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Abstract. In the ongoing arms race between spammers and the multi-
million dollar anti-spam industry, the number of unsolicited e-mail mes-
sages (better known as “spam”) and phishing has increased heavily in the
last decade. In this paper, we show that our novel friend-in-the-middle
attack on social networking sites (SNSs) can be used to harvest social
data in an automated fashion. This social data can then be exploited for
large-scale attacks such as context-aware spam and social-phishing. We
prove the feasibility of our attack exemplarily on Facebook and identify
possible consequences based on a mathematical model and simulations.
Alarmingly, all major SNSs are vulnerable to our attack as they fail to
secure the network layer appropriately.



1 Introduction

Criminals, as well as direct marketers, continue to clog mailboxes with unsolicited
bulk e-mails (e.g., spam and phishing) in the hope of financial gain. So far, their
strategy is straightforward, namely to send out a vast numbers of unsolicited
e-mails in order to maximize profit on the tiny fraction that falls for their scams.
Their pool of target e-mail addresses is normally based upon data harvested
with web crawlers or trojans, sometimes even including plain dictionary-based
guessing of valid targets. Previous research indicates that social networking sites
(SNSs) might change the playing field of spam attacks in the near future. SNSs
contain a pool of sensitive information which can be misused for spam messages,
namely contact information (email addresses, instant messaging accounts, etc.)
and personal information which can be used to improve the believability of spam
messages. A successful extraction of sensitive information from SNSs would re-
sult in spam attacks that are based upon a pool of verified e-mail addresses.
Thus messages may have higher conversion rates, increasing the success rate of
spam.
Gaining access to the pool of personal information stored in SNSs and imper-
sonating a social network user poses a non-trivial challenge. Gross and Acquisti
[22] as well as Jones and Soltren [32] were among the first researchers to raise
awareness for information extraction vulnerabilities of SNSs. While their tech-
niques were rather straightforward (automated scripts which retrieve web pages),
their results eventually led to security improvements of SNSs. Existing attempts
to extract information from SNSs focus on the application layer and can thus
be mitigated by adapting a specific social network’s application logic. Recent
publications devoted to information extraction from SNSs introduced elaborate
methods such as the inference of a user’s social graph from their public listings
[11] or cross-platform profile cloning attacks [8]. The leakage of personal infor-
mation from these platforms creates a remarkable dilemma as this information
forms the ideal base for further attacks. Jagatic et al. [30] showed that they
could increase the success rate of phishing attacks from 16 to 72 % using “social
data”. In social engineering, additional available information on targets could
lead to automated social engineering attacks [28]. The main obstacle for large-
scale spam attacks on basis of SNSs are the various access protection measures
providers offer to keep sensitive information private or at least limit access to a
closed circle of friends. Our friend-in-the-middle attack overcomes this obstacle
by hijacking HTTP sessions on the network layer, which the majority of SNSs
providers fail to secure.

The main contributions of our work are:

– A novel friend-in-the-middle attack on social networks and how it can be
used for context-aware spam and social phishing on a large scale.

– An evaluation of the feasibility of our attack on basis of Facebook.
– A simulation to estimate the impact a friend-in-the-middle spam campaign

would have.
– A discussion on protection measures and mitigation strategies.
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The rest of the paper is organized as follows: Section 2 provides brief back-
ground information on spam, social graphs models and the prevalence of vulner-
able social networking sites. Section 3 outlines the friend-in-the-middle attack.
We explain our methodology used to verify the practicability of our attack for
large-scale information extraction in Section 4, while describing our model to
simulate the possible effects on real-world SNSs in Section 5. Our findings and
mitigation strategies are discussed in Section 6, followed by our overall conclusion
in Section 7.

2 Background

In the following section we give a brief introduction to related research in the
areas of spam, phishing and how data from SNSs might change the success rate
of these malicious messages. Furthermore we discuss which social networking
services are vulnerable to our novel attack. Finally, we outline theoretical graph
models for social networks.

Spam and Phishing. It is believed that the vast majority of emails sent
today are spam, accounting for more than 90% of all emails. Empirical studies
showed that while the conversion rate of spam is quite low, it is apparently still
sufficient for the spammers to make money [33]. Phishing, on the other hand, can
be seen as the marriage between social engineering and spam, where attackers try
to fool victims into entering their login credentials into malicious websites that
mimic a real website (e.g., a bank). As phishing uses the same attack vector
(email) and infrastructure as spamming (phishing websites are hosted on fast
flux networks [27]), research in this area is closely related to spam and botnet
research. Current research focuses on preventing spam delivery and how botnets
are used for sending spam (e.g., the Storm [35] or Szizbi [49] botnets) to defeat
IP blacklisting from email service providers. In practice, a combination of various
techniques is used to minimize spam: sender-based systems such as SPF [54], IP
blacklisting such as the Spamhouse blocklist [48], and content matching systems
such as SpamAssassin [47].
Social networking sites might change the way large-scale spam and phishing
attacks are carried out. Jagatic et al. [30] showed how information extracted from
online social networks significantly increased the success rate of phishing, while
Brown et al. [12] raised awareness that these emerging online services could also
form the basis of context-aware spam. With information extracted from social
networking sites, spam and phishing messages become tailored to the receiver.
Tailored messages eventually result in fewer messages that are required to gain
the same effect as with huge spam campaigns. For example, attackers could use
pictures extracted from a friend’s social networking services or sign messages
with the name of the target’s friend in order to increase the apparent of spam
and phishing messages.

2



Social Networking Site

Name Claimed users HTTPS

Facebook 400× 106 Login only
Friendster 110× 106 No
Orkut 100× 106 Login only
hi5 80× 106 No
LinkedIn 60× 106 Login only

Table 1. Top five social networking sites and their support for HTTPS.

Social Networking Sites (SNSs). SNSs have become one of the most
popular online services and are used by millions of users around the world. They
offer a platform to foster social relationships over the Internet and are in gen-
eral free of charge. The business paradigm these services follow is similar to
Google’s in the sense that users do not have to pay for service usage and profit
is generated via online advertising. Because people provide plenty of personal
information about themselves on social networks, advertisers can effectively tar-
get specific demographic groups (e.g., an advertisement for male college students
between the age of 18 and 22 years in the US). Hence, in order to make SNSs
attractive platforms for advertisers, SNSs encourage their users to share as much
information about themselves as possible [16].

The European Network and Information Security Agency (ENISA) published
a position paper on the information security of SNSs [26] and introduced four
threat categories which are useful to understand all the information security risks
that are involved with SNSs usage. Within this paper we focus however only
on two attack vectors: unencrypted network communication between users and
SNSs providers, as well as information leakage through third party applications.

Data between the user and the social networking platform is usually trans-
mitted over the unencrypted HTTP protocol, while only some networks protect
the transmitted login credentials with TLS. This means that the entire commu-
nication content (including the information with whom a user is friends with,
status updates and pictures) are vulnerable to eavesdropping. We hypothesize
that the social network operators refrain from offering their services over a se-
cure channel for performance and cost reasons (compare in [24]). Table 1 shows
the biggest social networking sites at the time of writing and their support for
HTTPS. The ranking of the different SNSs is based on their self-claimed user-
bases [15,50,18,41,36] and no reliable numbers on the size of their networks exist.

Like other web services, SNSs rely on session cookies to track the state of a
certain user. These session cookies are saved locally at the client side, containing
among other information a shared, hashed secret. This shared secret is used as a
proof that the users has been successfully authenticated by providing username
and password. As these cookies are transmitted unencrypted, the communication
between a user and a SNS provider is vulnerable to cookie hijacking. Thus, an
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Social Networking Site

Name App. Registration Client Libraries

Facebook open PHP5 JS librarya

Friendster open OpenSocial API
Orkut open OpenSocial API
hi5 open OpenSocial API
LinkedIn closed OpenSocial API

Table 2. Support for custom applications.

a A number of unsupported libraries for other common scripting lan-
guages are available as well. The PHP5 library though, is officially
supported by Facebook.

attacker could take over a user’s social networking sessions by sniffing out the
HTTP cookies, since the majority of SNSs providers do not support HTTPS.

Another related risk is the support for third party applications. SNSs providers
offer a developer API for third party applications. These APIs provide yet an-
other way to tap into the pool of personal information stored within SNSs. Once
a user adds a certain third party application to her/his profile, the application is
automatically granted access to this user’s personal information. Table 2 shows
that today’s biggest SNSs already support custom applications, while LinkedIn
is the only SNS which has an application review process. With the remaining
four platforms, custom applications can be added by anyone without any prior
security or privacy screenings.

SNS and graph theory. Since the dawn of the Internet, there has been
extensive theoretical work in modeling the structure of social networks [17].
The various proposed models are focusing on the realization of certain proper-
ties of the social graphs observed in practice. Recent work on social networks
within mathematics has focused on three distinctive features of network struc-
ture: the small average path length (APL) or small world effect [39], the high
clustering effect and the property of having a scale free degree distribution [7].
Within network simulations and modeling there are basically three main classes
of paradigms. The first one, which is probably the simplest useful model of a
network, is the classic random graph or Poisson random graph [14,46]. Random
graph theory has been well studied by mathematicians [10,31]. It is still widely
used in many fields and serves as a benchmark for many modeling studies. How-
ever, the properties of these classic random graphs are not consistent with the
properties observed in real social networks. The second class, motivated by the
small world effect, are small-world models. The idea of shortcuts for small-world
models was proposed by Watts and Strogatz [53], followed by many other scien-
tists of all specialities [5,44]. These models account for the so called six degrees
of separation phenomenon. Finally there are scale-free models [6] which are basi-
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cally networks with a given degree distribution, more precisely with a power law
distribution. The discovery of the power-law degree distribution has led to the
construction of various scale-free models, which try to provide a universal theory
of network evolution and the realization of the skewed degree distribution. For
an overview of various analytical models, we refer the interested reader to [4].

3 FITM Attacks

SNS provider

Social networking session

Friend 
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Sniff active session
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Friend
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Friend

Friend

Friend
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3
4 Spam & phishing emails

Cloned HTTP session

Extra
ct account content

Fig. 1. Outline of a large-scale spam campaign via the friend-in-the-middle at-
tack: A social networking session is hijacked to fetch personal information from
a victim’s profile. The extracted information is then used for spam and phishing
emails targeted at the victim’s friends.

We define friend-in-the-middle attacks as active eavesdropping attacks against
social networking sites. Our FITM attack is based on the missing protection of
the communication link between users and social networking providers. By hi-
jacking session cookies, it becomes possible to impersonate the victim and inter-
act with the social network without proper authorization. While at first glance
the risk of hijacking social networking seems like yet another threat to privacy,
we claim that FITM attacks enable large-scale spam attacks. Within this sec-
tion, we first explain various attack scenarios on basis of session hijacking and
describe how FITM attacks could be misused for large-scale spam campaigns on
basis of Facebook.

HTTP Session Hijacking Attacks on SNSs. As a precondition the
attacker needs to have access to the communication between the SNSs and the
user. This can be achieved either passively (e.g., by monitoring unencrypted wire-
less networks) or actively (e.g., by installing malicious software on the victim’s
computer). The adversary then simply clones the HTTP header containing the
authentication cookies and can interact with the social network, unbeknownst to
the SNS operator or user. The victim is unable to detect or prevent such attacks
and the attacker is able to use the social network to its full extent from the
victim’s point of view. As with all HTTP session hijacking attacks, it becomes
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possible to both retrieve information (data acquisition from the social network)
as well as to insert malicious requests on the behalf of a user (data publica-
tion into the social network). However in the case of our FITM attack, further
scenarios become available to attackers, which are specific to social networking
sites:

– Friend injection to infiltrate a closed network
– Application injection to extract profile content
– Social engineering to exploit collected information

The rudimentary security and privacy protection measures of SNSs available
to users are based on the notion of “friendship”, which means that sensitive
information is made available only to a limited set of accounts (friends) specified
by the SNS user. Once an attacker is able to hijack a social networking session,
she/he is able to add herself/himself as a friend on behalf of the victim and thus
infiltrate the target’s closed network. The injected friend could then be misused
to access profile information or to post messages within the infiltrated network
of friends.

By installing a custom third-party application [40], written and under the
control by the attacker, it is possible to access the data in an automated fashion.
Among other things, an application has access to sensitive information (birthday,
email address, demographic information, pictures, interests) and in case of most
SNSs to information of friends of the application user. Third-party applications
such as online games have become a popular amusement within SNSs, and hiding
a malicious application without any activity visible to the user is possible. Thus,
the application is likely to remain undetected within a pool of installed third-
party applications. This ultimately enables an attacker to extract profile content
in a stealthy way as this retrieval method does not cause as much noise as a
burst of separate HTTP requests. Even worse, the attacker might install the
application, take all the data needed in an automated fashion and remove the
application afterwards. This would be completely undetectable to the user and
most likely to the SNSs providers as well.

Whereas social engineers traditionally relied upon context-information gath-
ered through dumpster diving or quizzing people over the phone, with FITM
attacks the context-information harvesting process becomes automated. We thus
claim that FITM attacks allow sophisticated social engineering attacks. Two such
social engineering attacks based on information extraction from social network-
ing sites are context-aware spam and social phishing. These advanced versions
of traditionally spam and phishing messages are described bellow as they are
ultimately used to show the devastating effect a large-scale FITM attack might
cause.

Context-Aware Spam. Context-aware spam can be generated from data
harvested with FITM attacks, increasing the effectiveness of the spam. Brown
et al. [12] identified three context-aware spam attacks which might be mis-
used: relationship-based attacks, unshared-attribute attacks, as well as shared-
attribute attacks. While the first attack is based on relationship information, the
two remaining variations use content extracted from social networking sites such
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as geographic information or a user’s birthday. The social network itself might
be used for sending the spam, e.g. by writing the message to other users’ walls,
or by sending it via private messages. If used on a large scale, the messages spam
might get detected and removed by the SNSs providers. However, if used only
on a small scale we believe that this would be feasible as well as effective. Out-
of-bound spam from the SNS point of view would be another possible approach,
whereas emails are used for sending spam messages. This traditional email spam
is enabled through the availability of real email addresses users make available
to their friends. Hence, if the spam attack is carried out over email instead of
the SNS platform, these malicious messages cannot be detected by the SNSs
providers.

Social-Phishing. Phishing is a common threat on the Internet where an
attacker tries to lure victims into entering sensitive information like passwords
or credit card numbers into a faked website under the control of the attacker. It
has been shown [30] that social phishing, which includes some kind of “social”
information specific to the victim, can be extremely effective compared to regu-
lar phishing. For example such information might be that the message appears
to be sent from a person within the social environment of the victim, like a friend
or a colleague from work. The social graph is therefore not only for the social
network operator of value, but for an attacker too. Especially if it contains ad-
ditional information like a valid email address or recent communication between
the victim and the impersonated friend. With automated data extraction from
social networks, a vast amount of further usable data becomes available to the
spammers. Prior conversations within the social network like private messages,
comments or wall posts could be used to deduce the language normally used for
message exchange between the victim and the spam target. For example, a phish-
ing target might find it very suspicious if the victim sends a message in English
if they normally communicate in French. The message communication channel
for sending the phishing link is of importance as well, as a phishing victim is
more likely to click on a link that appears to match previous communication
patterns. All of this information can be used to identify the subset of a victim’s
friends that are most likely to fall for such a phishing attack. It is not necessary
to phish all the victim’s friends but only a subset if the likelihood for success is
high enough. Another novelty would be that the phisher could include authentic
pictures, either of the victim or the phishing receiver. Extracted images could
for example be used to send invitations to shared “photo albums”, including a
link which promises more pictures given that a user enters his social networking
credentials.

Large-scale spam campaigns through FITM attacks. Figure 1 illus-
trates the outline of a spam campaign exploiting our novel FITM attack.
(1) In the first step, a network connection is monitored. Once the FITM appli-
cation detects an active social networking session, it clones the complete HTTP
header including the session cookie. (2) The cloned HTTP header serves then
as a valid authentication token for the SNS provider and is used to temporar-
ily hijack the SNS user’s session. (3) In order to extract the profile content as
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well as information on the target’s friends, a custom third-party application is
added to the target’s profile. Once all information has been extracted the appli-
cation is removed from the profile. Additional queries are used to fetch the email
addresses of the target’s friends in case they cannot be retrieved through the
third-party application. (4) The extracted email addresses and account content
are used to generate tailored spam and phishing emails. While the spam mes-
sages contain the actual payload of the attack, the phishing emails are used to
steal credentials of the target’s friends for further propagation (the FITM attack
starts again from (3) with the phished SNS account credentials).

We decided to evaluate the impact of a large-scale spam campaign on basis of
Facebook. FITM attacks based on Facebook serve in our opinion as a good ex-
ample because it is the biggest SNS at the time of writing, HTTPS is only used
to protect login credentials and Facebook supports custom applications. Fur-
thermore, injections of third-party applications into Facebook profiles promise
access to a plethora of personal information. Within the Facebook application
framework, third-party applications can access the following information1:

– Basic context information: Full name, geographical location, birthday, affil-
iations, education, etc.

– Likes and interests: Favorite books, movies, tv-series, music, quotations, etc.
– Private content : Sent and received messages, photos, videos, etc.

In addition, third-party applications within Facebook are allowed to access the
information of a user’s friends as well. Thus an application injection in Facebook
enables the extraction of a pool of valuable context information from the tar-
geted user as well of his/her friends. Email addresses of users are not accessible
through third-party applications and the addresses can be collected by using
the hijacked user session. We created a proof-of-concept implementation of our
novel FITM attack in the Python scripting language for Facebook. The proof-
of-concept application uses the dpkt library [1] to gather network packets and
the mechanize library [2] to interact with Facebook.

4 Methodology

In order to make assertions on the effectiveness of our FITM attack, an exper-
iment which mimics a real large-scale attack would provide valuable insights
on effectiveness, but raises also serious ethical concerns. Hence, we applied the
following twofold approach: we made an empirical evaluation on the number of
possible sessions that could have been hijacked, without collecting any data or
injecting any malicious requests. We furthermore simulated the impact of our
FITM attack on basis of established results from similar work in a model. In
comparison to survey-based methods we avoid problems such as selection bias,
refusal rates, telescoping, forgetting and exaggeration [25]. The methodology
applied within our two experiments is explained in this section.

1 [19] as well as [20] summarize all context information that can be accessed through
Facebook third-party applications.
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Finding attack seeds. To conduct the FITM attack, numerous attack vec-
tors could be used: DNS poisoning, cross-site request forgery (CSRF ), wireless
networks without or with only weak encryption, malicious software like a trojan
or a rootkit running on the victims computer, deep packet inspection from an
ISP or other malicious entity that has access to the traffic between the client and
the SNS, as well as modified software running on a users residential or company
gateway. However, we used our proof-of-concept application to analyze HTTP
cookies from Facebook sessions passing through a Tor exit node.

The Tor network [13] is a widely deployed anonymization network which hides
the user’s IP address on the Internet. It is expected to be used by hundreds of
thousands of users every day and is believed to be the most heavily used open
anonymization network today [51]. The Tor infrastructure relies on servers run by
volunteers, hence anyone can support the Tor project by setting up a dedicated
Tor server. For our experiment, we have set up a Tor exit node on a minimal
GNU/Linux Debian server with a relay bandwidth rate of 5 Mbit. The server
was furthermore configured to only allow HTTP traffic (TCP port 80) from the
Tor network to the Internet, and the Tor daemon was restarted on a daily basis.

We then counted the number of Facebook sessions together with the Facebook
locales that were observable to our Tor server and could have be used for the
FITM attack. The Facebook locales were necessary as these would be needed
information by an adversary when conducting further context-aware spam or
social phishing attacks. To prevent counting the same user multiple times, we
saved hash values of the static session information in an encrypted file container.
Note that we only counted and saved the number of FITM injection possibilities,
not the number of users that used our Tor node. Our attack is not restricted to
Facebook but is also applicable to all SNSs that fail to secure the network layer
and the transmitted session information. We decided to use Facebook as it the
biggest social network at the moment, claiming more then 400 million users.

FITM attack simulation. We decided to perform a simulation in order
to estimate the impact a large-scale FITM attack would have. The underlying
model of our simulation is further explained in section 5 while the results of our
simulation are outlined in section 6.

5 Simulation Model

In this section, we will define the model used to test the attack strategies defined
in the above sections. We will also give a short insight into social graph theory
and graph modeling. But of course, our main focus lies on our approach to model
a social graph for the purpose of testing attack strategies.

Social network theory is an area of network science which itself is an area
of graph theory. Therefore, we will use the common graph theory notation for
the Facebook graph. We consider Facebook to be an undirected social graph
G = (V,E) with vi ∈ N and E ⊆ [V ]2, where the nodes vi ∈ V are the users and
the edges {vi, vj}, denoted as vivj ∈ E, are the connections between two users vi
and vj . It is undirected due to the fact that friendships in Facebook are mutual
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friendships. If V ′ ⊆ V and E′ ⊆ E, then G′ = (V ′, E′) is a subgraph of G, written
G′ ⊆ G. If E′ = {vivj ∈ E | vi, vj ∈ V ′}, then G′ is called an induced subgraph.
A graph is called simple when it has no self-loops and no multiple edges between
any pair of nodes. The degree dG(v) of a node v is the number of neighbours
which is equal to the number of edges on v, denoted |E(v)|. Note that for an
induced subgraph G′ the degree of a node v ∈ V ′ ⊆ V is dG′(v) ≤ dG(v).

We say that an extended induced subgraph is a simple graph with following
enhancements of V ′ and E′: Let Ẽ′ be the set of edges with one endpoint being
in V ′ : Ẽ′ := {vivj ∈ E\E′|vi ∈ V ′} then Ṽ ′ := {vj ∈ V \V ′|vivj ∈ Ẽ′}. Ṽ ′
contains all nodes which have a direct connection to a node within the induced
subgraph nodeset V ′. With this extension we obtain a new graph G̃ := (Ṽ , Ẽ)

with Ṽ = V ′ ∪ Ṽ ′ and Ẽ = E′ ∪ Ẽ′.

Fig. 2. extended induced subgraph G̃.

Facebook has currently a total node amount of |V | = 4 · 108. A model this
exceeding is hardly possible to simulate due to its sheer enormity of nodes, edges
etc.

We assume that the Facebook graph, denoted as F = (VF , EF ), consists of
n ∈ N, n <∞ extended induced subgraphs
{G1, G2, ..., Gn} ⊆ F with a pairwise almost disjoint property: |Gi ∩Gj | < ε
with i, j = 1, ..., n ∧ i 6= j and ε ∈ N is ”small enough”.
Concerning the degree of a node, following proposition holds:2

for v ∈ V ′i ⊆ VF : dF (v) = dGi
(v)

Note that it makes sense to use this subgraph assembly of Facebook. Imagine
V ′i consists of nodes satisfying a certain property like nationality, gender or
affiliations of other kinds. Handcock et al. [23] showed that such affiliations

2 V ′
i is the set of nodes from the induced subgraph G′

i, whereas Gi is the extended
induced subgraph where G′

i is the underlying induced subgraph
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implicates clustering within the social network.
There are various publications which focus on the acquisition of actual data
such as [21,34]. We do not claim to have developed a new way of modeling a
social graph which applies better to Facebook than the various existing models
introduced in the related work section, but we will use the very recent results of
those publications to implement an almost accurate extended induced subgraph
of a social network, such as Facebook.

Modeling a Facebook Subgraph. We will give a short insight into the
world of configuration models. More rigorous disquisitions on configuration mod-
els can be found in [42,52]. We wish to construct a simple graph out of a degree
distribution pk, such that pk is the fraction of nodes in the graph having de-
gree k. Then choosing a degree sequence d = {di | i = 1, ..., n}, w.o.l.g. we
assume di ≥ 1, from this distribution, which are the degrees of the n nodes
{v1, v2, ..., vn}. Since it is not always possible to construct a simple graph with a
given degree sequence [52], we can definitely construct a multigraph. Obtaining
a simple graph out of such a multigraph is easily achieved by erasing all loops
and combing all multiple edges into one. The obtained simple graph has asymp-
totically the same degree distribution. It has been shown [42] that the chance of
finding a loop goes as n−1, therefore the probability is humble for large n. As
an example for an applicable degree distribution we want to consider the much
studied power-law distribution [43]. Distributions of the form p(x) = Cx−α are
said to follow a power law, where α > 0 is called the exponent and C functions
as a normalizing constant. C is given by the normalization requirement

1 = C

∫ ∞
xmin

x−αdx =
C

1− α
[
x−α+1

]∞
xmin

(1)

Formula 1 shows that: 1) α > 1 and 2) for a given α > 1 and known limit xmin
it is easy to compute the normalization constant C.

Attack Cycle. For an attacker the overall knowledge of the properties of
the entire graph is unknown. What he does know is the degree of a node and
also the degrees of its neighbours. Other useful knowlegde such as centrality,
assortiativity, betweenness, clustering coefficient etc. is unknown to the attacker.
The attack process behaves as follows: We choose a random node vi, in the
following called user, the user has a predetermined degree (d(vi) = di = k) which
is the amount of friends. We spam a fixed percentage p of the users friends and
propagate3 the remaining ones. This cycle then repeats itself for a given amount
of iterations, e.g. 5 times (it = m = 5). Therefore we get probably more nodes
to spread from in these iteration steps than in the first one. A user can either be
spammed or propagated and no more than 1 time. Therefore it is possible that
the attack cycle breaks after 1 iteration. This is when the starting user v1 has
only friends with degree di = 1, because the propagated user ”has nowhere to
go” then to go back to the staring point, which is not possible since this one is
already propagated. Although this will not happen in a real network, due to the

3 As the our propagation strategy is social-phishing and on basis of Jagatic et al. [30]
we asume that propagations have a success rate of 72 %.
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fact that a user with a high degree tends to have friends with high degree as well
[21], a model is never immune to such a case. One may ask himself how to make
the best attack strategy out of the above described attack cycle. We tested two
strategies within our implemented model. Strategy 1: randomly choose a user,
spam and propagate as mentioned above for it = 1, ...,m times. Strategy 2:
randomly choose a user, fix the number of iterations (it = m), after repeating
the cycle m times jump to another randomly choosen user and repeat the cycle
another m times. Jump for jp = 1, ..., l times.

6 Results

Based on the model we needed to evaluate how many FITM attacks would be
possible within a reasonable amount of time and effort. Our method for finding
attacks seeds is just one out of many and presents a snapshot of this particular
time interval, other methods might be far more successful. We did not compare
different attack seeds discovery methods.

6.1 Finding Attack Seeds

During a period of 14 days, approximately 6.1 x 106 HTTP requests passed
through our Tor exit node. Facebook was the most requested domain and was
responsible for 7.68 % of the overall traffic. The second most frequent social
networking site was Orkut which caused 0.49 % off all HTTP requests. We ob-
served 4267 unique Facebook sessions throughout our experiment which could
have been hijacked for friend-in-the-middle attacks. Furthermore our cookie anal-
ysis suggests that the majority (92.81 %) of observed unique Facebook sessions
were persistent sessions.

One alternative source for attack seeds is eavesdropping on a WLAN. Indica-
tive experiments on a university’s WLAN showed that we could gather 60 seeds
within seven hours. The main drawback of this method is that seeds are not
dispersed as evenly over the entire social graph as many users are students are
friends or share at least one common friend. Table 3 shows the distribution of
the Facebook sessions in regard of the used language. 71.77 % of all users used
English, followed by 6.19 % used an Italian, and 5.55 % of users used Spanish.
We furthermore observed that in total 3.45 % of users might have originated
from China and 1.28 from Iran, where in both countries Facebook is blocked by
governmental authorities. The information of the different locales used could be
exploited by attackers to adapt the language of their spam messages.

6.2 Simulation Results

We implemented a configuration model (see Section 5) with a power-law degree
distribution. Gjoka et al. [21] presented a new degree distribution for Facebook
which does not follow a power-law. Instead they found two regimes 1 ≤ k < 300
and 300 ≤ k ≤ 5000, each following a power law with exponent αk<300 = 1.32
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Fig. 3. Number of sessions found through our Tor exit node server within 14
days.

and αk≥300 = 3.38. With this specific information it was possible to generate a
accurate power law degree sequence for the two intervals [1; 300[ and [300; 5000].
We generated a model with a total amount of 1 · 104 nodes and computed C for
each of the two intervals with formula 1.
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Fig. 4. Results of the FITM attack simulation. (Left) Strategy 1: Spam targets
vs. Attack iterations. (Right) Strategy 2: Spam targets vs. Attack seeds (jumps).

Strategy 1. We ran our attack model for strategy 1 for each number of
iterations, from it = 1, ..., 35, 1000 times. For each iteration step we averaged
over the 1000 results and got the mean value for the potential spam targets. For
example, for it = 5, the mean number of spam targets is sp = 1178 corresponding
to the red curve. The five colored curves belong to different percentages p of the
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Facebook locale

Language ISO %

English (US) en US 60.46
English (UK) en GB 11.31
Italian it IT 6.19
Spanish es LA 5.55
Indonesian id ID 3.21
Simplified Chinese (China) zh CN 2.41
French (France) fr FR 2.01
Persian fa IR 1.28
Traditional Chinese (Taiwan) zh TW 1.04
Others - 6.54

Table 3. Facebook locales of analysed user sessions

above mentioned percentage of the amount of spam targets in each iteration step.
The black curve describes the number of spam targets when only propagating
1 friend in each iteration step. In Figure 6.2 we can see, that (corresponding
to the black curve) at the beginning (it = 1, ..., 10) the number of spammed
nodes increases almost linear with a high slope. After that (it = 11, ..., 35) the
curve slowly levels to sp ≈ 643. The colored curves in fact behave the same
way, but their linear growing area is reduced to 5 attack iterations. The slope is
significantly higher for values of p between 50 and 80 percent. All curves nearly
level to a final value within the first 5 iteration steps. By this results we also can
try to find an optimal ratio between spam targets and propagating percentage.
We see that propagating a fixed percentage 100 − p of a certain users friends
yields to better results than in the case of only propagating 1 friend. One also sees
that a too small percentage of spamming targets (p ≤ 60% in our simulation)
yields to a decrease of spam targets. The value p = 70% is in our simulation the
best choice for p. The leveling of all 6 curves yields to the assumption that in
a highly clustered structure it is not possible, with this strategy, to elude the
cluster. That was something we expected, due to our hypothesis that Facebook
assembles out of extended induced subgraphs. In the figure we limited the number
of iterations to 35 because the slope for larger iterations converges to 0. Hence,
we will get not significantly more spammed nodes even if we increase the number
of iterations.

Strategy 2. We ran our attack model for strategy 2 for each number of
jumps, from jp = 1, ..., 35, 1000 times. Note that before jumping to another
seed the attack strategy executes a specified number of iterations. In our Figure
(6.2) the number of iterations would be it = 1, 2, 3, 10, 20, 35. Strategy 2 can be
seen as an extended algorithm of strategy 1. For each jumping step and number
of iterations we averaged over the 1000 results and got the mean value for the
spammed nodes, e.g. for jp = 10, it = 3 the mean number of spammed nodes is
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sp = 1260. For this strategy we used the optimized value p = 70%, determined
in the above simulation. In Figure 6.2 we see that for one iteration (it = 1) the
slope is almost linear. It represents the fact that in a large network we get almost
the same number of new attacked nodes for each jump, hence the linear slope.
We also see that there is an ample difference in the number of reached nodes
between it = 1 and it = 2. This difference decreases with increasing iteration
steps. While there is still a considerable difference between it = 2 and it = 3
and it = 10, there is almost none between it = 20 and it = 35. As in strategy
1, the beginning of our simulation (jp = 1, ..., 10) shows a rapid increase of
spammed nodes. After jp = 10 the slope decreases. It seems that all curves
converges to a limit of 3000 spammed nodes. This is a result of the fact that
even with 35 iterations and jumping 35 times randomly in the network, the
chance of finding ”new” unattacked areas is negligible. There might be some
attacks which are significantly more successful than spamming 3000 nodes, but
overall it is to be expected to get something between 2000 and 3000 nodes,
depending on how many jumps one executes. The fascinating thing is, that even
with a moderate rate of iterations, say it = 10 per jump, we get almost the same
amount of spammed nodes when executing it = 35 iterations per jump. That’s
why strategy 2 is not only better in performance but also more inconspicuously,
as it is possible to get even more spammed nodes while not resting too long in
one area or cluster.

6.3 Discussion

The FITM attack could be extremely effective on a large scale, as our results
suggest. In a relatively short amount of time, an attacker would be able to collect
information from thousands of users in an automated fashion, resulting in tens
of thousands possible victims for context-aware spam. Even without using the
social network itself, the adversary could achieve a high degree of success by
using out-of-band attack vectors like email. The information could be further
used for cloning user profiles to other SNSs and increasing the number of spam
targets even more, as described in [8].

As simulation 2 shows with merely five different attack seeds and three iter-
ations of our attack over 2000 email addresses for spamming as well as context-
information on the spam targets could be collected. In case of the Tor exit node
server we ran, these 5 attack seeds would have been collected in less than 25
minutes.

6.4 Mitigation strategies

In recent years numerous privacy protection schemes have been published with
the intention to increase the privacy in currently deployed social networking
services. The first class of mitigation strategies we discuss are privacy enhancing
extensions to SNSs, which do not protect the network layer but may limit the
amount of information that can be extracted from user profiles.
An interesting approach is the flyByNight application for Facebook [37], which
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encrypts messages between users with strong cryptography. It is implemented
in JavaScript and enables the secure transmission of messages. However, at the
time of writing it seems that it is no longer maintained and became unusable. It
furthermore might be unusable on mobile devices due to the limited performance
of these devices. In the future the model of flyByNight might get ported to
other social networks that support third-party application, as it is bound to
Facebook. The major drawback of flyByNight is that it only protects from a
curios social networking operator. It still is vulnerable on the network layer to
an active attacker who could still perform the FITM attack or by replacing the
flyByNight JavaScript routines to defeat the encryption. Another approach was
chosen by the designers of FaceCloak [38], which is intended to hide sensitive
information of a user by means of encryption and by providing fake information.
It is implemented as a Firefox browserextension, and stores sensitive information
on a separate server. One shortcoming that FaceCloak has in common with
flyByNight is that only text-based content can be protected leaving out e.g.
pictures that could be used for context-aware spam and social phishing. Yet
another problem might arise when a vast number of users would start to use
Facecloak, which would then require a huge infrastructure similar to Facebook’s
to store the encrypted FaceCloak content.

Hence, to protect against our friend-in-the-middle attack effectifly it would be
necessary to secure the network layer between the SNS users and SNS providers.
Thus, the second mitigation strategy available to the average user seems to be
the use of browser extensions such as ForceHTTPS [29], which attempt to force
HTTPS for requests that would have been normally transferred over HTTP. The
Tor project announced [9] that the will include a special version of NoScript
[45] within the Tor browser bundle which enforces HTTPS for a number of
websites including some SNSs. In order to effectively mitigate FITM attacks,
SNSs providers have to ultimately ensure that all communication between their
users and their platform is done over HTTPS. At the time of writing only XING
[3] fully supports HTTPS, which leaves SNS users with browser extensions as
the only working mitigation strategy.

7 Conclusion

In this paper, we have introduced the new FITM attack against social networks.
By stealing the user’s authentication cookie which is transmitted in an unen-
crypted way, it becomes possible to completely impersonate the user on social
networking sites. This can then be used to collect sensitive information in an au-
tomated fashion, possibly leading to large campaigns of context-aware spam and
social phishing. Both are known to be highly successful in luring their receivers
into revealing sensitive information like passwords and could be conducted abus-
ing the social network itself or by using out-of-band communication like email.

Numerous attack vectors could be exploited by an adversary, such as unen-
crypted wireless networks. The FITM attack itself is applicable to most of the
currently deployed SNSs, such as Facebook, Friendster, and Orkut. Our proof-
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of-concept showed the possible effectiveness in the case of Facebook. Based on
the FITM attack, following subsequent exploits are easily possible (1) Friend
injection, (2) Application injection, and (3) Social engineering.

Our results suggest that finding possible FITM attack seeds for spam cam-
paigns is cheap regarding time and hardware resources. We furthermore showed
that a large-scale spam campaign on the basis of FITM attacks would have
a severe impact on basis of a simulation. There a number of limited protection
strategies available to social networking users. Hence social networking providers
have to ultimately protect their users against FITM attacks by securing the com-
munication with HTTPS. As there is no (monetary) incentive for them to do so,
we believe that our attack remains applicable for the time being.
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