned to subjects. For
example, instead of defining the break-glass override on t3

for all members of rj in the medical examination process
(see Figs. 2 and 3) we can define that only s1 is allowed to
execute t3 in a break-glass scenario. This might be reason-
able if only s1 has all necessary skills to perform t3:
The mapping bbs : S # PðTTÞ is called breakable-by-subject
override. For bbsðsÞ ¼ Tb, we call s 2 S subject and Tb 2 TT is
the set of breakable tasks assigned to s. The mapping
bbs�1

: TT # PðSÞ returns all subjects assigned to a particular
breakable task via the bbs-mapping.

4. A certain task instance is said to be ‘‘broken’’ if it is executed
by a subject via a break-glass override assignment. Thus, if
task t3 from Figs. 2 and 3 is executed by a member of the
junior physician role rj in a particular process, this instance
of t3 is marked as broken:
The mapping brokenTI : TI # BOOLEAN is called broken task
instance mapping. For brokenTI ðtbÞ ¼ boolean, we call tb 2 TI

task instance with tb 2 tiðtT ; pxÞ. The mapping follows a two-
valued logic returning exactly one truth value (true or
false): brokenðtbÞ ¼ true if esðtbÞ 2 bbs�1ðtTÞ _ esðtbÞ 2
rown�1ðrÞ with tt 2 bbrðrÞ.

5. A certain process instance is said to be ‘‘broken’’ if it
includes at least one broken task instance (see Definition
2.4). For example, if subject s1 executes t3 using a break-
glass override (see Figs. 2 and 3), the corresponding process
instance is said to be broken:
The mapping brokenPI : PI # BOOLEAN is called broken pro-
cess instance mapping. For brokenPI ðpbÞ ¼ boolean, we call
pb 2 PI process instance. The mapping follows a two-valued
logic returning exactly one truth value (true or false):
brokenðpbÞ ¼ true if 9tb 2 tiðtT ; pbÞ with brokenðtbÞ ¼ true.

6. To determine if the use of a break-glass policy was justified,
the execution of broken task instances needs to be moni-
tored and reviewed. Thus, if a certain process instance is
broken, a corresponding review process is triggered. In par-
ticular, a review process has to check all broken task
instances included in the broken process instance. For
example, for each broken instance of the medical examina-
tion process (see Section 2.2), a senior physician has to
check the validation results of t3 as soon as he/she is on duty
again (see Fig. 4):
The mapping review : PT # PT is called review process def-
inition. For reviewðpbÞ ¼ pr , we call pb 2 PT process type and
pr 2 PT review process type.

As defined above, break-glass overrides enable certain subjects
or roles to perform certain tasks in emergency situations only.
Therefore, the runtime allocation of ordinary tasks on the one hand
and tasks that are allocated via a break-glass override on the other
must be clearly separated (see also Appendix A). In particular, this
means that a subject cannot accidentally perform a break-glass
task (see Algorithm 1 in Appendix A). Instead, it must actively
and explicitly choose to use a break-glass override. In this context,
it is important to discuss the different implications of mutual
exclusion and binding constraints.

SME constraints define that two statically mutual exclusive
tasks must never be assigned to the same role and must never be
performed by the same subject. This type of constraint is global
with respect to all process instances in the corresponding informa-
tion system. Therefore, SME constraints do not only affect runtime
task execution, they already affect the task-to-role and role-to-sub-
ject assignment relations at design-time (see, e.g., [44,49,59,63,
68,72]). Thus, if we want to define that a certain subject or
members of a certain role are allowed to perform two SME tasks
in exceptional (emergency) situations, we must explicitly define
a corresponding break-glass override via the bbr or bbs mappings
(see Definition 2).

In contrast, DME constraints define that two dynamically
mutual exclusive tasks must never be performed by the same sub-
ject in the same process instance. In other words: two DME tasks
can be assigned to the same role. However, to complete a process
instance which includes two DME tasks, one needs at least two dif-
ferent subjects (see, e.g., [44,49,59,63,68,72]). In a break-glass sce-
nario, DME tasks are different from SME tasks because one (or
more) subjects may legally own two DME tasks (and are thereby
competent and empowered to perform both tasks). Thus, in case
a subject already owns two DME tasks via the tra and rsa mappings
(see Definition 1) we do not need to define an additional bbr or bbs
override assignment for the same tasks. Instead, we ‘‘only’’ need to
allow that these subjects are permitted to break the DME con-
straint (of tasks they already own) in emergency situations. An
abuse of this option is prevented because a break-glass allocation
is always conducted on purpose and cannot be performed acciden-
tally (see Appendix A), and because each broken process instance is
reviewed (see Definition 2.6).

In contrast to mutual exclusion constraints, binding con-
straints define that the same role or subject who performed a
taskx must also perform a bound tasky. Therefore, bound tasks
must be assigned to the same subject or role in order to ensure
the satisfiability of the corresponding business processes (see,
e.g. [19,48]). However, in a break-glass scenario it may be neces-
sary to break a binding constraint and perform a break-glass real-
location for tasks that have already been allocated due to the
transitivity of binding constraints (see also [59]). For example,
such a situation may arise if the subject who is allocated to a
tasky because of a binding constraint has an accident and there-
fore cannot perform tasky. In such a situation, we can perform a
break-glass reallocation (see Appendix A) if the delay of tasky

would result in an emergency. Again, an abuse of this option is
prevented because a break-glass allocation is always conducted
on purpose and cannot be performed accidentally (see Appendix A),
and because each broken process instance is reviewed (see
Definition 2.6).

Based on the discussion above, we define two types of correct-
ness for process-related break-glass RBAC models. Static correctness
refers to the design-time consistency of the elements and relation-
ships in the break-glass RBAC Model. Dynamic correctness refers to
the compliance of process instances with the break-glass definition
as well as with entailment and context constraints at runtime.
Definition 3 provides static correctness rules that must hold in
addition to the rules for process-related RBAC models presented
in [60].

Definition 3 (Static correctness). Let PRBGM = (E,Q,D,CX,BG) be a
Process-Related Break-Glass RBAC Model. PRBGM is said to be
statically correct if the following requirements hold:

1. Each role is allowed to own a task either regularly or via a
break-glass override assignment. To separate regular task
ownerships from break-glass task ownerships, we need to
ensure that no task is assigned to a certain role via both
mappings:
8tT 2 TT : town�1ðtTÞ \ btown�1ðtTÞ ¼ ;.

2. Each subject is allowed to own a task either regularly (via its
role memberships) or via a breakable-by-role override
assignment. To separate regular task ownerships from
breakable task ownerships, we need to ensure that no task
is assigned to a certain subject via both mappings:
8tT 2 TT ; r1; r2 2 R with tT 2 btownðr1Þ and tT 2 townðr2Þ :

rown�1ðr1Þ \ rown�1ðr2Þ ¼ ;.

S. Schefer-Wenzl, M. Strembeck / Information and
3. Each subject is allowed to own a task either regularly (via its
role memberships) or via a breakable-by-subject override
assignment. To separate regular task ownerships from
breakable task ownerships, we need to ensure that no task
is assigned to a certain subject via both mappings:
8tT 2 TT ; r 2 R with tT 2 townðrÞ : rown�1ðrÞ \ bbs�1ðtTÞ ¼ ;.

Definition 4 specifies rules for the dynamic correctness of
process-related break-glass RBAC models. These rules need to be
fulfilled at runtime, i.e. when executing a certain process instance.
They extend the dynamic correctness rules for process-related
RBAC models specified in [51,60].

Definition 4 (Dynamic correctness). Let PRBGM = (E,Q,D,CX,BG)
be a Process-Related Break-Glass RBAC Model and PI its set of
process instances. PRBGM is said to be dynamically correct if the
following requirements hold. Definitions 4.2–4.5 supersede the
corresponding Definitions from [51,60] in break-glass scenarios. In
particular, they define that:

1. For each broken process instance, there has to exist a corre-
sponding review process:

8pb 2 piðpTÞ with broken ðpbÞ ¼ true : 9pr 2 reviewðpTÞ

2. For all broken task instances within the same process instance,
the executing subjects of SME tasks do not have to be different.
This Definition supersedes Def. 3.1 from [60] specifying that the
executing subject of SME subject need to be different:

if 9pb 2 PI with brokenðpbÞ ¼ true then
8tx 2 tiðt1; pbÞ;8ty 2 tiðt2; pbÞ with t2 2 smeðt1Þ
and brokenðtxÞ ¼ true:
ðesðtxÞ– esðtyÞ _ esðtxÞ ¼ esðtyÞÞ

3. For all broken task instances within the same process
instance, the executing subjects of DME tasks do not have to
be different. This Definition supersedes Def. 3.2 from [60]
specifying that the executing subject of DME subject need to
be different:

if 9pb 2 PI with brokenðpbÞ ¼ true then
8tx 2 tiðt1; pbÞ;8ty 2 tiðt2; pbÞ
with t2 2 dmeðt1Þ and brokenðtxÞ ¼ true:
ðesðtxÞ– esðtyÞ _ esðtxÞ ¼ esðtyÞÞ

4. For all broken task instances within the same process
instance, the executing role of role-bound tasks does not
have to be the same. This Definition supersedes Def. 3.3 from
[60] specifying that role-bound tasks must have the same
executing role:

if 9pb 2 PI with brokenðpbÞ ¼ true then
8tx 2 tiðt1; pbÞ;8ty 2 tiðt2; pbÞ with t2 2 rbðt1Þ and
brokenðtxÞ ¼ true:
ðerðtxÞ– erðtyÞ _ erðtxÞ ¼ erðtyÞÞ

5. For all broken task instances within the same process instance,
the executing subject of subject-bound tasks does not have to
be the same. This Definition supersedes Def. 3.4 from [60] spec-
ifying that subject-bound tasks must have the same executing
subject:

if 9pb 2 PI with brokenðpbÞ ¼ true then
8tx 2 tiðt1; pbÞ;8ty 2 tiðt2; pbÞ with t2 2 sbðt1Þ and
brokenðtxÞ ¼ true:
ðesðtxÞ– esðtyÞ _ esðtxÞ ¼ esðtyÞÞ
6. For all broken task instances within the same process instance,
Software Technology 56 (2014) 1289–1308 1295
context constraints do not have to be fulfilled. This Definition
supersedes the corresponding Definitions from [51] specifying
that the context constraints associated to a task have to be
fulfilled:

if 9pb 2 PI with brokenðpbÞ ¼ true then
8tx 2 tiðtT ; pbÞ with brokenðtxÞ ¼ true
if ccx 2 linkedCCðtTÞthen
ðfulfilledCCðccxÞ ¼ true _ fulfilledCCðccxÞ ¼ falseÞ

Furthermore, the execution history of a process instance p must
reflect which subject has executed which task instance. For this
purpose, Definition 5 extends the definition for execution histories
from [60]. The execution history hðpÞ of a process-related
break-glass RBAC model includes a record of all broken process
instances.

Definition 5 (Execution history). Let PRBGM = (E,Q,D,CX,BG) be a
Process-Related Break-Glass RBAC Model and PI its set of process
instances. For a particular process instance p 2 PI , an execution
event execðpÞ 2 ðTI � TT � R� SÞ is a record of a particular task
execution where TI refers to the set of task instances, TT to the set of
corresponding task types, R to the set of executing roles, and S to the
set of executing subjects. The execution history hðpÞ of a process
instance p is defined as a mapping h : PI # Pðfðtx; tt ; r; sÞjtx 2 TI;

tt 2 TT ; r 2 R; s 2 SgÞ, which maps hðpÞ to a set of execution events
execðpÞ (for further details, see [60]).

The execution history includes a record of all broken process
instances. For a particular broken process instance, i.e. brokenðpiÞ ¼
true, the broken task instances, corresponding executing-subjects,
and executing-roles are documented. The break-glass execution
history hbðpbÞ of a process instance pb is defined as a mapping
hb : PI # Pðfðtb; tt; rb; sbÞjtb 2 TI; tt 2 TT ; brokenðtbÞ ¼ true; sb ¼ es
ðtbÞ; rb ¼ erðtbÞ}) with hb # h.
4. A UML extension for process-related break-glass policies

Based on the formal definitions presented in Section 3 domain-
specific modeling support can be provided via models that are
specified independent from a particular implementation platform
(see Section 1). These models are typically defined in a particular
modeling language, e.g., BPMN or UML (platform independent
models (PIM)). Subsequently, PIMs can be mapped to platform spe-
cific models (PSM).

The UML offers a comprehensive and well-defined modeling
framework and is the de facto standard for modeling and specify-
ing information systems. The UML’s main intention is to capture
modeling artifacts throughout the whole development lifecycle
with the same modeling language (see [35]). A uniform framework
for all of these heterogeneous diagram types and the relationships
between them is defined via a common metamodel. This meta-
model builds upon the OMG Meta Object Facility (MOF [36]) and
formally defines the abstract syntax of all UML diagram types.
Modeling support for break-glass policies via a standard notation
can help to bridge the communication gap between software engi-
neers, security experts, experts of the application domain, and
other stakeholders (see, e.g., [30]). Our domain-specific modeling
extension for break-glass policies serves as an enabler to document
and communicate how certain emergency scenarios can be han-
dled in a business process.

UML2 Activity models offer a process modeling language that
allows to model the control and object flows between different
actions. The main element of an Activity diagram is an Activity.

1296 S. Schefer-Wenzl, M. Strembeck / Information and Software Technology 56 (2014) 1289–1308
Its behavior is defined by a decomposition into different Actions. A
UML2 Activity thus models a process while the Actions that are
included in the Activity can be used to model tasks (for details
on UML2 Activity models, see [35]). However, sometimes UML dia-
grams cannot provide all relevant aspects of a specification. There-
fore, there is a need to define additional constraints about the
modeling elements. The Object Constraint Language (OCL) pro-
vides a formal language that enables the definition of constraints
on UML models [34]. We apply the OCL to define additional
break-glass specific constraints for our UML extension. In particu-
lar, the OCL invariants defined in Section 4.2 ensure the consis-
tency and correctness of UML models using our new modeling
elements.

The UML standard basically provides two options to adapt its
metamodel to a specific area of application [35]: (a) defining a
UML profile specification using stereotypes, tag definitions, and
constraints. A UML profile must not change the UML metamodel
but can only extend existing UML meta-classes for special
domains. Thus, UML profiles are not a first-class extension mecha-
nism (see [35, page 660]); and (b) extending the UML metamodel,
which allows for the definition of new elements with customized
semantics.

In this paper, we apply the second option (extending the UML
metamodel) because the newly defined modeling elements for
break-glass policies require new semantics which are not available
(a)

Fig. 6. Visualizing (a) breakable-by-role and (b

Fig. 5. UML metamodel extension for proc
in the UML metamodel. Thus, we introduce the BreakGlassBusiness-
Activities extension for the UML metamodel which is designed for
modeling process-related break-glass policies (see Section 3). In
particular, we extend the BusinessActivities package [60], which
provides UML modeling support for process-related RBAC models.
We also implemented the extended metamodel presented in
Section 3 as well as the corresponding constraints provided in
Section 4.2 as a break-glass extension to the BusinessActivity
library and runtime engine (see Section 6).

4.1. Metamodel overview

A BusinessActivity [60] is a specialized UML Activity (see Fig. 5).
A BusinessAction corresponds to a task and comprises all permis-
sions to perform the task. Roles and Subjects are linked to Business-
Actions. The metaclasses BusinessAction, Role and Subject are
defined as subclasses of the UML Classifier metaclass, which yields
a number of advantages. For example, it allows modelers to define
specialized subtypes of BusinessAction with own specialized
behavioral or structural features. Moreover, BusinessActions can
be instantiated and, in contrast to ordinary UML Actions, the same
instance can be used/executed multiple times in an activity (see
also [35]). Among other things, this means that each instance of
a BusinessAction can have its own state and history, for example
including attributes to capture how often the action has been
(b)

) breakable-by-subject override relations.

ess-related break-glass RBAC models.

S. Schefer-Wenzl, M. Strembeck / Information and
executed, which subjects and roles executed the action, etc. For a
detailed discussion on how mutual exclusion, binding, and context
constraints are integrated into the BusinessActivities extension,
see [60,51].

For integrating break-glass policies into the UML metamodel,
we introduce the following new relations: Each Role can include
breakableTasks and inheritedBreakableTasks, which are inherited
from its junior-roles (see Definitions 1 and 2 in Section 3). These
two relationships can be used to visualize that members of a cer-
tain role are authorized to perform the assigned tasks only in
case of emergency. Similarly, each Subject can be assigned to
breakableTasks to show that a particular subject is allowed to per-
form the assigned tasks in case of emergency (see Definition 3).
Fig. 6 illustrates presentation options to visualize the break-
able-by-role and breakable-by-subject override relations via
‘‘Breakable’’ entries. Note that these relations are formally
defined through our UML metamodel extension and therefore
exist independent of their actual graphical representation. More-
over, each BusinessActivity is related to a reviewProcess (see
below).

Each instance of a BusinessAction and the corresponding Busi-
nessActivity instance are marked as broken if the BusinessAction
has been executed by a subject via a break-glass override assign-
ment (see Definitions 4 and 5 in Section 3) and Constraints 1 and 2
in Section 4.2). For each broken BusinessActivity, there has to exist
a corresponding reviewProcess (see Fig. 5 and Constraint 3). Roles
and subjects can own a task either regularly or via a break-glass
override assignment (see Constraints 4 and 5). Moreover, in a
break-glass scenario, all task-based entailment constraints do not
have to be fulfilled (see Constraints 10 and 11 as well as
Constraints 6–9).

4.2. OCL constraints

Often a structural UML model cannot capture all types of
domain-specific constraints which are relevant for describing a tar-
get domain. Thus, additional constraints can be defined, for exam-
ple, by using a constraint expression language, such as the OCL
[34]. In this paper, we use OCL invariants to define the semantics
by encoding break-glass specific constraints. For the sake of read-
ability, this Section only shows three example OCL invariants.
The complete list of OCL invariants for the Break-Glass Business
Activity extension is found in Appendix B.

Constraint 1. Each BusinessAction defines an attribute called
‘‘broken’’ stating if a certain BusinessAction instance is executed
via a break-glass override assignment:

context BusinessAction inv:

self.instanceSpecification?forAll (i |

i.slot?exists (b |

b.definingFeature.name = broken

and

b.definingFeature.type.name = Boolean))

Constraint 3. For each broken BusinessActivity instance, there
has to exist a corresponding reviewProcess:

context BusinessActivity inv:

self.instanceSpecification?forAll (i |

if i.slot?exists (b |

b.definingFeature.name = broken and

b.value = true)

then self.reviewProcess?notEmpty ()

else true endif
Constraint 7. For all broken BusinessAction instances, the exe-

cuting subjects of DME tasks do not have to be different:

context BusinessAction inv:

self.instanceSpecification?forAll (b |

b.slot?select (s |

s.definingFeature.name = broken

if (s.value = true) then

self.dynamicExclusion?forAll (dme |

dme.instanceSpecification?forAll (i |

b.slot?forAll (bs |

i.slot?forAll (is |

if

bs.definingFeature.name = executingSubject

and

is.definingFeature.name = executingSubject

then (bs.value = is.value) or

not (bs.value = is.value)

else true endif)))))

else true endif))

Software Technology 56 (2014) 1289–1308 1297
Each of the CIM-layer definitions from Section 3 is mapped to
our PIM-layer UML extension. In particular, structural properties
of the CIM-layer metamodel are defined as additional elements
in the UML metamodel. New semantic properties are specified
via OCL constraints. Each of the above OCL constraints uses the
UML InstanceSpecification element to refer to instances of the
newly added BusinessAction and BusinessActivity classes (see also
Fig. 5). The UML standard allows for a very flexible use of the
InstanceSpecification element (see [35]). In general, an instance
specification represents an instance in a modeled system. Each
instance specification can be associated with an arbitrary number
of classifiers (i.e. direct or indirect sub-classes of the UML Classifier
metaclass, such as BusinessAction or BusinessActivity for exam-
ple). Moreover, each instance specification may include an arbi-
trary number of slots. A UML Slot specifies that an instance
specification has a value for the so called ‘‘defining feature’’ of
the respective slot. In this way, the UML InstanceSpecification
element allows to define (constraints on) the values of runtime
instances. For a detailed specification of the UML InstanceSpecifi-
cation and Slot metaclasses please see [35].

Table 1 gives an overview of how each of the definitions from
Section 3 is mapped to our UML extension for Break-Glass Business
Activities (see also Appendix B). For example, Definition 2.4 speci-
fies that we can determine if a task instance is broken. This is
mapped to Constraint 1 which specifies that each BusinessAction
instance includes a corresponding slot that carries a boolean value
to indicate if this particular instance is broken (see above and
Appendix B). Definition 4.1 specifies that for each broken process
instance a corresponding review process has to exist. This is
mapped to Constraint 3 which specifies that for each broken Busi-
nessActivity instance (i.e. instances where the value of the slot
including the defining feature ‘‘broken’’ is set to ‘‘true’’) a corre-
sponding review process has to exist (see above and Appendix B).

4.3. Example for UML break-glass models

We suggest to use three complementary perspectives to model
process-related break-glass RBAC models. This is because captur-
ing all aspects within the process model will presumably overload
it. Fig. 7a shows the process perspective of the medical examination
process (see Section 2.2).

The Break-Glass RBAC perspective is exemplified in Fig. 7b illus-
trating task-to-role, role-to-subject, and role-to-role assignments.
For example, subject s1 is assigned to the Junior Physician role.
Corresponding notation symbols are described in detail in [60].

Fig. 7. Example for process-related break-glass RBAC models.

Table 1
Consistency between generic metamodel and UML extension.

Generic definition Covered through

Definition 1: Process-Related RBAC Model Defined via the BusinessActivities extension and the OCL
constraints presented in [60]

Definition 2.1: bbr : R # PðTT Þ Metamodel extension: breakableTasks Association between Role and
BusinessAction (see Fig. 5)

Definition 2.2: btown : R # PðTT Þ Metamodel extension: breakableTasks and inheritedBreakableTasks
Associations between Role and BusinessAction (see Fig. 5)

Definition 2.3: bbs : S # PðTT Þ Metamodel extension: breakableTasks Association between Subject and
BusinessAction (see Fig. 5)

Definition 2.4: brokenTI : TI # BOOLEAN Constraint 1
Definition 2.5: brokenPI : PI # BOOLEAN Constraint 2
Definition 2.6: review : PT # PT Metamodel extension: recursive review Association on

BusinessActivity (see Fig. 5); Constraint 3

Definition 3.1: 8tT 2 TT : town�1ðtT Þ \ btown�1ðtT Þ ¼ ; Constraint 4

Definition 3.2: 8tT 2 TT ; r1; r2 2 R with tT 2 btownðr1Þ and
tT 2 townðr2Þ : rown�1ðr1Þ \ rown�1ðr2Þ ¼ ;

Constraint 5

Definition 3.3: 8tT 2 TT ; r 2 R with tT 2 townðrÞ : rown�1ðrÞ \ bbs�1ðtT Þ ¼ ; Constraint 5

Definition 4.1: 8pb 2 piðpT Þ with brokenðpbÞ ¼ true : 9pr 2 reviewðpT Þ Constraint 3
Definition 4.2: 8tx 2 tiðt1;pbÞ;8ty 2 tiðt2; pbÞ with t2 2 smeðt1Þ and

brokenðtxÞ ¼ true : ðesðtxÞ – esðtyÞ _ esðtxÞ ¼ esðtyÞÞ
Constraint 6

Definition 4.3: 8tx 2 tiðt1;pbÞ;8ty 2 tiðt2; pbÞ with t2 2 dmeðt1Þ and
brokenðtxÞ ¼ true : ðesðtxÞ – esðtyÞ _ esðtxÞ ¼ esðtyÞÞ

Constraint 7

Definition 4.4: 8tx 2 tiðt1;pbÞ;8ty 2 tiðt2; pbÞ with t2 2 rbðt1Þ and
brokenðtxÞ ¼ true : ðesðtxÞ – esðtyÞ _ esðtxÞ ¼ esðtyÞÞ

Constraint 8

Definition 4.5: 8tx 2 tiðt1;pbÞ;8ty 2 tiðt2; pbÞ with t2 2 sbðt1Þ and
brokenðtxÞ ¼ true : ðesðtxÞ – esðtyÞ _ esðtxÞ ¼ esðtyÞÞ

Constraint 9

Definition 4.6: 8tx 2 tiðtT ;pbÞ with brokenðtxÞ ¼ true if ccx 2 linkedCCðtT Þthen
ðfulfilledCCðccxÞ ¼ true _ fulfilledCCðccxÞ ¼ falseÞ

Constraints 10 and 11

Definition 5:
hb : PI # Pðfðtb; tt ; rb; sbÞjtb 2 TI ; tt 2 TT ; brokenðtbÞ ¼ true; sb ¼ esðtbÞ; rb ¼ erðtbÞ})

Implicitly defined via our metamodel extension and the specification of UML
Activity models (see Fig. 5 and [35])

1298 S. Schefer-Wenzl, M. Strembeck / Information and Software Technology 56 (2014) 1289–1308

S. Schefer-Wenzl, M. Strembeck / Information and Software Technology 56 (2014) 1289–1308 1299
Moreover, this perspective provides a detailed view on which role
or subject is allowed to perform a break-glass override. For exam-
ple, we define a breakable-by-role override relation between the
Junior Physician role and the ‘‘Confirm treatment’’ task in Fig. 7b.
Thus, in a break-glass scenario, members of the junior-physician
role are able to perform the ‘‘Confirm treatment’’ task. Moreover,
a breakable-by-subject override is defined on subject s3 and the
‘‘Medical treatment’’ task, because nurse s3 has all necessary skills
to perform the medical treatment in an emergency case.

Finally, the review perspective illustrates the review process
which is triggered each time after a break-glass override is exe-
cuted (Constraint 3). An example review process for the medical
examination process is shown in Fig. 7c. In particular, a physician
(who was not involved in the medical examination process) is
appointed to perform the following tasks: After checking the
(a)

(c)

Fig. 8. Evacuation process
override alerts for a particular process, the physician checks the
medical examination results and validates the medical treatment
plan. If the treatment plan is successfully validated, the override
alerts are closed. Otherwise, an investigation process is started.

5. Case study on modeling process-related break-glass RBAC
models

To evaluate the approach presented in this paper with regard to
its practical applicability, we conducted a case study applying our
UML extension on real-world processes. The case study presented
in this Section is based on a collection of real-world process models
we retrieved from a large Austrian school center. The selection
consists of about 30 organizational processes, which were collected
by members of the school center during a process management
(b)

in an Austrian school.

1300 S. Schefer-Wenzl, M. Strembeck / Information and Software Technology 56 (2014) 1289–1308
initiative. The control flow of some processes was graphically visu-
alized depicting the sequence of tasks as well as of corresponding
authorized and responsible individuals. However, these processes
were visualized using an ad hoc (non-standard) graphical notation.
Furthermore, most of the processes were described in a detailed
textual/tabular listing of activities with varying level of granularity.
The process descriptions included references to legal requirements
(e.g., certain paragraphs in the Austrian law concerning teaching in
schools) and other internal or external regulations.

In our case study, we identified processes including information
on emergency scenarios and remodeled them via our UML extension
for process-related break-glass policies (see Section 4). In Fig. 8, an
example process from our case study is presented which illustrates
the school’s evacuation process. The BusinessActivity in Fig. 8a con-
sists of eleven BusinessActions carried out in case an evacuation
event occurs. Fig. 8b shows the roles associated with tasks in the
evacuation process. For each role, the regular task assignments as
well as the break-glass task assignments were derived from the pro-
cess descriptions. Most of the tasks from the school’s evacuation
process are usually performed by the headmaster of the school.
However, in case this process is executed in the event of an actual
emergency (i.e., not for practice purposes), teachers and pupils are
also authorized to perform these tasks (see Fig. 8b). For example,
Table 2
Questions from semi-structured interviews.

Q1 Do the process models provide added value for the school? If yes, in how far ca
Q2 How will the extended process models potentially be used in the school?
Q3 What do you think about our approach of integrating process models and relat
Q4 Do you have difficulties in understanding different parts of the processes? If ye

comprehensible?
Q5 Do you have any suggestions on how the graphical representation of the proce

Fig. 9. Class model of the extended Business Ac
the headmaster is authorized to perform task T1 (Activate emer-
gency alarm). In case of emergency, the administrator as well as
all teachers and pupils are also authorized to execute T1. Further-
more, Fig. 8c shows the review process for the evacuation process.
In this review process, all break-glass alerts recorded in the evacua-
tion protocol are checked by an external auditor. If the evacuation
protocol is successfully verified, the override alerts are closed.
Otherwise, an investigation process is triggered.

After remodeling the processes via our UML extension, we eval-
uated the remodeled process diagrams of the case study by per-
forming semi-structured interviews with three members of the
school, including the head master, one teacher, and one member
of the administrative staff. This approach was chosen because
interviews are one of the most important methods in case study
research [43]. Moreover, for qualitative case studies it is recom-
mended to choose subjects from different parts of the organization
to involve different roles in the interviews [18].

The interview was carefully designed using the guidelines from
[27]. It consisted of five main open-ended questions. Each inter-
view varied between 20 and 25 min in length. The answers were
recorded by using field notes which were then subsequently ana-
lyzed by the interviewer. Table 2 details the main questions asked
in the interviews.
n the school/members of the school benefit from the extended process models?

ed security aspects? Advantages/Disadvantages?
s, which parts are easy to understand and which parts are difficult or not

sses can be improved?

tivity library and runtime engine (excerpt).

S. Schefer-Wenzl, M. Strembeck / Information and Software Technology 56 (2014) 1289–1308 1301
In the interviews, two advantages of the visually modeled pro-
cesses were communicated: First, the headmaster emphasized that
new employees who are not familiar with school procedures
would now have a comprehensive and easy-to-understand, dia-
gram-based documentation of key processes and related break-
glass concerns at hand. This would have the potential of facilitating
work tasks and communication with other school members during
the first weeks after joining the school. This opinion may also
support the frequently cited conjecture that models employing a
process flow metaphor are suitable communication instruments
for non-technical domain experts (see, e.g., [21]). In addition,
before the case study was performed, only a few processes were
depicted using an ad hoc (i.e., non-standard) visual notation. Most
processes were described via textual documents in varying degrees
of detail. The state of the organization’s process descriptions was
therefore inconsistent and inhomogeneous. Moreover, the inter-
view partners noted that the security-aware process models would
improve the general awareness among the school members of how
closely security requirements are related to key organizational pro-
cesses. All three members of the school stated that the process
getAllocatableBreakGla

sd GetAllocatableBreak

loo

subject_list

a

breakglassAllocationAllo

sd BreakGlassAllocatio

aTaskIns

true

true

true

false

breakglassAllocation(subject)

sd TaskBreakGlassAllocation

alt [if subject=EMPTY_STRING]

role

chooseRandomSubject(result)

id

setExecutingSubject(id)

GetAllocatableBreakGlassSubjects
ref

getAllocatableBreakGlassSubjects()

result

failed

[result=EMPTY_LIST]break

id : Subject

getActiveRole()

setExecutingRole(role)

[else]

BreakGlassAllocationAllowed
ref

breakGlassAllocationAllowed(subject)

result

failed

[result=false]break

role

setExecutingSubject(subject) subject : Subject

getActiveRole()

setExecutingRole(role)

success

aTaskInstance : MyBusinessAction

[if reallocation]

broken

reallocation success

alt

[if reallocation]

reallocation success

alt

broken

Fig. 10. Break-glass
models are easy to comprehend in their essence (e.g., task and role
labels, basic sequencing of tasks, relations between duties and
tasks).

6. Platform support

In order to enforce break-glass policies in actual software sys-
tems (i.e., at the PSM layer), we implemented an extension to the
BusinessActivity library and runtime engine (see [60]). Our
implementation provides platform support for all modeling-level
elements and automatically enforces all invariants defined via
OCL constraints. Moreover, it implements the algorithms for
runtime consistency of break-glass RBAC models (see Sections 3
and 4). The source code of our implementation is available for
download at [1].

Fig. 9 shows the essential class relations of our library and run-
time engine. Classes that were added to implement the break-glass
extension are highlighted via bold font. From a software technical
point of view we used mixin classes as a primary extension
mechanism. Simplified, a mixin is a class that can be dynamically
ssSubjects()

GlassSubjects

p

BreakGlassAllocationAllowed
ref

initalizeSubjectList()

opt [result=true]

[for each subject]
breakglassAllocationAllowed(x)

result

addSubjectToList(x)

TaskInstance : MyBusinessAction

wed(x)

nAllowed

x : Subject

canDoBreakGlassOverride(MyBusinessAction)

false

tance : MyBusinessAction

ownsBreakGlassTask(MyBusinessAction)

result

true

[result=true]break

getActiveRole()

role role : Role

ownsBreakGlassTask(MyBusinessAction)

result

true

[result=true]break

ownsTask(MyBusinessAction)

result

true

[result=true]break

task allocation.

1302 S. Schefer-Wenzl, M. Strembeck / Information and Software Technology 56 (2014) 1289–1308
registered as an extension to another class. Mixins are a flexible
extension mechanism that can be applied if an extension of the
class-hierarchy via (multiple) inheritance is not desirable (see,
e.g., [10,11,70,73]). Mixins can be added or removed (activated or
deactivated) at runtime and thereby provide a means to individu-
ally tailor the behavior of the extended entity. In general, we
distinguish class mixins (also: per-class mixins or type mixins)
and instance mixins (also: per-object mixins) [73]. Class mixins
are classes that are applied as mixins for a class. They are types
for all direct and indirect instances of this class. Instance mixins
are classes that are applied as mixins for an individual object, i.e.,
for an instance of a class. They extend the types of this particular
object with (one or more) instance mixins.

The four extension classes shown in Fig. 9 are defined as class
mixins. The Role::BreakGlassExtension class extends the
Role class and adds the capabilities to define breakable-by-role
overrides. The Subject::BreakGlassExtension extends the
Subject class and adds the capabilities to define breakable-
by-subject overrides (see Section 3). The BusinessAction::

BreakGlassExtension and BusinessActivity::Break-

GlassExtension classes extend the BusinessAction and
BusinessActivity classes respectively. They provide functions
for break-glass task allocation and add runtime consistency checks
that conform to the algorithms defined in Appendix A. In addition
to the extension classes shown in Fig. 9, our implementation
includes three extension classes that are defined as instance mix-
ins. In contrast to the class mixins discussed above, these instance
mixins are dynamically added to corresponding task objects or
process objects (i.e., instances of the BusinessAction and
BusinessActivity classes) in case a break-glass override is
actually used and a particular task instance is ‘‘broken’’. Thus, these
instance mixins enforce the changed behavior of broken task and
process instances as defined in Sections 3 and 4.

Fig. 10 shows UML interaction models that describe our imple-
mentation of the break-glass task allocation procedure in detail.
When a breakglassAllocation call is invoked on a particular
task instance (i.e., an instance of the BusinessAction class, see
Fig. 9) the respective task instance first checks if the subject
parameter is empty or if it includes a subject name. If the subject
parameter is empty (i.e., it includes the empty string), it calls the
getAllocatableBreakGlassSubjects method to fetch the list
of all subjects who can potentially perform a breakable-by-subject
override (see Section 3) for this task. In order to compile this list,
the task instance calls the breakglassAllocationAllowed

method for each subject. Subsequently, the respective subject
checks if it can (potentially) perform a break-glass-override for
the corresponding task and, depending on the result of these
checks, returns either ‘‘true’’ or ‘‘false’’. All subjects that are capable
of performing a break-glass-override are added to the respective
list. After all subjects are visited, the getAllocatableBreak-

GlassSubjects method returns the subject list back to the
task instance. If this list is empty (i.e., no subject can perform a
break-glass override for this task instance) the breakglassAllo-
cation method returns a ‘‘failed’’ result. However, if the
subject list is not empty, the task instance randomly chooses a
subject from the list, performs a break-glass allocation and
sets the ‘‘broken’’ flag to announce that this task instance is
now broken and to trigger a corresponding review process (see
Section 3).

If the subject parameter of the breakglassAllocation

method was not empty, we want to perform a breakable-by-
subject override with a particular subject (i.e., not some randomly
chosen subject). In this case, we also need to call the
breakGlassAllocationAllowed method to check if this very
subject is allowed to perform a breakable-by-subject override.
If the subject is not allowed to perform this override, the
breakglassAllocation returns a ‘‘failed’’ result. Otherwise,
the task instance performs a break-glass allocation and sets the
‘‘broken’’ flag (see Fig. 10).
7. Discussion and related work

In recent years, there has been much work on various aspects of
break-glass policy concepts. Break-glass features are also imple-
mented in major business software, e. g., in the SAP Virsa Fire-
fighter [3] or in Oracles Role Manager [2]. In this Section, we first
compare our approach introduced in this paper with related work
and then exemplarily show how our approach can be integrated
with other approaches.

7.1. Related work

In general, we distinguish two types of related work for this
paper. First, we have approaches that primarily aim to integrate
break-glass policies into (role-based) access control models.
Second, a number of different approaches exist that integrate
break-glass related information into a business process/workflow
environment. Many of the access control- and business process-
related approaches are complementary to our work and are
well-suited to be combined with our process-related break-glass
RBAC models.

Table 3 shows an overview of related work on modeling break-
glass policies in an access control or business process context. With
respect to the concepts and artifacts specified in Sections 3, 4, and 6,
we use a

p
if a related approach provides similar and/or comparable

support for a certain concept, and a D if a related approach provides
at least partial support for a particular aspect.

Several approaches exist to integrate break-glass policies into
access control models. For example, the optimistic security princi-
ple [37] aims to handle exceptional cases. In the approach from
[37], any access is legitimate and is thus granted. Monitoring and
recording functions are provided to guarantee traceability. These
functions are implemented using the Clark–Wilson model rules
[17]. A similar approach is presented by Ardagna et al. [5]. They
introduce a break-glass approach where an action can be per-
formed by finding a corresponding emergency policy. Alterna-
tively, a break-glass override can be granted if the system is in
an emergency state and a supervisor can be notified about the
override. In comparison to our work, the enforcement of security
policies in these approaches is retrospective. They rely on adminis-
trators to detect unreasonable accesses and subsequently take
steps to compensate for undesired behavior. This approach, how-
ever, causes an immense burden on administrators. Moreover,
these approaches do not consider entailment constraints and do
not provide corresponding tool support.

The break-the-glass RBAC (BTG-RBAC) model [23] specifies for
each permission-to-role assignment if a break-glass override is
allowed. Moreover, obligations can be defined for permissions to
define arbitrary actions that must be performed in case of a
break-glass override. Again, this break-glass model does not con-
sider entailment constraints. Corresponding tool support is also
not provided. In [12], a break-glass extension for SecureUML is pro-
vided. The resulting SecureUML break-glass policies can then be
transformed into XACML. In contrast to our work, this approach
does not consider break-glass decisions in connection with
dynamic mutual exclusion constraints or binding constraints. Fur-
thermore, the model does not allow for the definition of subject-
specific override rules, if only certain members of a role have all
necessary competencies to perform the breakable task. Another
approach for discretionary overriding of access control in XACML
policies is introduced in [4] by using XACML obligations. Hereby,
a break-glass policy is specified as an override-obligation, which

S. Schefer-Wenzl, M. Strembeck / Information and Software Technology 56 (2014) 1289–1308 1303
logs the activity, prompts the user for confirmation, and notifies
the authority. This approach does not offer role-based break-glass
policies and does not consider entailment constraints. In [41], a
certificate-based approach based on the Privilege Calculus Frame-
work is used to implement a break-glass mechanism. The Secure
information sharing break-glass model introduced in [14] uses
the Core Event Specification Language (CESL) for visualizing logical
definitions and sequences. This language provides stream, event
and pattern operators to express queries. In comparison to other
approaches, emergency policies are only valid temporarily and
cannot be triggered by a user but only by the system. Moreover,
contextual information is taken into account in access control
decisions.

Note that most of the break-glass approaches presented
above are rather generic and can thus be adapted for a PAIS con-
text with reasonable customization effort. Only few contribu-
tions exist which explicitly integrate the concept of break-glass
policies into a business process context though. In [31], a survey
on flexibility criteria for business process management systems
is presented. Amongst others, clearly defined responsibilities
for tasks via roles and sophisticated exception handling mecha-
nisms are identified as important flexibility requirements for
process-aware information systems. In [67] Wainer et al. present
an RBAC model for workflow systems, called W-RBAC. They also
extend this model via exception handling functionalities that
allow the controlled overriding of entailment constraints in case
of emergency. To achieve this, each constraint is associated with
a certain level of priority. On the other hand, roles hold override
privileges according to their level of responsibility. Compared to
our approach, subject-specific break-glass policies are not sup-
ported in the W-RBAC model. Moreover, corresponding modeling
support for the visualization of business processes and corre-
sponding break-glass policies is not provided. von Stackelberg
et al. [66] present a break-glass approach for business processes
and, in contrast to other work, explicitly consider contextual
information in their break-glass assignments (such as start and
end time of task execution). They specify an annotation language
which allows to define actors involved and context-specific con-
straints for process-related break-glass scenarios. However,
graphical symbols for break-glass concepts as corresponding tool
support is not provided.

Several other approaches exist that deal with process adapta-
tions and process evolutions in order to flexibly handle different
types of exceptions in process-aware information systems. For
example, [39] provides a formal model to support dynamic
Table 3
Comparison of related work.

Business
processes

Subject-specific
BG policies

Role-based
BG policies

R
m

Approaches to integrate break-glass policies into (role-based) access control
Optimistic security [37] D D
Policy spaces [5] D D
BTG-RBAC [23]

p
D

Break-Glass SecureUML [12]
p

D
Access control in XACML [4]

p
D

Extended privilege calculus [41]
p

D
Secure information sharing [14] D D D

Approaches to integrate break-glass policies into business processes
W-RBAC [67]

p
D D

Context-aware BTG [66]
p p

D D
ADEPTflex [39]

p

Change support in PAIS [69]
p p

D
Flexibility in PAIS [40]

p
D

Process-related Break-Glass RBAC
models (our approach)

p p p p
structural changes of process instances. A set of change opera-
tions is defined that can be applied by users in order to modify
a process instance execution path, while maintaining its struc-
tural correctness and consistency. In [69], change patterns and
change support features are identified and several process man-
agement systems are evaluated regarding their ability to support
process changes. Exception handling via structural adaptations of
process models are also considered in [40]. In particular, several
correctness criteria and their application to specific process meta
models are discussed. Thus, this approach handles exceptional
process executions by dynamically adapting the process flow.
In comparison to our work, all the approaches that integrate
break-glass policies into business processes have in common
that processes must be changed in order to handle exceptional
situations. The main goal of our approach, however, is to main-
tain the designed process flow, while ensuring that only
authorized subjects are allowed to participate in a workflow.
Moreover, none of these approaches considers the implications
of task-based entailment constraints in exceptional situations.
They also do not offer modeling support for business processes
and related break-glass policies. Corresponding tool support is
only provided in [39].

7.2. Integration with other approaches

The metamodel presented in Section 3 provides a generic
approach for integrating break-glass policies into process-related
RBAC models. It is generic in the sense that it can, in principle,
be used to extend arbitrary process-aware information systems
or process modeling languages with support for process-related
RBAC and corresponding break-glass policies. Based on these defi-
nitions, e.g., a process engine or a process modeling language can
be extended with break-glass functionalities. For example, as men-
tioned above, we implemented a break-glass extension to the Busi-
nessActivity library and runtime engine and defined a break-glass
extension to the UML (see Sections 4 and 6). However, as the meta-
model for process-related break-glass RBAC models provides a
generic framework, it does not include domain-specific or applica-
tion-specific definitions. Thus, when applying the metamodel to a
certain domain (e.g., for a hospital information system), it may
be necessary to tailor it accordingly.

In principle, any break-glass model compliant to our metamod-
el can be used to define tailored domain-specific break-glass poli-
cies. For the purposes of this paper, we exemplarily show how
Rumpole [28] can be used to define domain-specific break-glass
eview
echanism

Entailment
constraints

Formal
metamodel

Modeling
support

Consistency
checks

Tool
support

D
Dp

D D D D
D D

D D
D D D

D
p

D
D D D

D D D
D
D Dp p p p p

1304 S. Schefer-Wenzl, M. Strembeck / Information and Software Technology 56 (2014) 1289–1308
policies that are based on our metamodel. Compared to other
break-glass models, Rumpole provides a more detailed feedback
on why an access was denied by using a logic programming lan-
guage defined over Belnap’s four-valued logic [6]. Most other
break-glass models do not consider the reasons for issuing a denial,
but have a fixed procedure to determine if an override is permitted.
Using Rumpole, a policy writer is able to constrain a break-glass
override permission in a fine-grained way. Below, we give an over-
view how Rumpole can be used to tailor our generic break-glass
model (see Section 3) to express domain-specific break-glass
policies.

In particular, Rumpole distinguishes between a subject’s com-
petences and empowerments to gain more insight into the causes
for an access denial. The notion of competence captures if a subject
has all necessary permissions to perform a certain action. The
notion of empowerment captures if all integrity constraints, e.g.,
context constraints or entailment constraints, are fulfilled. The
concepts of competence and empowerment are then used in
break-glass override rules to determine whether a subject is per-
mitted or denied to override an access denial. In [28], rules defining
competences and empowerments are formulated using the follow-
ing predicates:

[competent/empowered](Sub, Tar, Act) = true: Subject Sub is
competent/empowered to perform a certain action Act on target
Tar.

For the purposes of this paper, we slightly modify this predicate
by embedding it into the context of process-related RBAC models
(see Section 3). Rules defining competences and empowerments
in business processes are thus formulated via the following
predicates:

[competent/empowered](Sub, Process, Task) = true: Subject Sub is
competent/empowered to perform a certain Task within a particu-
lar Process.

We can specify break-glass override rules defining if a subject is
permitted or denied to override an access control denial via the
following predicates (slightly modified from [28]):

[permit/deny](Sub, Process, Task) = true: Subject Sub is permitted/
denied to perform a certain Task within a particular Process in case
of emergency.

Moreover, we can specify obligations which must be fulfilled in
order to allow the break-glass override. For example, the agreed-
Obl-predicate is used to denote whether the subject has agreed
to perform the requested obligatory action. Other predicates
regarding obligations are described in [28].

via this mechanism, we define the following tailored break-
glass policies to handle the emergency scenarios outlined for our
example process in Section 2.2.

(1) Physicians that are directly permitted to perform the
‘‘Confirm treatment’’ task (t3) in case of emergency (via
the bbs mapping) can only execute the task if they are
authorized to perform a medical examination (via the
regular rown and town mappings) (see Fig. 3b). However,
an override can take place only during night shifts (see
[28]):

permit (s 2 bbs�1(confirm treatment), medical examination
process, confirm treatment) (
competent (s 2 rown�1ðrÞ : r 2 town (medical examination),
medical examination process, medical examination)
if currentTime (T) ^ nightShift (T)

(2) In a second example, we override entailment and context

constraints with tailored Rumpole policies. For example,
we can define that in case of emergency the DME constraint
defined on the ‘‘Determine treatment options’’ and ‘‘Confirm
treatment’’ tasks is ignored only if a certain reason is
provided:

permit (s 2 rown�1ðrÞ : r 2 town(confirm treatment), medical
examination process,
dme (determine treatment options)) (
competent (s, medical examination process, dme (determine
treatment options))
if agreedObl (Sub, log, giveReason)
Moreover, Rumpole allows to constrain access control overrides
by imposing non-contextual condition, such as how much
incomplete knowledge is allowed or limit of overrides per subject
or process (see [28]).

8. Conclusion

In order to handle emergency scenarios in a controlled man-
ner, break-glass policies define which subjects are allowed to
execute certain tasks in case of emergency. In this paper, we pre-
sented a break-glass extension for process-related RBAC models.
Our approach is based on a generic CIM layer metamodel. It is
generic in the sense that it can be used to extend process-aware
information systems or process modeling languages with support
for break-glass policies. Moreover, we defined a set of generic
algorithms to ensure the runtime consistency of our extended
process models. Because our CIM layer model for process-related
break-glass RBAC provides a generic (i.e., platform and domain
independent) framework, it does not include domain-specific or
application-specific definitions (e.g. for hospital information
systems, or for bank information systems). However, we
exemplarily discussed how our approach can be combined with
other approaches to define tailored, domain-specific break-glass
policies.

At the PIM layer, we provide UML modeling support for the
integrated modeling of business processes and corresponding
break-glass policies via extended UML Activity diagrams. More-
over, to support the controlled overriding of access rights at the
PSM layer we implemented our approach as a break-glass exten-
sion for the BusinessActivity library and runtime engine, which is
available for download at [1]. We also performed a case study
and conducted interviews to evaluate the practical applicability
of our integrated modeling approach on real-world processes. In
our future work, we plan to conduct further industrial case studies
to analyze, for instance, potential issues regarding the complexity
and comprehensibility of the graphical syntax of our modeling
extension. Moreover, we will investigate how other security-
related concepts can be integrated with the break-glass extension.
For instance, we intend to integrate our extension with other secu-
rity extensions, such as the Secure Object Flows (SOF) extension
introduced in [26]. Furthermore, we plan to use our generic CIM
layer model to extend other process modeling languages (such as
BPMN) with a break-glass extension and analyse potential differ-
ences between different host languages with respect to these secu-
rity extensions.
Appendix A. Algorithms for runtime consistency

In this Section, we provide a set of generic algorithms and pro-
cedures which can be used independent of a particular program-
ming language and/or software platform in order to implement
our formal metamodel for process-related break-glass RBAC

S. Schefer-Wenzl, M. Strembeck / Information and Software Technology 56 (2014) 1289–1308 1305
Models presented in Section 3. We implemented these algorithms
and corresponding procedures in our BusinessActivities Library
and Runtime engine (see [1] and Section 6). For the purposes of this
paper, we distinguish algorithms and procedures. Here, an algo-
rithm performs certain checks based on the current configuration
of a process-related RBAC model. Algorithms either return ‘‘true’’
or ‘‘false’’ and do not have side-effects. A procedure operates on
the current configuration of a process-related break-glass RBAC
model and may include side-effects (i.e., change model elements,
relations, or variables). Procedures either return a set or do not
return anything (void).

Procedure 1 compiles the set of tasks that are assigned to a sub-
ject via the bbs and bbr mappings (see Definition 2).

Procedure 1. Compile the set of all tasks that are assigned to a
subject via a break-glass assignment.

Name: breakableTasks

Input: s 2 S

1: create_empty_set breakable

2: add bbsðsÞ to breakable

3: for each role 2 rownðsÞ
4: add btownðroleÞ to breakable

5: return breakable
Procedure 2. Compile the set of all tasks a particular subject is
assigned to.

Name: executable Tasks

Input: s 2 S

1: create_empty_set executable

2: for each role 2 rownðsÞ
3: add townðroleÞ to executable

4: return executable

Algorithm 1 checks if it is allowed to allocate a certain task
instance to a certain subject. Algorithm 1, line 1 checks if the cor-
responding subject s is allowed to execute the task type ttype the
corresponding tinstance was instantiated from via a break-glass over-
ride (see Procedure 1). Alternatively, a subject may be assigned to a
task type via a regular role membership (see Procedure 2). If the
corresponding subject is not allowed to execute this particular
ttype, the respective instance must not be allocated to this subject.
Thus, if none of the checks in line 1 or 2 does return ‘‘true’’,
Algorithm 1 finally reaches line 3 and returns ‘‘false’’ – meaning
that the corresponding subject cannot be allocated to the
corresponding task instance in a break-glass scenario.
Algorithm 1. Check if a particular task instance can be allocated to
a particular subject via a break-glass policy.

Name: isBreakGlassAllocationAllowed
Input: s 2 S; ttype 2 TT ; ptype 2 PT ,

pinstance 2 piðptypeÞ; tinstance 2 tiðttype; pinstanceÞ
1: if ttype 2 breakableTasksðsÞ then return true

2: if ttype 2 executableTasksðsÞ then return true

3: return false

After using Algorithm 1 to check if a certain task instance can be
allocated to a particular subject, we can actually allocate the task
instance via Procedure 3. First, we define the respective subject
as the executing-subject of the task instance tinstance, and the sub-
ject’s active role as the executing-role of tinstance (see lines 1–2).
Next, the status of the current tinstance is set to ‘‘broken’’ in line 3.
Finally, the respective review process for the corresponding pro-
cess type is instantiated.
Procedure 3. Allocate a certain broken task instance to a partic-
ular subject.

Name: BreakGlassAllocation
Input: s 2 S; ttype 2 TT ; ptype 2 PT ,

pinstance 2 piðptypeÞ; tinstance 2 tiðttype; pinstanceÞ
1: set esðtinstanceÞ ¼ s

2: set erðtinstanceÞ ¼ arðsÞ
3: set brokenðtinstanceÞ ¼ true

4: instantiate reviewðptypeÞ

Procedure 4. Compile the set of all task types that have a direct or
a transitive subjectbinding relation to a particular taska.

Name: allSubjectBindings
Input: taska 2 TT

1:taska set visited ¼ true

2:create_empty_set directbindings
3:create_empty_set transitivebindings
4: for each taskb 2 sbtðtaskaÞ
5: if !taskbvisited then

6: add taskb to directbindings
7: add allSubjectBindingsðtaskbÞ to transitivebindings
8: return directbindings ^ transitivebindings

In addition to the algorithm and procedures for break-glass
task allocation, we also have to adapt the allocation of ordinary
(unbroken) tasks. Procedure 5 redefines the allocateTask-Proce-
dure from [59]. It describes the steps that are performed to
allocate an unbroken task instance to a certain subject. To con-
sider break-glass policies, we now have to include checks for
broken subject-bound or role-bound tasks (see also the discus-
sion from Section 3). First, Procedure 5 defines the respective
subject as the executing-subject of the task instance tinstance,
and the subject’s active role as the executing-role of tinstance

(see lines 1–2). Next, line 3 checks if the task has a subject-
binding to tasks which already have been broken (see
Algorithm 2). If no subject-bound task is broken, lines 4–7 per-
form a lookup to find all instances of subject-bound tasks (see
Procedure 4). In particular, all instances of subject-bound tasks
that are not broken are allocated to the same subject to ensure
that all subject-bound tasks are performed by the same subject.
If, however, one of the subject-bound tasks is broken the corre-
sponding binding constraint is disabled (see Definition 4). Sub-
sequently, line 8 checks if the task has a role binding to tasks
which already have been broken (see Algorithm 3). If no role-
bound task is broken, lines 9–11 perform a look-up to find all
role-bound tasks and set the executing-role accordingly. In par-
ticular, all instances of role-bound tasks that are not broken are
allocated to the same role to ensure that all role-bound tasks
are performed by the same role. If, however, one of the role-
bound tasks is broken the corresponding binding constraint is
disabled (see Definition 4).

1306 S. Schefer-Wenzl, M. Strembeck / Information and Software Technology 56 (2014) 1289–1308
Procedure 5. Allocate a certain task instance to a particular
subject.

Name: allocateTask
Input: s 2 S; ttype 2 TT ; ptype 2 PT ,

pinstance 2 piðptypeÞ; tinstance 2 tiðttype; pinstanceÞ
1: set esðtinstanceÞ ¼ s

2: set erðtinstanceÞ ¼ arðsÞ
3: if isSubjectBoundTaskBrokenðttype; pinstanceÞ ¼¼ false then

4: for each typex 2 allSubjectBindingsðttypeÞ
5: for each instancex 2 tiðtypex; pinstanceÞ
6: set esðinstancexÞ ¼ s

7: set erðinstancexÞ ¼ arðsÞ
8: if isRoleBoundTaskBrokenðttype; pinstanceÞ ¼¼ false then

9: for each typey 2 allRoleBindingsðttypeÞ
10: for each instancey 2 tiðtypey; pinstanceÞ
11: set erðinstanceyÞ ¼ arðsÞ

Algorithm 2. Check if a subject-bound task has been broken.

Name: isSubjectBoundTaskBroken

Input: taskx 2 TT ; pinstance 2 PI

1: for each tasky 2 allSubjectBindingsðtaskxÞ
2: for each instancey 2 tiðtasky; pinstanceÞ
3: if brokenðinstanceyÞ ¼¼ true then return true

4: return false

Algorithm 3. Check if a role-bound task has been broken.

Name: isRoleBoundTaskBroken

Input: taskx 2 TT ; pinstance 2 PI

1: for each tasky 2 allRoleBindingsðtaskxÞ
2: for each instancey 2 tiðtasky; pinstanceÞ
3: if brokenðinstanceyÞ ¼¼ true then return true

4: return false

The complexity of the algorithms and procedures is as follows.
Algorithm 1 as well as Procedures 1 and 2 have a linear worst
case complexity of OðnÞ. The complexity of Procedure 3 is con-
stant Oð1Þ. The complexity of Procedure 4 adds up to Oðn2Þ, while
Procedure 5 as well as Algorithms 2 and 3 have a complexity of
Oðn4Þ.
Appendix B. Invariants for break-glass business activity models

Constraint 1. Each BusinessAction defines an attribute called
‘‘broken’’ stating if a certain BusinessAction instance is executed
via a break-glass override assignment. For details on the Instanc-
eSpecification element see [35]

context BusinessAction inv:

self.instanceSpecification?forAll (i |

i.slot?exists (b |

b.definingFeature.name = broken

and

b.definingFeature.type.name = Boolean))
Constraint 2. Each BusinessActivity defines an attribute called
‘‘broken’’ stating if a certain BusinessActivity instance includes at
least one broken BusinessAction:

context BusinessActivity inv:

self.instanceSpecification?forAll (i |

i.slot?exists (b |

b.definingFeature.name = broken

and

b.definingFeature.type.name = Boolean))
Constraint 3. For each broken BusinessActivity instance, there has
to exist a corresponding reviewProcess:

context BusinessActivity inv:

self.instanceSpecification?forAll (i |

if i.slot?exists (b |

b.definingFeature.name = broken and

b.value = true)

then self.reviewProcess?notEmpty ()

else true endif

Constraint 4. Each role is allowed to own a task either regularly or
via a break-glass override assignment. To separate regular task
ownerships from break-glass task ownerships, we need to ensure
that no BusinessAction is assigned to a certain role via both
mappings:

context Role inv:

self.businessAction?forAll (b |

self.breakableTask?select (bbr |

bbr.name = b.name)?isEmpty ())

inv: self.businessAction?forAll (b |

self.inheritedBreakableTask?select (bbri |

bbri.name = b.name)?isEmpty ())

inv: self.inheritedTask?forAll (bi |

self.breakableTask?select (bbr |

bbr.name = bi.name)?isEmpty ())

inv: self.inheritedTask?forAll (bi |

self.inheritedBreakableTask?select (bbri |

bbri.name = bi.name)?isEmpty ())

Constraint 5. Each subject is allowed to own a task either regu-
larly (via its role memberships) or via a break-glass override
assignment. To separate regular task ownerships from breakable
task ownerships, we need to ensure that no BusinessAction is
assigned to a certain subject via both mappings:

context Subject inv:

self.roleToSubjectAssignment?forAll (rsa |

rsa.role.businessAction?forAll (b |

self.breakableTask?select (bbs |

bbs.name = b.name)?isEmpty ())

inv: self.roleToSubjectAssignment?forAll (rsa |

rsa.role.inheritedTask?forAll (bi |

self.breakableTask?select (bbs |

bbs.name = bi.name)?isEmpty ())

inv: self.inheritedRole?forAll (ri |

ri.role.businessAction?forAll (b |

self.breakableTask?select (bbs |

bbs.name = b.name)?isEmpty ())

inv: self.inheritedRole?forAll (ri |

ri.role.inheritedTask?forAll (bi |

self.breakableTask?select (bbs |

bbs.name = bi.name)?isEmpty ())

S. Schefer-Wenzl, M. Strembeck / Information and Software Technology 56 (2014) 1289–1308 1307
Constraint 6. For all broken BusinessAction instances, the execut-
ing subjects of corresponding SME tasks do not have to be
different:

context BusinessAction inv:

self.instanceSpecification?forAll (b |

b.slot?select (s |

s.definingFeature.name = broken

if (s.value = true) then

self.staticExclusion?forAll (sme |

sme.instanceSpecification?forAll (i |

b.slot?forAll (bs |

i.slot?forAll (is |

if bs.definingFeature.name = executing

Subject

and is.definingFeature.name = executing

Subject

then (bs.value = is.value) or

not (bs.value = is.value)

else true endif)))))

else true endif))

Constraint 7. For all broken BusinessAction instances, the execut-
ing subjects of DME tasks do not have to be different:

context BusinessAction inv:

self.instanceSpecification?forAll (b |

b.slot?select (s |

s.definingFeature.name = broken

if (s.value = true) then

self.dynamicExclusion?forAll (dme |

dme.instanceSpecification?forAll (i |

b.slot?forAll (bs |

i.slot?forAll (is |

if bs.definingFeature.name = executing

Subject

and is.definingFeature.name = executing

Subject

then (bs.value = is.value) or

not (bs.value = is.value)

else true endif)))))

else true endif))
Constraint 8. For all broken BusinessAction instances, the execut-
ing role of role-bound tasks does not have to be the same:

context BusinessAction inv:

self.instanceSpecification?forAll (b |

b.slot?select (s |

s.definingFeature.name = broken

if (s.value = true) then

self.roleBinding?forAll (rbt |

rbt.instanceSpecification?forAll (i |

b.slot?forAll (bs |

i.slot?forAll (is |

if bs.definingFeature.name = executing

Subject

and is.definingFeature.name = executing

Subject

then (bs.value = is.value) or

not (bs.value = is.value)

else true endif)))))

else true endif))
Constraint 9. For all broken BusinessAction instances, the execut-
ing subject of subject-bound tasks does not have to be the same:

context BusinessAction inv:

self.instanceSpecification?forAll (b |

b.slot?select (s |

s.definingFeature.name = broken

if (s.value = true) then

self.subjectBinding?forAll (sbt |

sbt.instanceSpecification?forAll (i |

b.slot?forAll (bs |

i.slot?forAll (is |

if bs.definingFeature.name = executing

Subject

and is.definingFeature.name = executing

Subject

then (bs.value = is.value) or

not (bs.value = is.value)

else true endif)))))

else true endif))

Moreover, the following two constraints must be satisfied
which cannot be expressed in OCL (see [35]):
Constraint 10. For all broken BusinessAction instances, context
constraints do not have to be fulfilled. Therefore, the fulfilledCC

Operations do not have to evaluate to true.
Constraint 11. For all broken BusinessAction instances, context
conditions do not have to be fulfilled. Therefore, the fulfilledCD

Operations do not have to evaluate to true.
References

[1] Business Activity Library and Runtime Engine, 2012. <http://wi.wu.ac.at/
home/mark/BusinessActivities/library.html>.

[2] Oracle Role Manager, 2013. <http://www.oracle.com/us/products/
middleware/identity-management/oracle-role-manager/overview/
index.html>.

[3] SAP Virsa Firefighter, 2013. <http://sapsecurity.info/virsa-firefighter/>.
[4] J. Alqatawna, E. Rissanen, B. Sadighi, Overriding of access control in XACML, in:

Proceedings of the Eighth IEEE International Workshop on Policies for
Distributed Systems and Networks, Springer, Washington, DC, USA, 2007,
pp. 87–95.

[5] C.A. Ardagna, S.D.C. di Vimercati, S. Foresti, T.W. Grandison, S. Jajodia, P.
Samarati, Access control for smarter healthcare using policy spaces, Comput.
Secur. 29 (8) (2010) 848–858.

[6] N.D. Belnap, Modern Uses of Multiple-Valued Logics, 1977, pp. 21–32, reidel,
(Chapter A useful four-valued logic).

[7] E. Bertino, P.A. Bonatti, E. Ferrari, TRBAC: a temporal role-based access control
model, ACM Trans. Inf. Syst. Secur. (TISSEC) 4 (3) (2001).

[8] E. Bertino, E. Ferrari, V. Atluri, The specification and enforcement of
authorization constraints in workflow management systems, ACM Trans. Inf.
Syst. Secur. (TISSEC) 2 (1) (1999).

[9] R.A. Botha, J.H. Eloff, Separation of duties for access control enforcement in
workflow environments, IBM Syst. J. 40 (3) (2001).

[10] G. Bracha, W. Cook, Mixin-based inheritance, in: Proc. of the European
Conference on Object-oriented Programming systems, languages and
applications (OOPSLA/ECOOP), 1990.

[11] G. Bracha, G. Lindstrom, Modularity meets inheritance, in: Proc. of the IEEE
International Conference on Computer Languages, 1992.

[12] A.D. Brucker, H. Petritsch, Extending Access Control Models with Break-Glass,
in: Proceedings of the 14th ACM Symposium on Access Control Models and
Technologies (SACMAT), 2009.

[13] A.D. Brucker, H. Petritsch, S.G. Weber, Attribute-Based Encryption with Break-
glass, in: Proc. of the Workshop In Information Security Theory And Practice
(WISTP), 2010.

[14] B. Carminati, E. Ferrari, M. Guglielmi, Secure information sharing on support of
emergency management, in: Proc. of the International Conference on Privacy,
Security, Risk and Trust, 2011.

http://refhub.elsevier.com/S0950-5849(14)00091-3/h0005
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0005
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0005
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0005
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0005
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0010
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0010
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0010
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0015
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0015
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0020
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0020
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0020
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0025
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0025

1308 S. Schefer-Wenzl, M. Strembeck / Information and Software Technology 56 (2014) 1289–1308
[15] F. Casati, S. Ceri, S. Paraboschi, G. Pozzi, Specification and implementation of
exceptions in workflow management systems, ACM Trans. Database Syst. 24
(1999) 405–451.

[16] D.K.W. Chiu, Q. Li, K. Karlapalem, A meta modeling approach to workflow
management systems supporting exception handling, Inf. Syst. 24 (1999) 159–184.

[17] D.D. Clark, D.R. Wilson, A comparison of commercial and military security
policies, in: IEEE Symposium on Security and Privacy, 1987.

[18] J. Corbin, A. Strauss, Basics of Qualitative Research: Techniques and Procedures
for Developing Grounded Theory, Sage, 2008.

[19] J. Crampton, H. Khambhammettu, Delegation and satisfiability in workflow
systems, in: Proceedings of the 13th ACM Symposium on Access Control
Models and Technologies (SACMAT), 2008.

[20] F. Cuppens, N. Cuppens-Boulahia, Modeling contextual security policies, Int. J.
Inf. Secur. 7 (4) (2008).

[21] M. Dumas, M.L. Rosa, J. Mendling, R. Maesaku, R. Hajo A, N. Semenenko,
Understanding business process models: the costs and benefits of
structuredness, in: Prod. of the 24th International Conference on Advanced
Information Systems Engineering (CAiSE), 2012.

[22] D.F. Ferraiolo, D.R. Kuhn, R. Chandramouli, Role-Based Access Control, 2nd ed.,
Artech House, 2007.

[23] A. Ferreira, D. Chadwick, P. Farinha, R. Correia, G. Zao, R. Chilro, L. Antunes,
How to securely break into RBAC: the BTG-RBAC model, in: Proceedings of the
2009 Annual Computer Security Applications Conference, December 2009.

[24] A. Ferreira, R. Cruz-Correia, L. Antunes, P. Farinha, E. Oliveira-Palhares, D.W.
Chadwick, A. Costa-Pereira, How to break access control in a controlled
manner, in: Proceedings of the 19th IEEE Symposium on Computer-Based
Medical Systems, 2006.

[25] C.K. Georgiadis, I. Mavridis, G. Pangalos, R.K. Thomas, Flexible team-based
access control using contexts, in: Proceedings of the Sixth ACM Symposium on
Access Control Models and Technologies (SACMAT), May 2001.

[26] B. Hoisl, S. Sobernig, M. Strembeck, Modeling and enforcing secure object
flows in process-driven SOAs: an integrated model-driven approach, Software
Syst. Model. (SoSyM) 13 (2) (2014).

[27] S.E. Hove, B. Anda, Experiences from conducting semi-structured interviews in
empirical software engineering research, in: Proc. of the 11th IEEE
International Software Metrics Symposium (METRICS), 2005.

[28] S. Marinovic, R. Craven, J. Ma, N. Dulay, Rumpole: a flexible break-glass access
control model, in: Proceedings of the 16th ACM Symposium on Access Control
Models and Technologies (SACMAT), 2011.

[29] M. Mernik, J. Heering, A.M. Sloane, When and how to develop domain-specific
languages, ACM Comput. Surv. (CSUR) 34 (4) (2005) 316–344.

[30] H. Mouratidis, J. Jürjens, From goal-driven security requirements engineering
to secure design, Int. J. Intell. Syst. 25 (8) (2010).

[31] S. Nurcan, A survey on the flexibility requirements related to business
processes and modeling artifacts, in: Proceedings of the Proceedings of the
41st Annual Hawaii International Conference on System Sciences, HICSS ’08,
January 2008.

[32] S. Oh, S. Park, Task-role-based access control model, Inf. Syst. 28 (6) (2003).
[33] OMG. OMG Business Process Modeling Notation, <http://www.omg.org/spec/

BPMN/1.2/> January 2009, Version 1.2, formal/2009-01-03, The Object
Management Group.

[34] OMG. Object Constraint Language Specification, <http://www.omg.org/
technology/documents/formal/ocl.htm> February 2010, Version 2.2, formal/
2010-02-01, The Object Management Group.

[35] OMG, Unified Modeling Language (OMG UML): Superstructure, <http://
www.omg.org/technology/documents/formal/uml.htm> May 2010. Version
2.3, formal/2010-05-03, The Object Management Group.

[36] OMG, Meta Object Facility (MOF) Core Specification – Version 2.4.1, 2011.
<http://www.omg.org/spec/MOF>.

[37] D. Povey. Optimistic security: a new access control paradigm, in: Proceedings
of the 1999 Workshop on New Security Paradigms, NSPW ’99, 2000.

[38] H.F. Ravi Sandhu, Edward Coyne, C. Youman, Role-based access control
models, IEEE Comput. 29 (2) (1996).

[39] M. Reichert, P. Dadam, Adept_flex-supporting dynamic changes of workflows
without losing control, J. Intell. Inf. Syst. 10 (2) (1998).

[40] M. Reichert, S. Rinderle-Ma, P. Dadam, Flexibility in process-aware
information systems, in: K. Jensen, W.M. Aalst (Eds.), Transactions on Petri
Nets and Other Models of Concurrency II, Springer-Verlag, Berlin, Heidelberg,
2009, pp. 115–135.

[41] E. Rissanen, B.S. Firozabadi, M. Sergot, Towards a mechanism for discretionary
overriding of access control, in: Proceedings of the 12th International
Workshop on Security Protocols, 2004.

[42] A. Rodriguez, E. Fernandez-Medina, M. Piattini, Capturing security
requirements in business processes through a UML 2.0 activity diagrams
profile, in: Workshop Proceedings of Advances in Conceptual Modeling -
Theory and Practice (ER Workshops), Lecture Notes in Computer Science
(LNCS), vol. 4231, Springer Verlag, 2006.

[43] P. Runeson, M. Höst, Guidelines for conducting and reporting case study
research in software engineering, Empirical Software Eng. 14 (2) (2009).

[44] N. Russell, A.H.M.T. Hofstede, D. Edmond, Workflow resource patterns:
identification, representation and tool support, in: Proceedings of the 17th
Conference on Advanced Information Systems Engineering (CAiSE’05), volume
3520 of Lecture Notes in Computer Science, 2005.

[45] N. Russell, W.M. van der Aalst, A.H.M.T. Hofstede, Exception handling patterns
in process-aware information systems, in: International Conference on
Advanced Information Systems Engineering (CAiSE), 2006.
[46] S. Schefer, M. Strembeck, Modeling process-related duties with extended UML
activity and interaction diagrams, in: Proc. of the International Workshop on
Flexible Workflows in Distributed Systems, Workshops der wissenschaftlichen
Konferenz Kommunikation in verteilten Systemen (WowKiVS), Electronic
Communications of the EASST, vol. 37, March 2011.

[47] S. Schefer, M. Strembeck, Modeling support for delegating roles, tasks, and
duties in a process-related RBAC context, in: International Workshop on
Information Systems Security Engineering (WISSE), Lecture Notes in Business
Information Processing (LNBIP), Springer Verlag, 2011.

[48] S. Schefer, M. Strembeck, J. Mendling, Checking satisfiability aspects of binding
constraints in a business process context, in: BPM 2011 Workshops (2), Proc.
of the BPM Workshop on Workflow Security Audit and Certification (WfSAC),
2011.

[49] S. Schefer, M. Strembeck, J. Mendling, A. Baumgrass, Detecting and resolving
conflicts of mutual-exclusion and binding constraints in a business process
context, in: OTM Conferences (1) 2011, Proc. of the 19th International
Conference on Cooperative Information Systems (CoopIS), October 2011.

[50] S. Schefer-Wenzl, M. Strembeck, A UML extension for modeling break-glass
policies, in: 5th International Workshop on Enterprise Modelling and
Information Systems Architectures (EMISA), 2012.

[51] S. Schefer-Wenzl, M. Strembeck, Modeling context-aware RBAC models for
business processes in ubiquitous computing environments, in: Proc. of the 3rd
International Conference on Mobile, Ubiquitous and Intelligent Computing
(MUSIC), June 2012.

[52] S. Schefer-Wenzl, M. Strembeck, Generic support for RBAC break-glass policies
in process-aware information systems, in: Proc. of the 28th ACM Symposium
on Applied Computing (SAC), 2013.

[53] S. Schefer-Wenzl, M. Strembeck, A. Baumgrass, An approach for consistent
delegation in process-aware information systems, in: Proc. of the 15th
International Conference on Business Information Systems (BIS), Lecture
Notes in Business Information Processing (LNBIP), vol. 117, Springer, 2012.

[54] D.C. Schmidt, Model-driven engineering – guest editorś introduction, IEEE
Comput. 39 (2) (2006).

[55] B. Selic, The pragmatics of model-driven development, IEEE Software 20 (5)
(2003).

[56] T. Stahl, M. Völter, Model-Driven Software Development, John Wiley & Sons,
2006.

[57] M. Strembeck, Embedding policy rules for software-based systems in a
requirements context, in: Proc. of the 6th IEEE International Workshop on
Policies for Distributed Systems and Networks (POLICY), June 2005.

[58] M. Strembeck, Scenario-driven role engineering, IEEE Secur. Privacy 8 (1)
(2010).

[59] M. Strembeck, J. Mendling, Generic algorithms for consistency checking of
mutual-exclusion and binding constraints in a business process context, in:
Proc. of the 18th International Conference on Cooperative Information
Systems (CoopIS), Lecture Notes in Computer Science (LNCS), vol. 6426,
Springer Verlag, 2010.

[60] M. Strembeck, J. Mendling, Modeling process-related RBAC models with
extended UML activity models, Inf. Software Technol. 53 (5) (2011).

[61] M. Strembeck, G. Neumann, An integrated approach to engineer and enforce
context constraints in RBAC environments, ACM Trans. Inf. Syst. Secur.
(TISSEC) 7 (3) (2004).

[62] M. Strembeck, U. Zdun, An approach for the systematic development of
domain-specific languages, Software: Pract. Exper. (SP&E) 39 (15) (2009).

[63] K. Tan, J. Crampton, C.A. Gunter, The consistency of task-based authorization
constraints in workflow systems, in: Proceedings of the 17th IEEE workshop
on Computer Security Foundations, June 2004.

[64] R.K. Thomas, R.S. Sandhu, Task-Based Authorization Controls (TBAC): a family
of models for active and enterprise-oriented authorization management, in:
Proceedings of the IFIP TC11 WG11.3 Eleventh International Conference on
Database Securty XI: Status and Prospects, August 1997.

[65] W.M.P. van der Aalst, M. Rosemann, M. Dumas, Deadline-based escalation
in process-aware information systems, Decis. Support Syst. 43 (2007)
492–511.

[66] S. von Stackelberg, K. Böhm, M. Bracht, Embedding ’break the glass’ into
business process models, in: OTM Conferences (1), 2012.

[67] J. Wainer, P. Barthelmess, A. Kumar, W-RBAC – a workflow security model
incorporating controlled overriding of constraints, Int. J. Coop. Inf. Syst. (IJCIS)
12 (4) (2003).

[68] J. Warner, V. Atluri, Inter-instance authorization constraints for secure
workflow management, in: Proceedings of the Eleventh ACM Symposium on
Access Control Models and Technologies (SACMAT), June 2006.

[69] B. Weber, S. Rinderle, M. Reichert, Change patterns and change support
features in process-aware information systems, in: International Conference
on Advanced Information Systems Engineering (CAiSE), 2007.

[70] D. Wetherall, C.J. Lindblad, Extending Tcl for dynamic object-oriented
programming, in: Proc. of the USENIX Tcl/Tk Workshop, 1995.

[71] C. Wolter, A. Schaad, Modeling of task-based authorization constraints in
BPMN, in: G. Alonso, P. Dadam, M. Rosemann (Eds.), Business Process
Management, Lecture Notes in Computer Science, vol. 4714, Springer, Berlin/
Heidelberg, 2007.

[72] C. Wolter, A. Schaad, C. Meinel, Task-based entailment constraints for basic
workflow patterns, in: Proceedings of the 13th ACM symposium on Access
control models and technologies (SACMAT), 2008.

[73] U. Zdun, M. Strembeck, G. Neumann, Object-based and class-based
composition of transitive mixins, Inf. Software Technol. 49 (8) (2007).

http://refhub.elsevier.com/S0950-5849(14)00091-3/h0030
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0030
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0030
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0035
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0035
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0040
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0040
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0040
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0045
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0045
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0050
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0050
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0050
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0055
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0055
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0055
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0060
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0060
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0065
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0065
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0070
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0075
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0075
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0080
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0080
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0085
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0085
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0085
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0085
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0085
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0085
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0085
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0090
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0090
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0090
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0090
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0090
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0090
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0095
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0095
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0100
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0100
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0100
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0100
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0100
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0105
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0105
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0105
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0105
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0105
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0110
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0110
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0115
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0115
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0120
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0120
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0120
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0125
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0125
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0130
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0130
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0130
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0130
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0130
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0130
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0135
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0135
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0140
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0140
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0140
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0145
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0145
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0150
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0150
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0150
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0155
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0155
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0155
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0160
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0160
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0160
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0160
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0160
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0160
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0160
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0160
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0165
http://refhub.elsevier.com/S0950-5849(14)00091-3/h0165

	Model-driven specification and enforcement of RBAC break-glass policies for process-aware information systems
	1 Introduction
	1.1 Motivation
	1.2 Approach synopsis

	2 Background
	2.1 Process-related RBAC models
	2.2 A motivating example

	3 Process-related break-glass policies
	4 A UML extension for process-related break-glass policies
	4.1 Metamodel overview
	4.2 OCL constraints
	4.3 Example for UML break-glass models

	5 Case study on modeling process-related break-glass RBAC models
	6 Platform support
	7 Discussion and related work
	7.1 Related work
	7.2 Integration with other approaches

	8 Conclusion
	Appendix A Algorithms for runtime consistency
	Appendix B Invariants for break-glass business activity models
	References

