Efficient Triggering of Trojan Hardware Logic

Artemios G. Voyiatzis*T, Kyriakos G. Stefanidis', Paris Kitsos*
* SBA Research, Vienna, Austria
avoyiatzis @sba-research.org
t Industrial Systems Institute, “Athena” RIC, Platani Patras, Greece
stefanidis @isi.gr
1 Computer Informatics and Engineering Department, TEI of Western Greece, Antirrion, Greece
pkitsos @ieee.org

Abstract—The detection of malicious hardware logic (hardware
Trojan) requires test patterns that succeed in exciting the
malicious logic part. Testing of all possible input patterns is often
prohibitively expensive. As an alternative, we explored previously
the applicability of the combinatorial testing principles.

In this paper, we turn our focus on the efficiency of this
approach for triggering the hidden malicious logic. We present
a series of experiments with Trojan designs of various activation
patterns and lengths that target a cryptographic module perform-
ing AES cryptography. Our findings indicate that the available
test suites succeed in triggering the malicious logic in all cases
requiring only a very small number of test vectors. Thus, it is
an efficient means for detecting malicious hardware logic.

I. INTRODUCTION

The reliance on digital supply chains of unprecedented
depth and spread around the globe raises concerns on the trust-
worthiness of complex (or even simple) embedded computing
systems [1]. The supply chain threat is already recognized in
the USA [2], [3]. The European Union, a pioneer in embedded
systems, is now also heavily depending on (possibly untrusted)
foreign ICT components and parts [4].

The hardware development lifecycle, from requirements
analysis to fabrication of the integrated circuits or configura-
tion of the FPGAs, involves many stages that are performed by
different parties. Thus, it is possible that a malevolent actor
(insider or outsider) injects malicious functionality at some
point. The terms “malicious hardware logic” and “hardware
Trojan horses” (or simply “Trojans”) are commonly used to
describe such functionality implemented in hardware [5].

The malicious functionality must be detected and removed
at the earliest possible. A process of secure development and
rigorous testing at each production stage, such as the one
proposed in [6], can reveal manipulations before fabrication.

If the malicious logic becomes part of the fabricated circuit
or the configured FPGA, the detection of a hardware Tro-
jan requires testing methods that go beyond the established
practice [7]. A black-box approach should be employed, as
one must assume and test for the existence of some Trojan
functionality hidden in the circuit. The reduction of the number
of performed tests is an important parameter to consider when
designing a test strategy for hardware Trojan detection.

Combinatorial testing (CT) is an efficient means for func-
tional testing of software components where their internals
are considered as a black box [8]. CT-based approaches

978-1-5090-2466-7/16/$31.00 ©2016 IEEE

utilize theoretical results from combinatorics, can compact
significantly the test suite size (i.e., the number of different test
inputs applied) under specific assumptions, and (in contrast to
random-based tests) provide mathematical guarantees for the
coverage of the assumed search space.

We explored the use of combinatorial testing for the case
of hardware Trojan detection by drawing the analogy with
black-box software testing in [9]. There, we demonstrated the
applicability of the technique for only one specific hardware
Trojan case. Here, we explore further this approach and
study its efficiency when applied for a wide range of Trojans
against a hardware implementation of the AES cryptographic
algorithm and in comparison with random-based testing.

The rest of the paper is organized as follows. Section II pro-
vides background information on hardware Trojan detection
techniques, including the applicability of the combinatorial
testing. Section III describes the set of the experiments we
designed. Section IV discusses the results of the experiments
and the detection efficiency. Finally, Section V concludes our
paper and presents some future directions of work.

II. HARDWARE TROJAN DETECTION
A. Trojan components and operation

A hardware Trojan comprises, in general, two parts: the
trigger and the payload. The trigger part is often considered
to be an always-on circuitry. It monitors the operation of the
contaminated system for the proper activation sequence to
occur. This can be a physical event (e.g., a switch press or
a temperature increase) or a digital one (e.g., a specific bit
pattern on selected inputs). Once the trigger logic detects the
correct sequence, it activates the payload part. The payload
part delivers the malicious functionality (e.g., injecting faults
in cryptographic computations aiding fault-based cryptanaly-
sis [10]).

It is important to highlight the difference between Trojan
triggering and Trojan excitation. The latter refers to the
operation of the contaminated part of a hardware design. If
the trigger part is not always on or if the triggering logic is
complex enough, some inputs might partially or fully excite the
Trojan circuitry albeit without triggering the Trojan payload
(Trojan activation). Based on this observation, defenses based
on run-time monitoring, such as the ones described in [11], can

200

further assist into detecting the presence of a Trojan without
activating its payload.

B. Attack model

It is desirable, from an attacker point of view, for the Trojan
to be controllable and observable. The former relates to the
ability to control the activation of the Trojan through some
external input. The latter relates to the ability to observe the
outcome of the Trojan activation at the output.

There is an upper limit of triggering complexity that an
attacker can implement. This relates to the number of gates
used, the degree of changes in the physical characteristics
of the circuit, and the number of input signals that can
be combined for realizing the triggering logic. Beyond this
limit, the conventional design automation tools and established
testing practices can reveal easily the presence of additional
logic [12]. Below this, we need improved testing approaches.

We assume in our attack model that the attackers opt for
a rather rare combination of a small number of input signal
values (pattern) for exciting and activating their Trojans, while
the triggering logic is realized using a handful of gates in order
to remain as stealthy as possible. This assumption is based on
the observation that the models used by the design automation
tools do not capture the behavior of a Trojan and cannot
exhaustively test all possible inputs in a realistic timeframe.
Yet, a less rare pattern is more probable to be applied during
the analysis and thus, reveal the presence of the Trojan.

C. Testing for Trojan presence based on signal rareness

The assumption of rareness is explored in many Trojan
detection proposals. The objective is to reduce the size of
the set of different inputs applied (i.e., the size of the fest
suite comprising fest vectors, while increasing the confidence
level that the system under test (SUT) is Trojan-free. This is
beneficial as it reduces the test time per SUT (faster batch
testing) and the stress of continuous operation (aging effect
avoidance).

Automatic Test Pattern Generation (ATPG) could be an
initial approach; however it tends to produce a large num-
ber of test vectors [13], [14]. Some initial approaches (e.g.,
MERO [15]) focus on analyzing the hardware design and guid-
ing the test vector generation towards rare patterns, assuming
that the attacker would do the same [16], [17], [18].

Attempts to introduce testability signals in the designs may
result in Trojan designs that incorporate these signals as a
notification for remaining silent when tested [18], [19]. This is
an established technique used by malicious software authors
to defend against malware analysis platforms [20], [21]. As
design analysis becomes more and more complex and time
consuming, probabilistic generation of test vectors is also
proposed [22].

D. Testing based on search space coverage

The assumption of rareness is challenged for practical
reasons (time complexity to derive an appropriate test suite, as
discussed in [22]) as well as because rare triggering conditions

TABLE I
TEST SUITE STRENGTH AND SEARCH SPACE REDUCTION

Strength | Suite size Covered patterns
t=2 11 32,512
t=3 37 2,731,008
t=4 112 170,688,000
t=5 252 8,466,124,800
t=06 720 347,111,116,800
t="17 2,462 12,099,301,785,600
t=38 17,544 | 366,003,879,014,400

can be constructed by combining conditions that are not so
rare [23]. It is beneficial to shift the focus towards providing
metrics of the coverage of the input vector space.

The attacker needs to be able to control the Trojan operation
and remain stealthy, as explained in Section II-B. The new
assumption is that the attacker is self-limited to use only &
of the available n input signals, where k << n, as to define
the activation sequence. In this case, a test suite comprising
all the 2% x (Z) possible input signal combinations will reveal
the presence of the Trojan. A first approach towards generating
test suites that cover all the k& subspaces is provided in [13].
However, the approach generates rather large test suites.

E. Combinatorial testing

We proposed a better approach in [9]. The approach is
based on the combinatorial testing principles and utilizes the
mathematical construct of covering arrays [8].

Assume that a Trojan targetting a cryptographic algorithm
implementation is controlled using as input signals some k = 2
out of the n = 128 possible plaintext bits. There are 32,512
possible combinations (patterns) to check. In this case, the CT-
based approach succeeded in compacting this search space into
just 11 vectors (i.e., test vectors). Thus, by applying the test
suite comprising these 11 test vectors, one is assured that all
possible activation patterns of length &k = 2 were applied. This
is denoted as the test suite having a strength ¢ = 2. Similar
test suite size reductions were reported for £ up to 8 and are
summarized in Table I for convenience. The test suites are
available online'.

The applicability of the CT-based approach was demon-
strated only for one specific case of Trojan with £ = 8 and for
an all-ones activation pattern. In the following, we explore this
promising approach further by validating the initial findings
and by studying its efficiency against multiple Trojan variants
of different sizes and triggering patterns.

III. EXPERIMENTAL SETUP

Hardware implementations of cryptographic algorithms are
an attractive target for Trojan insertion due to the inherent
complexity of their designs and the sensitive information that
they process. We opted to study the efficiency of the CT-based
approach using the AES symmetric-key encryption algorithm
as a case study. We describe in the next paragraphs the AES
cryptographic module, the Trojan variants that we implanted

Uhttp://www.tamps.cinvestav.mx/~jtj/HMD/index.html

201

enc_dec

key(124)
key(116)

key(102)
key(98) r
mod_enc_dec

key(57)
key(39)

key(30)
key(8)

Fig. 1. An example Trojan design.

in the design of the module, and the set and aims of the
performed experiments.

A. AES cryptographic module

We opted for the AES implementation that is provided with
the SAKURA-G board® for our experiments. Its hardware
architecture is discussed in detail in [24].

The AES module accepts as inputs a 128-bit key quantity
and a 128-bit plaintext (ciphertext) quantity and produces
as an output a 128-bit ciphertext (plaintext). The module
implements the ECB mode of AES. It can be used as a building
block for implementing other modes of AES, such as CBC
or OFB, using additional logic for combining and reusing
its output. The module can be controlled to perform either
the encryption or the decryption operation with one control
signal (herein, enc_dec). In our experiments, we consider
the internals of the AES module as a black box.

B. Trojan contamination

We assume that an informed attacker is able to inject
malicious functionality in the aforementioned AES module.
Figure 1 depicts an example Trojan design with £ = 8.
The Trojan monitors eight inputs of the key material of the
AES module (namely: 8,30,39,57,98,102,116, and 124) for the
specific pattern “11100101” to occur. The payload part of
the Trojan comprises one XOR gate that inverts the value
of the enc_dec signal. This results in a denial-of-service
attack, as the module will not perform the correct operation
and the output will be incomprehensible. Observe that the
attack is very hard to cope with. There are about 366 frillion
combinations (28 x (138)) for an attacker to choose from and
only a handful of gates are needed to realize the whole Trojan.

Simulating the attacker behavior, we contaminated the AES
module with 112 variations of the same Trojan of length
k = 8. The variants are classified in two groups. In the first
group, namely A, we use “11111111” (eight ones) as a
trigger pattern and we vary the monitored positions (e.g., one
Trojan triggers when the provided key contains ones in the
positions {1, 6, 27, 54, 58, 116, 120, 122} while another one
triggers when an all-ones pattern occurs in the positions {22,
37, 38, 64, 75, 99, 109, 118}.

Zhttp://satoh.cs.uec.ac.jp/SAKUR A/hardware/SAKURA-G.html

In the second group, namely B, we keep the monitored
positions fixed and we vary the trigger pattern (e.g., one Trojan
triggers when the pattern “01100101” occurs, while another
one triggers when the pattern “11010100” occurs.

C. Trojan detection

We consider the scenario where someone (a defender)
receives a batch of fabricated AES modules and suspects
that they are contaminated with a Trojan. The aim of the
defender is to reduce the test time per module while retaining
a high confidence that the module is Trojan-free. The defender
can check the output of the AES module against the one of
a trusted implementation of the algorithm (e.g., a software
version from a trusted source). If the two outputs differ, then
the Trojan is assumed to be present.

We assess the effectiveness of the test suites reported in
Table I on exciting the various Trojans described in the
previous section. In total, we report and discuss the results
of five sets of experiments:

« We run each of the seven test suites once against a trusted
implementation of the AES module. The results serve as
the baseline (sanity check) for the comparison.

o We run each of the seven test suites once against a specific
contaminated AES module.

o We run each of the seven test suites once against eight
variants of contaminated AES modules. In all cases, the
Trojan uses a triggering pattern of eight ones but the eight
monitored positions are different.

o We run each of the seven test suites once against eight
more variants of contaminated AES modules. In all cases,
the Trojan uses the same eight monitored positions but
uses a triggering pattern with varying number of ones
(The Hamming weight of the pattern varies between 1
and 8).

o We run each of the seven test suites against contaminated
AES modules and we compare their efficiency in con-
trast with test suites comprising randomly-selected test
vectors.

We used the Modelsim tool with appropriate scripting (do
files and shell scripts) in all of the experiments for automating
the execution, collection, and comparison of the outputs. The
approach can be easily extended to a hardware co-simulation
using the Xilinx ISim HW Co-Simulation® environment.

IV. RESULTS AND DISCUSSION
A. Applicability validation

The first set of experiments studies the efficiency of the test
suites of Table I on detecting a Trojan that monitors £ = 8
inputs for an all-ones pattern. Table II summarizes the results
and compares with the ones reported in [9].

We confirm that test suites of strength ¢ that is smaller
than the length of the Trojan £ are still capable to trigger the
Trojan. Furthermore, in the case of ¢ = k, the Trojan payload
is activated hundreds of times.

3http://www.xilinx.com/tools/feature/ 14_1_isim_hw_cosim_qrg.pdf

202

TABLE II
NUMBER OF ALL-ONES k = 8 TROJAN PAYLOAD ACTIVATIONS PER TEST
SUITE
Strength [9] | Ours
t=2 0 0
t=3 0 1
t=4 1 1
t=5 1 2
t=06 6 4
t="7 10 11
t=28 178 272

There are some slight deviations in the number of the
Trojan payload activations between the two works. This can
be explained by the fact that the underlying covering array
constructs used for deriving the test suites guarantee the
presence of each pattern at least once. However, they do not
guarantee a fixed number of occurrences for each possible of
the possible patterns.

B. Effect of inputs selection

The second set of experiments studies the efficiency of the
test suites on detecting a Trojan that monitors k¥ = 8 inputs of
varying patterns. We used eight different patterns and Table III
summarizes the results.

The lower-strength test suites (¢ < 6) succeed in triggering
the Trojan in many cases. The higher-strength test suites
(t > b5) always succeed in activating the Trojans. The test
suite matching the length of the Trojan (t = k = 8) succeeds
hundreds of times. As before, there is a variation in the exact
number of activations, which depends on the structure of the
covering array construct and the specific pattern.

C. Effect of triggering pattern

The third set of experiments studies the efficiency of the test
suites on detecting a Trojan that monitors for a specific (not
all-ones) pattern to appear on a specific combination of inputs.
For the sake of comparison and reference, we opted for the
same combination of inputs as the ones reported in Table II,
namely 8-30-39-57-98-102-116-124. Table IV sum-
marizes the results.

We can group the results of this set in three classes. The
very-low-strength test suites (t = 2 and ¢ = 3) almost never
succeed in triggering the k£ = 8 Trojan. The low-strength test
suites (f = 4 and ¢ = 5) sporadically succeed in triggering
the Trojan. The middle-strength test suites(f = 6 and ¢t = 7)
always succeed in triggering the Trojan. The test suite with
strength that matches the Trojan length (t = k = 8) always
succeeds in activating the Trojan; this happens not only once
but dozens of times per examined Trojan.

D. Effect of Trojan length

The fourth set of experiments studies the efficiency of the
test suites on detecting a Trojan with variable length k. We
vary the length of the Trojan, k, the monitored positions, and
the triggering pattern. Based on the indications of Table IV,
we favored patterns with a balanced number of ones and zeros.
Such patterns are expected to be covered less times in the test

TABLE VII
SEARCH SPACE COVERAGE PER TEST SUITE

Length Total patterns Our Random Missing
k=2 32,512 | 100% 94,92% 1,649
k=3 2,731,008 | 100% 99, 20% 21,718
k=4 170,688,000 | 100% 99,92% 129,882
k=5 8,466,124,800 | 100% 99,96% | 3,295,565
k=6 | 347,111,116,800 | 100% | 99,998% | 4,268,479

suites, given the combinatorial origin of the latter. Table V
summarizes the results.

The test suites always succeed in activating the Trojan,
provided that ¢ > k i.e., the test suite strength is equal or
greater than the length of the Trojan. Testing with a test suite
of strength greater than the Trojan’s length requires more test
vectors to be applied (cf. Table I) and thus, more testing
time. Yet, it results in increased activations, providing clearer
evidence of the Trojan’s presence.

There is no case where a lower-strength test suite succeeds
in activating a Trojan while a higher-strength test suite fails
to do so. This is an expected outcome for these test suites: by
their definition, any higher-strength test suite already includes
the lower-strength combinations too.

The above analysis indicates that there is no apparent reason
to run lower-strength test suites before or on top of the higher-
strength ones. From a testing budget perspective, one should
apply directly the highest-strength test suite they can afford.

E. Effect of test suite construction method

The fifth set of experiments studies the efficiency of the test
suites in comparison with a test suite consisting of randomly-
selected vectors on detecting a Trojan. Table VI summarizes
our experiments.

For each Trojan length &, we apply the two test suites of
equal size and compare the number of activations achieved. It
appears that the two suites have more or less the same per-
formance for the specific combination of monitored positions
and activation pattern.

One can argue that test suites comprising random vectors
are as good as the ones of Table I. However, the former do not
provide a full coverage of the search space and do not provide
a minimum guarantee of coverage percentage. To confirm this,
we enumerated using a software program the total number of
patterns contained in generated test suites comprising random
vectors. We report in Table VII the total patterns per case, the
percentage of those covered by our test suites (always 100%),
the coverage of the random ones, and the number of missing
patterns. It was beyond our capacity to enumerate the patterns
beyond k = 6.

It is evident that the suites comprising randomly-selected
vectors fail to cover the whole search space albeit they exhibit
a good coverage percentage. Since the test suites of Table I are
readily available and provide full coverage, there is no reason
to opt for the random ones and risk the possibility to use a
contaminated implementation.

203

TABLE III
ACTIVATIONS OF ALL-ONES TROJAN PER MONITORED INPUT POSITIONS AND TEST SUITE

Monitored positions (kK = 8) t=2 | t=3|t=4|t=5|t=6|t=T7|t=8
0-21-32-53-79-100-104-126 1 1 1 0 3 11 159
0-33-45-79-82-94-120-124 0 2 1 0 4 10 168
1-6-27-54-58-116-120-122 0 1 1 1 6 9 193
17-29-44-67-80-98-114-119 0 1 2 2 3 4 208
22-37-38-64-75-99-109-118 0 0 1 1 1 6 182
29-35-47-62-77-107-112-117 0 1 1 1 5 9 201
30-34-37-40-110-115-125-127 1 1 1 1 4 7 202
9-15-37-60-71-97-110-120 0 0 2 0 5 10 216
TABLE IV

ACTIVATIONS OF PATTERN TROJAN PER PATTERN AND TEST SUITE

Trigger pattern | t =2 | t=3 | t=4 | t=5 | t=6 | t=7 | t=28
11111111 0 1 1 2 4 11 272
11111101 0 0 0 0 8 10 63
10110111 0 0 0 1 5 10 43
01011110 0 0 1 1 5 12 52
11100100 0 0 1 0 8 12 66
01010010 0 0 0 1 4 11 61
00100010 0 0 1 1 3 5 64
00100000 0 0 2 0 5 7 142
TABLE V

ACTIVATIONS OF VARIABLE-LENGTH TROJANS PER LENGTH k£ AND TEST SUITE

Length | Positions Pattern t=2 | t=3 | t=4|t=5|t=6|t=7|t=28
k=2 | 21-114 01 3 10 30 63 308 616 | 4,125
k=3 | 21-79-114 101 1 4 15 32 156 308 | 2,063
k= 21-79-97-119 0101 0 3 7 17 82 160 987
k= 3-23-89-107-124 10100 0 2 7 9 38 80 532
k= 3-23-89-95-117-124 001101 0 0 2 6 21 44 200
k=7 | 3-23-63-90-96-118-122 1010110 0 0 2 3 12 23 107
k=8 | 3-23-63-79-90-96-118-122 | 01100100 0 0 0 1 7 10 67
TABLE VI

ACTIVATIONS PER TROJAN LENGTH k AND TEST SUITE CONSTRUCTION METHOD

Length | Monitored positions Pattern Size | Our | Random
k=2 | 21-114 01 11 3 4
k=3 | 21-79-114 101 37 4 9
k=4 | 21-79-97-119 0101 112 7 13
k=5 | 3-23-89-107-124 10100 252 9 9
k=6 | 3-23-89-95-117-124 001101 720 21 11
k=17 | 3-23-63-90-96-118-122 1010110 2,462 23 19
k=8 | 3-23-63-79-90-96-118-122 01100100 | 17,544 67 71
k=28 8-30-39-57-98-102-116-124 | 10110111 | 17,544 43 75
k=8 8-30-39-57-98-102-116-124 | 11100100 | 17,544 66 82
k=8 8-30-39-57-98-102-116-124 | 00100000 | 17,544 | 142 62

V. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the efficiency of test suites
comprising covering arrays constructs for hardware Trojan
horse detection. The results indicate that these test suites are
powerful into uncovering the presence of a Trojan. This power
originates from the mathematical guarantees that they cover
the whole input space of combinations for a specific number
t (the test suite strength).

Our work indicates that combinatorial testing, an approach
mainly practiced by the software testing community, offers
techniques that are useful for integrating in the hardware de-
velopment lifecycles. As such, a closer collaboration between
researchers and practitioners of the two fields may turn rather
beneficial for cross-fertilization and advances in both fields.

From a hardware Trojan detection perspective, it is ben-
eficial to have constructs of as high strength ¢ as possible.
This would allow for detecting Trojans of greater length k.
A defender can define an “undetectability level” (u) i.e., the
number of inputs beyond which they can detect a manipulation
in the design using established hardware testing techniques.
As such, test suites with strength u will be sufficient. If
u =t = 8 is sufficient remains to be assessed by the research
and industry community.

We further observe that a test suite of strength u covers
all the cases up to and including w. Thus, there is no need
to apply the test suites of smaller strength. If the design is
contaminated with a Trojan of smaller length, applying a test
suite of greater length will result in numerous activations.

204

Finally, the size of the test suite is an important aim
for optimization. The mathematical guarantees of the search
space coverage can be utilized once the test suite size fits
the time budget constraints for testing. At the one extreme,
there is exhaustive testing; this cannot be applicable in most
cases, and definitely not in the case of cryptographic modules
with hundreds of inputs for key and data material. At the
other extreme of testing lies testing with randomly-generated
vectors. While this can quickly reach high coverage rates, it
takes enormous more vectors to provide a 100% coverage.
Currently, just 11 vectors are enough for activating any Trojan
that uses two inputs. This number reaches 17,544 in the case
of eight inputs, covering 366 trillion possible combinations.
The number is pretty small. Yet, any further size reductions
result in less time needed for testing and this would be more
than welcomed.

We envision three directions for future work. The first
direction relates to the application of combinatorial testing
techniques against combinational Trojans targeting modules
that offer other functionality rather than cryptographic opera-
tions. The second direction relates to the study of advanced
Trojans that incorporate state elements in their design. A
repeated application of the available test suites may reveal
the presence of sequential Trojans hence, any further size
reduction of the test suites is rather beneficial. Finally, a third
direction relates to studying the applicability and the efficiency
of such test suites as signal amplifiers against Trojans that
do not directly affect the output but rather leak information
through a side channel.

VI. ACKNOWLEDGMENTS

This work was partially supported by the COMET Kl
program by the Austrian Research Funding Agency (FFG) and
the GSRT Action “KRIPIS” with funds by the EU and the
Greek State in the context of the research project “ISRTDI”.

REFERENCES

[1] R. George, “Why we should worry about the supply chain,” International
Jornal of Critical Infrastructure Protection, vol. 11, pp. 22-23, 2015.

[2] M. Rogers and C. D. Ruppersberger, Investigative Report on the US Na-
tional Security Issues Posed by Chinese Telecommunications Companies
Huawei and ZTE: A Report. US House of Representatives, 2012.

[3] J. Boyens, C. Paulsen, R. Moorthy, N. Bartol, and S. A. Shankles, “Sup-
ply chain risk management practices for federal information systems and
organizations,” NIST Special Publication, vol. 800, no. 161, p. 1, 2014.

[4] European Network and Information Security (NIS) Platform, “Cyberse-
curity Strategic Research Agenda - SRA,” August 2015, final version
v0.96.

[51 S. Adee, “The hunt for the kill switch,” IEEE Spectrum, vol. 45, no. 5,
pp. 34-39, 2008.

[6] A. Dabrowski, H. Hobel, J. Ullrich, K. Krombholz, and E. Weippl,
“Towards a hardware Trojan detection cycle,” in Availability, Reliability
and Security (ARES), 2014 Ninth International Conference on, Sept
2014, pp. 287-294.

205

[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

[23]

[24]

P. Kitsos and A. Voyiatzis, “Towards a hardware Trojan detection
methodology,” in 2nd EUROMICRO/IEEE Workshop on Embedded and
Cyber-Physical Systems (ECYPS 2014), Budva, Montenegro, Jun. 2014.
D. Kuhn, R. Bryce, F. Duan, L. Ghandehari, Y. Lei, and R. Kacker,
“Combinatorial testing: Theory and practice,” Advances in Computers,
2015.

P. Kitsos, D. Simos, J. Torres-Jimenez, and A. Voyiatzis, “Exciting
FPGA cryptographic Trojans using combinatorial testing,” in 26th
IEEE International Symposium on Software Reliability Engineering, ser.
ISSRE 2015. Gaithersburg, MD, USA, November 2-5, 2015: IEEE
Computer Society, 2015, pp. 69-76.

S. Bhasin, J.-L. Danger, S. Guilley, X. T. Ngo, and L. Sauvage,
“Hardware Trojan horses in cryptographic IP cores,” in Fault Diagnosis
and Tolerance in Cryptography (FDTC), 2013 Workshop on. 1EEE,
2013, pp. 15-29.

P. Kitsos and A. Voyiatzis, “FPGA Trojan detection using length-
optimized ring oscillators,” in 17th EUROMICRO Conference on Digital
System Design (DSD 2014). Verona, Italy: IEEE CPS, Aug. 2014.

K. S. Kumar, R. Chanamala, S. R. Sahoo, and K. Mahapatra, “An
improved AES hardware Trojan benchmark to validate Trojan detection
schemes in an ASIC design flow,” in VLSI Design and Test (VDAT),
2015 19th International Symposium on. 1EEE, 2015, pp. 1-6.

N. Lesperance, S. Kulkarni, and K.-T. T. Cheng, “Hardware Trojan
detection using exhaustive testing of k-bit subspaces,” in Design Au-
tomation Conference (ASP-DAC), 2015 20th Asia and South Pacific.
Tokyo, Japan: IEEE, Jan. 2015, pp. 755-760.

M.-L. Flottes, S. Dupuis, P.-S. Ba, and B. Rouzeyre, “On the limitations
of logic testing for detecting hardware Trojans horses,” in Design &
Technology of Integrated Systems in Nanoscale Era (DTIS), 2015 10th
IEEE International Conference On. 1EEE, 2015.

R. S. Chakraborty, F. Wolff, S. Paul, C. Papachristou, and S. Bhunia,
“MERO: A statistical approach for hardware Trojan detection,” in Cryp-
tographic Hardware and Embedded Systems (CHES 2009). Springer,
2009, pp. 396-410.

L. Fand, L. Li, and Z. Li, “A practical test patterns generation technique
for hardware Trojan detection,” ELEKTROTEHNIKI VESTNIK, vol. 80,
no. 5, pp. 266-270, 2013.

H. Salmani, M. Tehranipoor, and J. Plusquellic, “A novel technique
for improving hardware Trojan detection and reducing Trojan activation
time,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, vol. 20, no. 1, pp. 112-125, 2012.

A. Sreedhar, S. Kundu, and I. Koren, “On reliability Trojan injection
and detection,” Journal of Low Power Electronics, vol. 8, no. 5, pp.
674-683, 2012.

S. Ray, J. Yang, A. Basak, and S. Bhunia, “Correctness and security at
odds: Post-silicon validation of modern SoC designs,” in Proceedings of
the 52nd Annual Design Automation Conference, ser. DAC ’15. New
York, NY, USA: ACM, 2015, pp. 146:1-146:6.

T. Vidas and N. Christin, “Evading Android runtime analysis via
sandbox detection,” in Proceedings of the 9th ACM symposium on
Information, computer and communications security. ACM, 2014, pp.
447-458.

M. Lindorfer, C. Kolbitsch, and P. M. Comparetti, “Detecting
environment-sensitive malware,” in Recent Advances in Intrusion De-
tection. Springer, 2011, pp. 338-357.

X. Mingfu, H. Aiqun, H. Yi, and L. Guyue, “Monte Carlo based test
pattern generation for hardware Trojan detection,” in Dependable, Au-
tonomic and Secure Computing (DASC), 2013 IEEE 11th International
Conference on. 1EEE, 2013, pp. 131-136.

S. Dupuis, P.-S. Ba, M.-L. Flottes, G. Di Natale, and B. Rouzeyre,
“New testing procedure for finding insertion sites of stealthy hardware
Trojans,” in Proceedings of the 2015 Design, Automation & Test in
Europe Conference & Exhibition (DATE). EDA Consortium, 2015, pp.
776-781.

A. Satoh, S. Morioka, K. Takano, and S. Munetoh, “A compact Ri-
jndael hardware architecture with S-box optimization,” in Advances in
CryptologyASIACRYPT 2001. Springer, 2001, pp. 239-254.

