
2014 978-1-4503-3001-5/14/125

Security and Privacy of Smartphone Messaging Applications1

 Robin Mueller
Vienna University of Technology, Austria

e0926507@student.tuwien.ac.at

Sebastian Schrittwieser
St. Poelten University of Applied Sciences, Austria

sebastian.schrittwieser@fhstp.ac.at

Peter Fruehwirt
SBA Research, Austria

pfruehwirt@sba-research.org

 Peter Kieseberg
SBA Research, Austria

pkieseberg@sba-research.org

Edgar Weippl
SBA Research, Austria

eweippl@sba-research.org

In recent years mobile messaging and VoIP applications for smartphones have seen a massive
surge in popularity, which has also sparked the interest in research related to the security and
privacy of these applications. Various security researchers and institutions have performed
in-depth analyses of specific applications or vulnerabilities. This paper gives an overview of the
status quo in terms of security for a number of selected applications in comparison to a
previous evaluation conducted two years ago, as well as performing an analysis on some new
applications. The evaluation methods mostly focus on known vulnerabilities in connection with
authentication and validation mechanisms but also describe some newly identified attack
vectors. The results show a predominantly positive trend for new applications, which are mostly
being developed with robust security and privacy features, while some of the older applications
have shown little to no progress in this regard or have even introduced new vulnerabilities in
recent versions. In addition, this paper shows privacy implications of smartphone messaging
that are not even solved by today’s most sophisticated “secure” smartphone messaging
applications, as well as discuss methods for protecting user privacy during the creation of the
user network.

1 This paper is an extended version of []

mailto:e0926507@student.tuwien.ac.at
mailto:sebastian.schrittwieser@fhstp.ac.at
mailto:pfruehwirt@sba-research.org
mailto:pkieseberg@sba-research.org
mailto:eweippl@sba-research.org

D.4.6 Security and ProtectionAccess controls Security, Experimentation Mobile Security,
Smartphone Messengers, Transport Layer Encryption

1 Introduction & Related Work
With the ever increasing popularity of OTT (over-the-top) messaging in recent years and
massively successful applications such as WhatsApp, Line and WeChat claiming to have active
monthly user bases of up to 400 million users or more [13, 10, 12], large numbers of similar
applications have emerged on the mobile app market trying to imitate those huge successes. In
2012 the number of messages sent over OTT networks had eclipsed the number of SMS
messages, with researchers projecting OTT messages to exceed SMS by a factor of 4 by the year
2017 [18]. The fast growth and large number of available applications in a relatively young field
naturally causes many of them being developed without sufficient security in mind.
Schrittwieser et al. [15] and Cheng et al. [3] describe various attack scenarios and possible
implications of security vulnerabilities related to these kinds of applications. Other research
focused further on the consequences of vulnerabilities in those applications, e.g. privacy[17] or
the system architecture [2]. The security functionality of smartphone operating systems are
widely studied 5, 6, 7, 4, 8], app specific vulnerabilities further exist.

The goal of this paper is to follow up previous research by re-evaluating existing
applications to show advances in the security field as well as examining newly emerged ones for
known or potentially new vulnerability patterns. User authentication is a popular field of
ongoing research 16, 1], especially in web services [9] and distributed systems [11]. We
re-evaluate the security of the authentication system of mobile messaging apps two years after
the publication of critical vulnerabilities.

As the number of OTT messaging applications is very large, we focus only on a subset of
the available applications, based on the sample of previous evaluations as well as their install
base.

2 Messaging Applications

Similar to the previous work of Schrittwieser et al. [15] we are focussing at applications
that solely rely on the users’ phone number in the verification process (in Section 5 we extend
our research selcted other messengers that also support user accounts). Generally this means
that a new user has to enter his phone number when registering an account. The application
will use this number as a means of identifying the user. To prevent malicious attackers from
simply entering arbitrary phone numbers to impersonate their target, most applications include
a verification process to make sure that the entered phone number actually belongs to the
user. The way this verification is done varies between applications, but it usually involves some
kind of authentication token (in most cases this is simply a 4 to 6-digit number) being
communicated between the server and the phone in a way that enables the server to establish
the authenticity of the entered phone number. This is almost universally done through SMS,
although the actual protocol can be vastly different in terms of implementation and security.
Most applications will simply send a short verification code per SMS to the number that the

user is trying to register which they then have to copy into the application in order to prove
that they are actually the owner of the given phone number. The individual protocols and their
identified flaws will be outlined in Section 4.

3 Evaluation

3.1 Methods

The actual evaluation consisted of two groups of applications - first we re-evaluated all
of the applications that had previously been analyzed by [15] to check for any improvements,
and then we looked for new applications that have emerged in the last two years and checked
those for any vulnerabilities.

Table 1 lists all applications, their basic features and the estimated size of their user
base. Whenever possible we used publicly available information from the application vendor,
otherwise the user base was estimated from the numbers accumulated from the Google Play
Store (which provides a rather wide range on the approximate number of Android installs) and
Xyo2 (a service that provides estimated download numbers for iPhone applications). The
following section lists and shortly describes different vulnerabilities that the evaluated
applications were tested against. The categories are based on [15].

3.2 Common Vulnerabilities

Authentication and Account Hijacking
 Arguably the most dangerous class of vulnerabilities allows an attacker to take over a

victim’s account or impersonate it by circumventing the authentication mechanism of an
application. Most applications prompt the user to enter their phone number first (some
Android applications will extract the phone number automatically and ask the user to confirm
its correctness) and then send a SMS to that number containing an (usually 4 to 6-digit)
authentication code which the user has to enter. Some applications use different methods,
which will be described in detail in the appropriate sections. We tested and analyzed the
protocols used for identifying and linking the user’s phone number to their account and
attempted to circumvent them. Another related vulnerability deals with the unauthorized
de-registration or deactivation of existing accounts - one instance of which has been identified
during research.

Sender ID Spoofing/Message Manipulation
 This vulnerability class deals with an attacker manipulating or forging messages and

sender information without hijacking the entire account. This usually involves creating and
sending messages with a fake (spoofed) sender ID by bypassing user-identification mechanisms
inside the application. This class of vulnerabilities is rather uncommon and we were not able to

2 http://xyo.net/iphone/, last accessed: 1st Oct. 2014

identify any affected applications. The applications that showed this sort of vulnerability in the
past (according to [15]) have since been fixed or discontinued.

Unrequested SMS/Phone Calls
 As most applications use passive SMS-based verification (and some even use passive

phone calls) during sign-up, it is possible to generate unwanted messages or even phone calls
to arbitrary phone numbers. Although most applications include mechanisms to prevent the
sending of too many of such requests, combining multiple applications with an automated
system could still generate considerable amounts of spam. It should be noted though that the
content of those messages can generally not be modified which makes the concept less
attractive for spammers.

Enumeration
 Pretty much all applications allow the user to upload their phone book to identify

other registered users. The server usually replies with a list of contacts that are also registered
for the service. By uploading specific phone numbers an attacker can gain knowledge about
whether the targeted person uses the service. This information can potentially be used for
further attacks such as impersonation or spoofing attacks. In another scenario an attacker could
systematically upload large amounts of different phone numbers to enumerate parts of the
application userbase, for example uploading all possible numbers with a specific country code
would give them an overview of all users in that country. This can potentially be a large privacy
concern. For further reading see [3] where Cheng et al. have conducted rather extensive
research on this particular issue.

3.3 Experimental Setup

For the actual research we used an iPhone 3GS running iOS 6.1.3 and a Samsung Galaxy
S3 Mini running rooted Android 4.1.2. All tested applications were available for both iOS as well
as Android and have been tested on both platforms. To read and modify the encrypted HTTPS
traffic between the application and the server we used mitmproxy3 – an SSL proxy and
man-in-the-middle-tool for intercepting and modifying HTTP traffic on the fly. Furthermore, we
used sslsplit4 in a similar fashion to be able to read some of the SSL encrypted non-HTTP traffic.

(Version Android/iOS) VoIP Text
Messages

Number Verification

eBuddy XMS (2.21.1/2.3.1) no yes SMS, active SMS

EasyTalk (2.2.6/2.1.1) yes yes SMS

Forfone (1.5.7/3.4.2) yes yes SMS, active SMS

HeyTell (3.1.0.384/3.1.2.458) yes no none

Tango (3.3.69998/3.3.71425) yes yes SMS

Viber (4.1.1.10/4.1) yes yes SMS

3 http://mitmproxy.org/index.html, last accessed: 1st Oct. 2014
4 http://www.roe.ch/SSLsplit, last accessed: 1st Oct. 2014

WhatsApp (2.11.152/2.11.7) no yes SMS, passive phone call

fring (4.5.1.1/6.5.0) yes yes SMS

GupShup (2.6/2.6) no yes SMS

hike (2.6.16/2.4.1) no yes SMS

JaxtrSMS (03.02.00/3.0.9) no yes Active SMS, validation link,
passive phone call

KakaoTalk (4.2.3/3.9.5) yes yes SMS, passive phone call

Line (3.10.1/3.10.1) yes yes SMS

textPlus (5.9.1.4671/5.4.0) yes yes SMS

WeChat (5.0.3.1/5.1.0.6) yes yes SMS

Table 1: Overview of messaging applications, 8 re-evaluated applications, followed by 9 new

ones

(Version Android/iOS) Phone
Book

Upload

Status
Messages

Estimated User Base

eBuddy XMS (2.21.1/2.3.1) yes no 7.3-12.3M

EasyTalk (2.2.6/2.1.1) yes no 0.48-0.88M

Forfone (1.5.7/3.4.2) yes no 2.8-6.8M

HeyTell (3.1.0.384/3.1.2.458) no no 17.6-57.6M

Tango (3.3.69998/3.3.71425) yes no 110-510M

Viber (4.1.1.10/4.1) yes no 133-533M

WhatsApp (2.11.152/2.11.7) yes yes 350M

fring (4.5.1.1/6.5.0) yes no 29-69M

GupShup (2.6/2.6) yes yes 0.1-0.5M

hike (2.6.16/2.4.1) yes yes 5.3-10.3M

JaxtrSMS (03.02.00/3.0.9) yes no 0.9M-1.4M

KakaoTalk (4.2.3/3.9.5) yes no 58M-108M

Line (3.10.1/3.10.1) yes yes 300M

textPlus (5.9.1.4671/5.4.0) yes no 44-84M

WeChat (5.0.3.1/5.1.0.6) yes no 270M

Table 2: Continuation of the overview

4 Results

This section presents the results of the evaluation process based on the vulnerability
categories described in Section 3. In general, we will limit ourself to mentioning applications
with specific vulnerabilities or noteworthy findings. Table 2 provides a per-App overview of the
vulnerabilities identified in the individual applications now and in 2012 (from [15]).

Application Account Hijacking Unrequested SMS Enumeration Other Vulnerabilities

eBuddy XMS yes (no) yes Yes no

EasyTalk yes* (yes) yes Yes no

Forfone yes (no) yes yes no (yes)

HeyTell yes no limited no

Tango yes yes yes no (yes)

Viber no yes yes no

WhatsApp no (yes) yes yes no (yes)

fring no yes yes no

GupShup no yes yes no

hike no yes yes no

JaxtrSMS no* yes no no

KakaoTalk no yes yes no

Line no yes limited no

textPlus no yes yes no

WeChat no* yes limited no

Table 3: Overview of vulnerabilities (in case of differences to [15], the old value is shown in
parentheses)

* potential vulnerability, see details in the respective sections

4.1 Authentication and Account Hijacking

This section will describe practical and theoretical attacks against the analyzed
applications that could be used to circumvent the authentication and validation process to
allow an attacker to register a different person’s phone number. Generally, this can be done by
either using a new, not-yet-registered number or by hijacking an existing account.

eBuddy XMS
 The XMS’ authentication mechanism is very different between the Android and iOS

versions and includes distinct weaknesses which will be described separately.

 iOS The iOS version uses a simple SMS-based authentication approach where the
device sends an authentication request to the server, which in turn sends a SMS message
containing a random, 3-digit code to the registered phone number. The user then has to enter
this code on the device which sends it to the server where the code is checked and the device is
authenticated. While the protocol itself seems safe and does not allow circumventing the
mechanism, the usage of a code of only 3 digits length is very alarming. Coupled with the fact
that there appears to be no lockout when entering too many invalid codes and no time limit
when entering them either, an attacker can reliably guess the code after an average of 500
tries. Increasing the code length and implementing a limit on the allowed number of attempts
are basic measures for preventing brute forcing of access codes that should be present in every

application that uses an authentication scheme such as this one.

 Android For some reason the verification process in Android is very different from the
iOS approach. Firstly, when registering a number for the first time the application will not
attempt to validate it at all. Only when trying to register an already-registered number the
application will attempt to do some form of SMS-based authentication. This is obviously a poor
scheme, as it allows an attacker to impersonate arbitrary people, given that they have not
registered for the XMS service yet. Combined with an enumeration attack (as described in later
sections) to find out whether someone is using the service, this could be used to register
someone without them ever knowing, as there will be no SMS traffic generated on a
first-time-registration. Secondly, the verification process when registering an already known
number is somewhat broken as well. The application locally generates a 10-digit authentication
code and sends it via active SMS (text message charges apply) to the entered phone number.
When used legitimately, this will result in the phone sending a text message to itself, which is
then intercepted by the application and the code is verified locallyWhen entering a foreign
number that person will receive a text message containing the verification code. Sending a
reply message from that number including the received verification code should authenticate
the device. While this scheme appears alright at first sight, we will describe a theoretical
approach that could be used to exploit it.

The basic idea of the attack is to somehow gain access to the code inside the SMS (by
reading the outgoing message) and then using some form of SMS sender spoofing mechanism
to create a fake response message. This response message has to include the activation code
and has to appear to be originating from the number the attacker is trying to register. The
process is visualized in Figure 2. This requires two things: Firstly, intercepting the outgoing
message with the code. The problem here is that in Android text messages sent through the
messaging API from within applications will not show up in the normal SMS outbox. There
might be a way to programmatically intercept or log the outgoing messages to retrieve the
verification code or else the attacker could attempt to intercept the message at the hardware
or carrier level. After obtaining the code, the attacker would have to use an SMS spoofer (there
are various such services available on the internet, such as spoofsms 5) to send a fake message
which includes the code and has its sender set to the number the attacker is trying to register.
This should make the application believe that the message actually originated from the entered
number and it should complete the authentication process. While these approaches would
potentially require rather sophisticated methods, they should be feasible as the entire
authentication process happens locally.

5 http://spoofsms.net, last accessed: 1st Oct. 2014

Figure 2: Theoretical exploit approach against XMS and JaxtrSMS

One positive aspect that stood out, was the fact that if someone registered a second
account using a specific number, the owner of the original account would get a notification that
someone else has registered another device with that number. That way the real owner would
at least have an indication that something was wrong. In the end it seems surprising that the
Android version would use such a vastly different and rather unusual authentication approach,
when the iOS version uses a pretty simple and robust protocol (aside from the brute-force
issue). One thing that all applications have in common is the fact that authentication is only as
strong as its weakest version, so having a proper authentication mechanism on one platform is
useless when one of the other platforms is susceptible to simple attacks, as an attacker can
simply choose to use a device based on the easier-to-circumvent platform to carry out the
attacks.

EasyTalk
 Basically, EasyTalk uses a passive 4-digit SMS-based authentication scheme like many

of the other applications. However, in our tests its authentication mechanism seemed not very
reliable and on iOS the application simply crashed when started with an active proxy (even
when in transparent proxy mode). On Android the verification process would simply get stuck
most of the time when trying with an active proxy - without a proxy the process seemed to
work, but the SMS with the code only really arrived in around 1 out of 20 attempts. During later
testing the registration process stopped functioning entirely which made any further analysis
virtually impossible. In [15] the authors describe an exploit that can be used to circumvent the
authentication mechanism completely, but since the application did not function correctly in
our analysis scenario it was not possible to verify the continued presence of this vulnerability.

Forfone
 Forfone uses the same authentication mechanism on both platforms. However, it

seems to have undergone significant changes compared to the way the mechanism was
described in [15]. While the option to do a secure and well-implemented passive
SMS-authentication is still there, it will only be used if the default authentication process fails.
This default process is outlined in Figure 3 and works as follows:

The device generates a seemingly random "reference token" (a 32-digit hexadecimal
number) which is sent to the server via HTTPS request. The server replies with a

HTTPS-response including an "authentication token" (another 32-digit hexadecimal number).
The application then attempts to send this token using an active SMS from the phone to a
Forfone service number. If the sending of the message is successful and the authentication
token is correct, the account will be successfully registered using the received message’s sender
number. This means that the user does not enter the phone number at all during the process,
but rather it is extracted from the message sent to the server. Only when the sending of the
active SMS fails the application will revert to a passive SMS authentication scheme, where a
common 4-digit code is sent to an user-provided number and then has to be entered manually.
The entered code is then transmitted and verified server-side which is not susceptible to a
simple impersonation attack.

Figure 3: Forfone authentication during a legitimate attempt

The default authentication scheme on the other hand can be exploited quite easily as
shown in Figure 4 (especially on iOS) - an attacker can simply copy the authentication token
from the SMS before it is sent (since iOS requires the user to manually send the message
themselves, all the application can and will do is open the SMS messaging app and pre-populate
the recipient and message fields with the authentication code) or intercept the HTTPS response
from the server and extract the token from there. After the attacker has obtained the token
they need to create a spoofed SMS message which appears to be coming from the number they
are trying to register and include the authentication token in that message. We used
spoofsms.net for spoofing the sender ID which worked flawlessly in our mobile network.

Figure 4: Spoofing attack against Forfone

It seems curious that Forfone would opt to use such an insecure validation mechanism
as its default scheme (or at all) when it also features a secure, passive SMS mechanism. We
would imagine this is done for price reasons, as active messages sent from the user’s phone

incur no cost to Forfone’s operators, although this seems to be the wrong place to save costs
seeing how it causes such a massive security flaw – especially when considering the low SMS
messaging rates in most countries today.

HeyTell
 HeyTell still does not have any sort of number verification whatsoever. A registrant can

simply enter an arbitrary number along with a name when registering for the service. The
system allows for multiple users to be registered using the same number. When another user
attempts to add a phone number to their contacts, they will be presented with a choice of all
users’ names that are registered using that specific number. This system has two major
ramifications: Impersonating someone who is not using the service yet is extremely easy due to
the lack of any number verification. Hijacking an existing account on the other hand is not
possible - users that already have someone’s legitimate account in their contacts will continue
to do so, all the attacker can do is to simply create a second account using the same number, so
that anyone who attempts to add that number to their contacts from this point onward would
be presented with two choices – the legitimate, and the fake one.

Tango
 Tango’s authentication mechanism appeared to be fundamentally broken - during

early stages of research when doing some rudimentary testing we did get a validation SMS
(4-digit PIN) when registering a device. However, when attempting to do further research at a
later point the application did not attempt to do any sort of number verification whatsoever.
We were able to freely change the phone number associated with an account without having to
verify it at all.

Viber
 Viber uses a 4-digit passive SMS authentication scheme which was not susceptible to

traffic interception or other impersonation attacks. An example of such a scheme is outlined in
Figure 5.

Figure 5: Secure authentication scheme as used by numerous applications (Viber, WhatsApp,

fring, GupShup, hike, KakaoTalk, Line, textPlus and WeChat)

WhatsApp
 WhatsApp completely re-hauled their authentication and messaging protocols since

Schrittwieser et al. conducted their research [15]. The verification code (6 digits) is no longer
sent to the device allowing for easy impersonation and hijacking, but rather the entered code is
sent to the server and checked for validity there.

fring
 Fring uses a 4-digit passive SMS authentication scheme which was not susceptible to

traffic interception or other impersonation attacks.

GupShup
 Similar to many of the other applications, GupShup also uses a well-implemented

passive SMS authentication scheme (using a 6-digit code).

hike
 Hike uses a 4-digit passive SMS authentication scheme which was not susceptible to

traffic interception or other impersonation attacks.

JaxtrSMS
 JaxtrSMS is another application that uses two entirely different and rather uncommon

authentication schemes on both platforms. In addition to that, JaxtrSMS also supports passive
call based verification for both platforms which becomes available after the default mechanism
fails for some reason.

 iOS The iOS authentication mechanism is essentially a passive SMS system as used by
many other applications, with the difference that it does not send a verification code to the
user but rather a verification link (as is often used in e-mail address verification). The user then
has to open that link to activate their account. While this is a system not seen in any other app
during research, it is essentially a tried-and-tested scheme that is usually used for verifying the
e-mail addresses of newly registered accounts in virtually all online services, except that in this
case the communication medium is SMS instead of e-mail. As such it was not susceptible to any
traffic interception or other impersonation attacks.

 Android The Android version implements a different authentication scheme and while
we did not manage to exploit it in our tests, we cannot rule out the possibility of it being
exploitable. It works as follows: After the user has entered the phone number the device will
attempt to send a SMS message to the entered number containing a verification code. During
legitimate use this would result in the application sending a message to itself, which is then
intercepted and used to authenticate the user (similar to XMS, see Figure 1).

 Now theoretically an attacker should be able to exploit this scheme by
intercepting/reading the outgoing message and its code (for doing this see the eBuddy XMS
section above, the same problems apply) and then creating a spoofed reply message which
includes this code and appears to be coming from the target number (see Figure 2). In practice,
this did not work for some reason though - we tried to register a second phone by simply
sending the received authentication code back to the Android device, but the application
ignored that SMS. We had no knowledge about the internal algorithm the application uses to
do the authentication, but one possible reason for the attempt failing could be that it not only
checks the sender number on the received message, but also the destination number. During a
legitimate registration those two would be identical as the message is sent from the phone to
itself, but when trying to impersonate another number with a spoofed message the target
number will always be the number of the attacker’s phone. This is obviously just speculation

though, further research would need to be conducted in order to establish whether or not the
authentication scheme can actually be exploited.

KakaoTalk
 KakaoTalk uses a 4-digit passive SMS authentication scheme which was not susceptible

to traffic interception or other impersonation attacks. In case the SMS-based system fails the
application also offers the option to do a passive call-based authentication.

Line
 Line also uses a 4-digit passive SMS authentication scheme which was not susceptible

to traffic interception or other impersonation attacks.

textPlus
 textPlus also uses a 4-digit passive SMS authentication scheme which was not

susceptible to traffic interception or other impersonation attacks.

WeChat
 WeChat uses a classic 4-digit passive SMS authentication scheme, with the difference

that after establishing the authenticity of the user’s phone number it is possible to set a
password in order to be able to log into the account from other devices. However, it is also
possible to register the same number multiple times, effectively overwriting existing accounts
under that number.

 According to research done by Roberto Paleari, WeChat uses a custom communication
protocol which is not based on typical HTTP/S but uses a combination of RSA for key exchange
and subsequent AES for encrypting individual messages. A weakness in the application’s
debugging infrastructure allowed any application installed on the same Android device to
extract a hash of the user’s password. Detailed information on this exploit can be found on
Paleari’s blog [14].

4.2 Sender ID Spoofing/Message Manipulation
 In this section we will discuss the evaluation of the applications’ messaging protocols.

We attempted to exploit the protocols in order to send unauthorized messages or messages
with a spoofed sender ID. Most of the applications rely on the Extensible Messaging and
Presence Protocol (XMPP) 6 for messaging and as such are not susceptible to sender ID
spoofing. While a few of them use custom and mostly HTTPS based protocols such as JaxtrSMS
and Forfone, even those applications included security features to prevent the sending of
spoofed messages. Overall, we were not able to find any sender ID spoofing vulnerabilities in
the analyzed applications.

Forfone
 While according to Schrittwieser et al. [15] Forfone had contained a sender spoofing

vulnerability, it appears to have been fixed since then. The application no longer uses the IMSI

6 http://xmpp.org, last accessed: 1st Oct. 2014

or UDID for authenticating the sender but rather the randomly generated "reference token" as
described in authentication hijacking section. While this makes message spoofing unfeasible,
the other vulnerabilities described in the last section allow hijacking the entire Forfone account,
arguably removing the necessity to create spoofed messages.

JaxtrSMS
 The reason we wanted to mention JaxtrSMS at this point is because it follows a slightly

different approach than most applications by being completely HTTP/S based - message
sending is done through HTTPS requests and message receiving is done by periodically querying
the server for any new messages. This simple protocol is secured by using a random user ID
which is generated when a user signs up for the service. Every message sending request
includes the recipient’s phone number as well as the sender’s user ID. This user ID appears to
be secret and is known only to the server and the client itself and is used to authenticate the
sender of the message.

4.3 Unrequested SMS/phone calls
 Due to the nature of the authentication mechanisms of most applications it is possible

to generate authentication requests for arbitrary phone numbers, which results in the system
sending verification messages to the targeted number(s). An attacker could set up an
automated system to generate lots of such requests to flood the target with spam messages.
Although most applications include a limit of some sort on how often such requests can be
sent, combining the authentication systems of multiple applications could still generate
considerable amounts of spam. It should be noted though that it is not possible to change the
contents of such an authentication message as it gets delivered directly from the service
provider’s infrastructure without possibilities for interception or modification. Therefore, such a
system is pretty much unsuitable for commercial spammers and only useful as a disruption or
annoyance. The exception being applications that rely on active authentication SMS sent from
the registrants’ phone to the targeted phone number. These messages are sent at the cost of
the user and also have the user’s phone number as the sender, which makes them unsuitable
to be used as spam. Some applications such as WhatsApp, JaxtrSMS or KakaoTalk even allow for
phone-call-based authentication, where the user receives a short phone call during which a
computer-generated voice reads the verification code to the user. In case the phone call is
missed, the system will speak the code onto the receivers message box. In all applications
where call-based authentication is possible it only becomes available after the SMS-based
authentication has failed. As opposed to most of the authentication messages which usually
originated from the requesting country (or showed a spoofed sender) the origin of the phone
calls usually was in the USA. We could imagine that generating numerous international calls in
an automated fashion could cause considerable costs on the operators’ part.

4.4 Enumeration
 Most applications allow the user to upload their phone book to the server to

automatically identify other users of the service. This can have various security implications as
described in Section 3. The feasibility of such an attack was previously demonstrated in [15] by
abusing WhatsApp’s phone book uploading feature. By programmatically crafting custom HTTP

requests that included ranges of phone numbers they were able to obtain information about
whether the uploaded phone numbers were registered for WhatsApp. Almost all of the
analyzed applications appear to be vulnerable to such an attack, although for some of them it
might be harder to automate as they do not use HTTP requests for synchronizing the address
book but custom (often TCP-based) protocols. While it should be possible to reverse-engineer
these protocols and implement a rogue client to automatically upload phone numbers, it would
potentially involve a lot of work. Furthermore some of the applications are either more
cumbersome to enumerate (due to the way they work) or include privacy features that prevent
individual users (if they had chosen the appropriate settings) from being identified by a
mass-enumeration attack. Those special cases will be highlighted in the following section.
Countermeasures for preventing enumeration attacks from being feasible have been proposed
by Cheng et al. [3], but it is additionally advisable to impose a limit on the number of contacts
that can be uploaded within a certain time period. Some of the analyzed applications might
actually impose such limits, but attempting automated enumeration attacks against every
single application to find out which ones do was out of scope for this project.

Forfone
 We used Forfone as an example to demonstrate the feasibility of an enumeration

attack due to its rather simple, HTTPS-based contact synchronization. The user simply has to
upload a list of contacts using a POST request (this request is validated with the user’s
reference token, see Section 4.1 for details). The server responds with the same list, but for
every contact entry it includes a flag that indicates whether that phone number is a registered
Forfone user. Since Forfone does not limit the amount of requests that can be sent, we were
able to enumerate arbitrary phone number ranges using a simple Java script (see appendix
[sec:appendix]A) that automatically generates HTTPS requests and sends them to the Forfone
server.

HeyTell
 HeyTell allows users to change their privacy settings - using any setting other than

"low" prevents random people from adding them to their friend list. In other words, people are
unable to find out whether or not they are using the service (for example on "medium" only
friends of friends are able to add them). This can prevent the enumeration of individual
accounts, but most users will probably go with the default setting of being visible to everyone.

This feature does however include a weakness - if someone knows another person’s
user ID they can add them to their friend list regardless of their privacy setting by simply
sending a crafted HTTPS-request with the target’s ID as a POST parameter. While it does not
seem possible to find out someone’s user ID without them being on one’s friend list, effectively
preventing the "blind" adding or enumeration of random accounts, this flaw could be abused in
other scenarios. For example, after blocking/ignoring an unwanted user and changing the
privacy settings to prevent said user from finding or contacting again, that user could still be in
possession of the blocking user’s ID, create a new account and use the described vulnerability
to add the blocking user again.

JaxtrSMS

 JaxtrSMS does not identify users of the service beforehand – it only does so after
someone attempts to send them a message. In case the recipient also uses the service, the
message will be delivered through the applications network, otherwise an error message will be
thrown. While this does not entirely prevent enumeration or identification of active users, it
does prevent it from happening without the target user knowing. An attacker could still
attempt to systematically send automatically generated messages to different numbers to
enumerate users that way, although that would generate a lot of potentially unwanted traffic.
While the application does not seem to utilize the user’s contact list, for some reason it will still
require the permission to upload it to the server - considering it is not used in any apparent
fashion after being uploaded this seems like a totally unnecessary privacy intrusion.

Line
 Line allows users to change their visibility settings – that means users can prevent

other users from finding them using their phone number. While the default setting is to allow
finding by phone number, the inclusion of such a feature is still a good step into the right
direction. It is probably not going to prevent an attacker from enumerating large parts of the
userbase, as most users would not bother to change their default privacy setting, but it gives
privacy-conscious users the chance of staying hidden and avoiding being identified as Line
users.

WeChat
 Similar to Line, WeChat allows users to change their visibility setting to prevent others

from being able to find them using only their phone number.

5 Privacy considerations of smartphone messaging

In this section, we further analyzed privacy considerations of today’s generation of smartphone
messengers in order to compare these with the applications outlined in the previous chapters
and give a comparison on the respective security and privacy related issues.

5.1 Facebook Messenger
The Facebook Messenger7 differs greatly from the previously discussed applications in
that it does not use the phone number to identify the user, but requires registration and
login. Furthermore, the list of contacts is populated with Facebook friends rather than
numbers from the address book, still also this application allows importing contacts from a
smartphone and storing them on Facebook’s servers.
The messenger’s communications are sent encrypted via HTTPS but can nevertheless be

examined with the Charles Proxy. Our analysis revealed that a number of pieces of

information are being transmitted in addition to the actual communication, including:

 date and time of communication

7 https://www.facebook.com/mobile/messenger, last access 25 July 2014

 app version and build number

 network operator

 device information, such as the type of smartphone and the version of its OS

 network information: which type of network is being used (e.g. WIFI), the SSID8 of the WIFI

and its signal strength

The majority of these metadata is not necessary for the actual communication, so it is

unclear why they are sent to Facebook’s servers, especially network information, such as

the SSID of the WIFI.

As this example shows, the SSID (in this case “mynetwork”), network type (in this case

WIFI) and the RSSI9 are transmitted in addition to standard information such as time of

communication and version number of the application.

Fig. 6: Facebook Messenger – transmission of information

5.2 XMPP through anonymization networks
One of the protocols that are used quite frequently with smartphone messengers is XMPP

[11, pp. 1-18]. With XMPP, every user has a unique ID, which is constructed similarly to an

e-mail address. Generally, we can distinguish between two types of communication with

XMPP: client-server and server-server communication. When it comes to storing metadata,

it is not sufficient to encrypt only the message or to use end-to-end encryption, as the

XMPP servers would still have access to the information on who communicated with whom

and when. If the system avoids using the phone number or e-mail address as

identification, as in this case, it is of course harder to match a self-selected ID to a person.

Nevertheless, it is theoretically possible via the service provider using IP addresses. The

8 Service Set Identifier: For distinguishing between several WIFIs
9 Received Signal Strength Indicator: Received field strength of wireless network

only way to prevent this is the use of anonymization networks such as Tor10.This makes it

impossible to determine the source or destination of a packet. Within the Tor network,

there are hidden services that can only be reached via the Tor network itself, so that it is

not possible to determine where the server providing the service is located. Should an

XMPP service be operated as a hidden service inside Tor, only the server’s operator could

see who communicates with whom. Neither the Internet provider nor any other user could

access this information. This means that a user would either have to trust the operator of

the hidden service or operate their own XMPP server. However, the fundamental structure

becomes slightly more difficult if this type of XMPP server has to communicate with

non-anonymous XMPP servers, but even that would be possible. One of the disadvantages

of anonymization networks such as Tor is that it takes longer to establish the connection.

Marcel Heupel [12, p. 56] tested the usability of Tor for Android smartphones and found

that it affected the speed considerably. It usually took approximately 1.5 seconds longer to

establish a connection, and in some cases, it would take up to 20 seconds for a simple query

to the server. One of the ways in which Tor can be used on the Android OS is the Orbot11

application, which makes it possible to transport either the entire network traffic of the

smartphone or only the traffic of specified applications via the Tor network. However, the

unlimited use of this app requires root access on the smartphone. Without these rights, the

application can only be used for specific other apps that support the use of a proxy. It

should also be added that most smartphone messengers use the Google Cloud Messaging

service. It delivers the message via a Google service, which hinders anonymization.

5.3 Google Cloud Messaging
Google Cloud Messaging for Android [13] is a free service by Google. It allows developers to

send messages from their server to the smartphone app and to receive messages from the

app. The message transmitted can either be the actual content of the communication or an

empty packet. This so-called send-to-sync message can be useful when the server simply

wants to inform the app about an event, e.g. that a new message is available for download.

In this scenario, only an empty packet would have to be sent instead of the complete

message. The service also makes it possible to deliver messages even when the app is not

currently running on the smartphone. In this case, the send-to-sync message could “wake

up” the app and tell it that a new message has arrived. Google only transmits the raw data,

while any processing and displaying of the message must be done by the app itself. This

service is used by many smartphone messengers on Android, as it is very comfortable for

developers to use existing technology. Otherwise, the app would also have to query the

server regularly to see whether new messages have arrived, which would of course

influence the battery life of the smartphone considerably. By using Google Cloud

10 https://www.torproject.org/, last access 25 July 2014
11 Download at https://play.google.com/store/apps/details?id=org.torproject.android, last access 25 July 2014

https://play.google.com/store/apps/details?id=org.torproject.android

Messaging, the server can inform the smartphone immediately that new data has arrived.

The authors of the privacy preserving messenger application Threema12 say that it sends

an empty message via Google Cloud Messaging to inform the application of the existence of

a new message. According to the developers, TextSecure13 currently transmits the entire

message via the service, but encrypts it. The app relies completely on Google to deliver it.

Telegram14 is the only app to use its own protocol, but says that this can lead to higher

battery use and offers users the option of switching to Google Cloud Messaging.

6 Mitigation of phone book disclosure
The value [10] of a social network depends on its size, since most people would not join a

social network if none of their friends were already using it. This creates a conundrum

when building a social network – if nobody has joined yet, nobody will want to join. In

order to avoid this problem when creating a new app, many developers decide to build on

an existing social graph, such as Facebook. When the application is intended for a

smartphone, however, there is another existing social graph that can be used – the user’s

address book. When a new app identifies users via their e-mail addresses or phone

numbers - i.e., information that is already stored in address books – it can recognize quite

easily which of the contacts already use the app. This means that users do not have to look

for their friends, as they immediately show up as contacts. This mitigates the problem with

the creation of a new social network as described above. The problem with this approach

however is the following question: How does the app know which contacts already use the

service? In most cases, the entire address book is sent to the server, where each contact is

checked against an index of all phone numbers that use the service. But what options are

there other than sending the entire address book to a server? The address book might

contain sensitive information regarding contacts, or people may feel uncomfortable simply

because all information is sent to some server.

6.1 Hash values
One option [10] that initially seems like an answer is not to use the phone number but its

hash15. This way, it would not be necessary to transmit the individual contacts to the

server, only their hashes, so that the server would have no access to the actual information,

i.e., phone numbers or names and other personal details. The problem with this approach is

the relatively low number of possible phone numbers. This means that it would be possible

12 https://threema.ch, last access 26 February 2015
13 https://whispersystems.org, last access 26 February 2015
14 https://telegram.org, last access 26 February 2015
15 A one-way function that can map a text of arbitrary length to a character string of fixed length. The hash cannot be reversed to gain

plaintext.

https://whispersystems.org/
https://telegram.org/

to try all phone numbers in an acceptable time by brute force. It is not possible to use a salt

in this case, as the other smartphones would have to use the same salt when sending their

address books to the server. The number of possible e-mail addresses is considerably

larger, but still not enormous.

6.2 Bloom filters
One strategy for mitigating the problem outlined in Section 6.1 would be the use of Bloom

filters [10].The basic idea is that if the server were to send the entire database of registered

users to the client, the client could verify the data locally without the need to query the

server. Bloom filters could be used to optimize network efficiency in such a case. One

problem, however, would be that the entire database could be read on the client. This can

be avoided by using encrypted Bloom filters. The client could not simply search for a

certain number in the Bloom filter, but would have to first request a blind signature from

the server. This way the server would retain access control to the Bloom filter while not

knowing what the client is searching for. The problem with Bloom filters in general,

however, is the data volume that needs to be transmitted. As Marlinspike [10] writes on his

blog, this approach cannot be used for the TextSecure messenger. If approximately 10

million users were to use the service and would update the bloom filter only once a day,

this would still amount to 40 MB being queried from the server 116 times a second. This

problem aside, a daily update of approx. 40 MB can still be quite costly, depending on the

individual mobile contract of the respective user.

7 Conclusion

Generally speaking, the re-evaluation of the eight previously analyzed applications
showed almost no improvement - while one of the flawed authentication mechanisms was
fixed along with most of the other vulnerabilities present in the application (WhatsApp) and
one completely broken application is off the market entirely (Voypi), new authentication
weaknesses have been identified or introduced in both Forfone and XMS.
 The newly evaluated applications on the other hand paint a much better picture: Virtually all

of them use a seemingly well-implemented passive SMS authentication approach and with the

exception of WeChat’s logging vulnerability (as described in [14]) and a potential weakness in

JaxtrSMS (which we were not able to exploit though) we could not identify any serious

vulnerabilities. In regards to privacy and enumeration, two currently very popular applications

(Line and WeChat) incorporate privacy settings that allow users to stay hidden from random

people. This appears like a good privacy-preserving feature and the inclusion of similar

mechanisms into some of the more popular messaging applications would be a desirable

development for the near future.More privacy preserving smartphone messaging could be

accomplished under certain conditions, but this would influence usability severely in most

cases. The need to create one’s own contact list, high battery use, or a slower connection, as

with Tor, limit usability and therefore probably lead to lower user numbers compared to

products such as WhatsApp, Viber and Facebook. Furthermore, in the last section of the

paper we discussed several techniques for protecting the sensitive data inside the users’ phone

books while still allowing the application provider to establish a network between the individual

users of the application. While currently no solution working in real-life environments has been

found the pros and cons regarding the existing solutions can be seen as valuable starting points

for future developments in this area.

References

[1] M. Bishop. Computer Security: Art and Science. Addison-Wesley, 2002.

[2] A. Braga. Integrated technologies for communication security on mobile devices. In

MOBILITY 2013, The Third International Conference on Mobile Services, Resources, and

Users, pages 47{51, 2013.

[3] Y. Cheng, L. Ying, S. Jiao, P. Su, and D. Feng. Bind your phone number with caution:

automated user profiling through address book matching on smartphone. In Proceedings of the

8th ACM SIGSAC symposium on Information, computer and communications security, pages

335{340. ACM, 2013.

[4] L. Davi, A. Dmitrienko, A. Sadeghi, and M. Winandy. Privilege escalation attacks on

android. Information Security, pages 346{360, 2011.

[5] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. Pios: Detecting privacy leaks in ios

applications. In Network and Distributed System Security Symposium (NDSS), 2011.

[6] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study of android application security.

In Proc. of the 20th USENIX Security Symposium, 2011.

[7] W. Enck, M. Ongtang, and P. McDaniel. On lightweight mobile phone application

certification. In Proceedings of the 16th ACM conference on Computer and communications

security, pages 235{245. ACM, 2009.

[8] A. Felt, H. Wang, A. Moshchuk, S. Hanna, E. Chin, K. Greenwood, D. Wagner, D. Song, M.

Finifter, J. Weinberger, et al. Permission re-delegation: Attacks and defenses. In 20th Usenix

Security Symposium, San Fansisco, CA, 2011.

[9] K. Fu, E. Sit, K. Smith, and N. Feamster. Dos and Don'ts of Client Authentication on the

Web. In Proceedings of the 10th conference on USENIX Security Symposium-Volume 10, pages

19{19. USENIX Association, 2001.

[10] J. Koum. 400 million stories. http://blog.whatsapp. com/index.php/2013/12/

400-million-stories/, 2013. Accessed: 2014-08-04.

[11] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in distributed systems:

Theory and practice. ACM Transactions on Computer Systems (TOCS), 10(4):265{310, 1992.

[12] S. Millward. Line reveals latest user numbers in japan, thailand, taiwan, indonesia.

http://www.techinasia.com/line-user-numbers-thailand-indonesia-japan-taiwan-august-2013/,

http://blog.whatsapp/
http://www.techinasia.com/line-user-numbers-thailand-indonesia-japan-taiwan-august-2013/

2013. Accessed: 2014-08-04.

[13] S. Millward. Tencent: Wechat now has 271.9 million monthly active users around the

world. http://www.techinasia.com/tencent-wechat-272-million-activer-users-q3-2013/, 2013.

Accessed: 2014-08-04.

[14] R. Paleari. A look at wechat security. http://blog.emaze.net/2013/09/a-look-at-

wechat-security.html, 2013. Accessed: 2014-08-04.

[15] S. Schrittwieser, P. Fr•uhwirt, P. Kieseberg, M. Leithner, M. Mulazzani, M. Huber, and E.

R. Weippl. Guess who's texting you? evaluating the security of smartphone messaging

applications. In NDSS, 2012.

[16] W. Stallings. Cryptography and network security: principles and practice. Prentice Hall

Press, 2010.

[17] P. Stirparo and I. Kounelis. The mobileak project: Forensics methodology for mobile

application privacy assessment. In Internet Technology And Secured Transactions, 2012

International Conference for, pages 297{303. IEEE, 2012.

[18] K. Whitfield. 17 incredible facts about mobile messaging that you should know.

http://www.portioresearch.com/en/blog/2013/17-incredible-facts-about-mobile-messaging-that-y

ou-should-know.aspx, 2013. Accessed: 2014-08-04.

http://www.techinasia.com/tencent-wechat-272-

