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Abstract—In this paper, we show the applicability of combi-
natorial testing to the system call interface of the Linux kernel.
Our approach is two-fold: first we analyze the TRINITY fuzz
tester and in the aftermath we adapt the input parameter
modeling of TRINITY to the field of combinatorial testing.
Furthermore, apart from the modeling itself, we target to provide
a configurable testing framework for executing tests obtained by
the ACTS combinatorial test generation tool, called ERIS.
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I. INTRODUCTION

This paper highlights the research results obtained so far
about developing combinatorial design testing for the system
call interface offered by the Linux kernel [1]. We strive to
provide the modeling and to design a combinatorial testing
framework for application programming interfaces (APIs). In
this case study, we focus on testing the system call interface
of the Linux kernel. We present two modeling concepts for the
system call API of the Linux kernel: input parameter modeling
based on category partitioning and flattening methodology.
Fuzz testing the Linux system call interface has discovered
a lot of bugs for some time now [2]. The inherent problem of
fuzz testing is the unpredictability of any assertions about the
achieved coverage in respect to the total input space. With the
help of combinatorial testing, we hope to propose an alternative
which offers concrete assertions about the interaction coverage,
enhancing the trust one can place into a given API. We note
that by testing the Linux system call interface, one can also
consider testing security aspects of the underlying operating
system. Although combinatorial testing has been applied in a
lot of different scenarios (see Section V), to the best of our
knowledge, we are not aware of any work focusing only on
testing the Linux system call API.

The schematic design overview of the proposed testing
framework is depicted in Figure 2.

A. Trinity and Eris

Testing is an integral part of software engineering. There
are different conceptual ways to approach software testing.
During its lifetime a software is most likely tested at least
against the following primitives: correctness, performance,
usability and regressions. The adherence to all of these goals
can be evaluated by different designs of tests, for example there
are unit-tests, integration tests, white-box tests, black-box tests,
fuzz testing and combinatorial testing. A nice overview of all

these testing methodologies can be found in [3]. The immense
inherent complexity of today’s highly interconnected software
systems nearly always excludes the practicability of testing all
possible combinations, i.e. using an exhaustive search on the
input space as input to the testing procedures.

Fuzz testing aims to challenge software in unexpected
ways by passing randomly generated values to parameters. The
software TRINITY is a fuzz tester for the Linux system call
interface, which uses sanitized random parameter values (see
[4]) as input for system calls. A test oracle is provided by
the simple fact whether the kernel crashes or not due to the
execution of test cases.

So far, TRINITY has found quite an impressive list of
bugs [2]. TRINITY is primarily developed by Dave Jones in the
C programming language. TRINITY currently supports more
than 10 processor architectures. For more details refer to [5].

In this paper, we present a new configurable combinatorial
testing framework, called ERIS, which executes generated test
cases obtained by the ACTS combinatorial test generation tool
[6]. ACTS is developed jointly by the US National Institute
of Standards and Technology and the University of Texas
at Arlington, and currently has more than 1400 individual
and corporate users. ERIS is written in the C programming
language and Shell scripts, and is based on TRINITY. ERIS also
integrates the underlying input parameter modeling for the
system call API and takes care of translating the modeled
parameters to actual values. The features of ERIS that are
presented in this paper for the first time are built, apart from
the actual execution of system calls, upon a modular design
which makes it possible to replace some of its components,
including the test case generation and the test oracle, as can
be seen in Figure 2.

Currently we are also using the crash oracle in ERIS.
However, ERIS is designed in such a way that this component
can be configured to comply with different oracles, especially
the ones that make use of semantics.

B. Motivation

The fact that there already is available data about bugs
found by fuzz testing (especially from TRINITY) gives an op-
portunity to compare it with data generated with our approach
based on combinatorial design test procedures. We hope to
be able to confirm the earlier findings about the interactions
of software stages when the ERIS framework reaches future
completion. Furthermore, according to [7], a study about the



Fig. 1. Testing procedure

Linux kernel, or another prominent example of free and open
source software, has not been done yet. The Linux kernel
code is actively used today (e.g. 1.5 million Android devices
activated per day in April 2013 according to Google) and has
a sufficiently large code base to be considered a plausible real-
world example.

As the kernel of an operating system is also the central
authority to enforce and control security, as much testing as
possible is crucial for the safety of our daily tasks, and more
tests can only confirm trust in the code or uncover bugs, which
will hopefully be fixed afterwards.

Furthermore, system calls often involve flag arguments,
i.e. (often binary-) switches that control the behavior of the
call, which can easily be modeled. Likewise, the namespaces
subsystem, especially the creation of new namespaces, relies
on a lot of flags, which control different aspects. A complete
testing of all combinations is nearly impossible, therefore our
combinatorial testing approach promises good results.

Some remarks regarding special functionality of the Linux
kernel: no namespace-hierarchies are considered, i.e. we con-
sider living in the root namespace, and some other features are
also not taken into account (for example restricting the kexec
system call) for this modeling.

C. Contribution

Our contribution can be summarized in the following
three concrete case studies. Firstly, we conducted an extensive
analysis of the TRINITY fuzz tester. In particular, we analyzed
in great length the system calls executed by this fuzz tester
which formed the basis for a classification suitable for a
broader combinatorial modeling of APIs. Secondly, we present
two methodologies based on input parameter modeling with
category partitioning specifically for modeling system calls.
In the aftermath, this combinatorial modeling of APIs was
integrated into a new configurable framework presented for
the first time in this paper, called ERIS, which uses the

ACTS testing tool for producing test cases and extends the
TRINITY fuzz tester by offering additional functionalities such
as combinatorial testing.

This paper is structured as follows: in Section II we briefly
give the necessary definitions from the field of combinatorial
testing that are needed for our approach. In Section III we
present two approaches for combinatorial modeling of APIs.
In Section IV we present some implementation details and a
proof-of-concept for the new ERIS testing framework. Finally,
in the concluding section we summarize our work and raise
some questions for further work.

II. BACKGROUND

Testing a system under test (SUT) requires the existence
of test cases, and in particular a method capable of generating
such test cases. For developing our ERIS testing framework we
can also use methods that arise from the field of combinatorial
testing. Combinatorial testing is an effective testing technique
to reveal errors in a given SUT, based on input combinations
coverage. Combinatorial testing of strength t (where t ≥ 2)
requires that each t-wise tuple of values of the different system
parameters is covered by at least one test case.

To design a test suite, the tester identifies possible output
values from each of the actions of the SUT. It is important to
find a test suite that is not too large, but yet tests for most of
the interactions among the possible outputs in the actions of
the SUT. Recently, some researchers [8], [9], [10] suggested
that some faults or errors in SUTs are a combination of a few
actions when compared to the total number of parameters of
the SUT.

Combinatorial testing is motivated by the selection of a
few test cases that comprise a test suite in such a manner that
good coverage is still achievable. The combinatorial test design
process can be briefly described as follows:

1) Model the input space. The model is expressed in
terms of stages (parameters) and stage (parameter)
values.

2) The model is input into a combinatorial design proce-
dure to generate a combinatorial object that is simply
an array of symbols.

3) Every column of the generated array is used to output
a test case for a SUT.

One of the benefits of this approach is that steps 2. and
3. can be completely automated. In particular, we used the
ACTS tool and in the aftermath the ERIS framework for these
steps.

We followed this approach to model software testing
procedures in terms of combinatorial testing methodologies,
and in particular we modeled the system call interface of the
Linux kernel. The input space of the possible system calls,
as this will be later discussed in the paper in Section III,
make the procedure of system call testing an ideal candidate
for modelling via combinatorial designs. For our approach we
use the notion of mixed-level covering arrays (a specific class
of combinatorial designs). For the sake of completeness we
provide below the definition of mixed-level covering arrays
taken from [11] since this is the underlying generated structure
in the ACTS tool:



Definition 1: A mixed-level covering array which we will
denote as MCA(t, k, (g1, . . . , gk)) is an k×N array in which
the entries of the i-th row arise from an alphabet of size gi.
Let {i1, . . . , it} ⊆ {1, . . . , k} and consider the subarray of
size t×N by selecting rows of the MCA. There are

∏t
i=1 gi

possible t-tuples that could appear as columns, and a MCA
requires that each appears at least once. The parameter t is
also called the strength of the MCA.

Lastly, we would like to note that examples of the exact
modeling of system calls in terms of stages and stage values
are given in the following section.

III. MODELING OF APIS

Here we describe the process of translating a given API into
a combinatorial model for combinatorial test design method-
ologies.

For the example of the Linux kernel system call interface
we take the view of syntactical modeling. We use the term syn-
tactical modeling similarly to purely syntactical constructions
in mathematical logic. A priori, it more or less completely
ignores semantic aspects. However, this approach does not
exclude the possibility to introduce semantic aspects into the
modeling and the testing framework.

1) System Call Interface of the Linux kernel: The Linux
kernel supports many different processor architectures1, among
others i386 and x86-64. The system call interface provided by
the Linux kernel is processor architecture specific.

2) From Source to Modeling: TRINITY abstracts the C data
types used in the Linux kernel source code to 18 argument
types shown in Listing III-2. This definition can be found
in trinity/include/syscall.h in the source tree of
TRINITY. TRINITY is capable of intelligently fuzzing system
call parameters using the classification in Listing III-2 of
possible input parameter types. TRINITY then further uses
different random functions to generate actual values and then
employs C data type specific as well as system call specific
sanitizing functions.

enum a r g t y p e {
ARG UNDEFINED = 0 ,
ARG RANDOM LONG = 1 ,
ARG FD = 2 ,
ARG LEN = 3 ,
ARG ADDRESS = 4 ,
ARG MODE T = 5 ,
ARG NON NULL ADDRESS = 6 ,
ARG PID = 7 ,
ARG RANGE = 8 ,
ARG OP = 9 ,
ARG LIST = 10 ,
ARG RANDPAGE = 11 ,
ARG CPU = 12 ,
ARG PATHNAME = 13 ,
ARG IOVEC = 14 ,
ARG IOVECLEN = 15 ,
ARG SOCKADDR = 16 ,
ARG SOCKADDRLEN = 17 ,

} ;

List III-2: Abstract Parameter Types from TRINITY

1https://www.kernel.org/linux.html

Under the term actual parameter type we view the type of a
parameter of a system call in the sense of the C programming
language in the sources of the Linux kernel. For example,
a pointer has type void* in the sense of the C language.
Similarly, the term actual parameter value refers to a value
which is really passed to a system call and the term abstract
parameter type is understood as an element given in Listing
III-2 above. In our combinatorial modeling, we are considering
each system call as an independent SUT, as it can be seen
in Figure 1. Therefore, for a specific system call, for each
of its specific actual parameter types, we assign exactly one
abstract parameter, reusing the classification from TRINITY.
In Subsection III-B we present a direct modeling approach
focusing on input parameter modeling with categories for the
abstract argument types presented in Listing III-2. However,
in terms of III-C one abstract parameter can be modeled with
more parameters (stages) which capture more information, and
this new approach is referred to as flattening methodology.
Therefore our modeling, and also ERIS, include a translation
layer between abstract stage values and concrete stage values
which is especially important in the flattening methodology
described in Section III-C.

A. Input Parameter Model

Based on the type classification provided by TRINITY, we
employed the approach presented in [12] to model each type.
The choices are specifically targeted at the environment the
Linux kernel operates in. In this paper, we do not consider
any network related system calls.

Input parameter modeling is not a new concept. For ex-
ample, in [13] the authors present a three-step approach
applying combinatorial testing to the Siemens Suite while in
[14] the authors present the modeling of the input space of
ACTS. In [15] common patterns that arise in combinatorial
models are described. Moreover, in [16] a new two step input
space modeling methodology is presented. In [9] research is
focused on efficient fault characterization. In addition, in [17]
the authors discuss categories and choices in the modeling
process while in [18] comprehensive guidance on how to
use combinatorial testing is provided. Finally, in [19] two
new constructs in the modeling process are introduced, which
reduce the overall complexity. For a thorough treatment of the
topic we refer the interested reader to [20]. We would like to
note that ERIS is also enriched from the methodologies used
for input parameter modeling given in [13].

We point out that some properties of the modeling, includ-
ing some actual parameter values, are determined on runtime
during the execution of a test case of a system call with
ERIS, for example valid PID numbers are generated when a
program is started. The same holds for addresses of memory
mappings. Therefore, sometimes placeholders have to be used
in the modeling, which will get translated to actual parameter
values during execution.

The overall outline during the execution of ERIS is com-
plicated by the fact that (intentionally or as a result of normal
execution) even the number of available CPUs can change.
Taking this into account, it follows that in order to target
specific execution environments, it might be required to adapt
some of the stage values in the modeling.



B. Combinatorial Modeling - IPM with Categories

Our first approach is based on the following classification
of abstract argument types introduced in Listing III-2 in two
disjoint classes: a local and a global type. Building upon
that, system calls are then classified into two disjoint groups,
which we also call local and global, according to the following
rule: a system call is referred to as global, if and only if all
of its abstract parameter types are classified as global. The
remaining system calls are called local. This classification is
based on the following observation: a stage value of type
ARG CPU can be passed to any system call that has an
abstract argument type ARG CPU. The same holds for a file
descriptor, a path name or an ARG MODE T argument. In
contrast to that, a flag in a system call is (almost surely)
specific to that system call only, so this system call would
be classified as local. Furthermore, a list of possible values in
TRINITY is modeled with the type ARG OP, and is considered
as a local argument type in terms of our modeling based on
IPM with categories. An example for a global system call
is chmod, expecting a path and a mode argument, while an
example for a local system call is mount, which relies heavily
on flags.

The reason for this distinction lies in the fact that by
restricting the modeling to system call independent abstract
parameter types, it was possible to considerably reduce the
amount of work needed during the modeling process. By
intentionally considering only the global system calls, we
are able to present a coherent modeling based on the input
parameter modeling with categories. This was also straight
forward to implement in the proposed ERIS testing framework.
It should be mentioned that one can always add more invalid
stage values, but in order to be able to present a clear
methodology, we have limited the amount of invalid values.

1) Input Parameter Model with Categories for APIs: As
explained above, the argument type ARG CPU is considered
a global abstract argument type. We create equivalence classes
to partition the input space of possible CPU identifiers. Then
we select some members out of each equivalence class and
hence create with them a list of stage values. The number N
of stage values will determine the ACTS configuration for this
stage, precisely numbers from 0 to N−1. These numbers will
then be used in a simple lookup operation to specify actual
values.

The abstract argument type ARG MODE T corresponds
to the actual parameter type mode t used in the Linux kernel.
Quoting2 the beginning of man 2 chmod:

The new file permissions are specified in mode,
which is a bit mask created by ORing together zero
or more of the following:
S ISUID (04000) set-user-ID (set process effective
user ID on execve(2))

Therefore it follows that it can be considered as a list of 12
binary flags, which can be set independent from each other.
This discrete input space is then partitioned in all possible 4096
singleton values. The input space for this abstract parameter
type is clearly discrete and finite.

2http://man7.org/linux/man-pages/man2/chmod.2.html

A process in Linux can be identified by its Process Identi-
fier (PID). When TRINITY has to generate an actual parameter
value for a type ARG PID, one possibility is that it selects a
random PID from one of its running child processes. A given
non-negative integer i can constitute a valid PID (meaning
that there is currently a process running on the system which
has that number i as PID) or an invalid PID. We are using
4 specific processes to get valid PID values. We selected two
user processes, which have to be started manually beforehand:
w3m and ed. Additionally, two system processes are chosen,
namely cron and acpid. We use three invalid numbers:
−3,−1, 9999999999 as placeholders. This makes a total of
7 stage values.

Regarding the abstract type ARG ADDRESS, the memory
model of the Linux kernel implies the following classes:
NULL and KERNEL ADDR. The other choices are taken
from TRINITY. They represent a proper selection of possible
addresses. It should be noted here that in particular the
dereferencing of arbitrary memory addresses is not permitted,
therefore some care has to be taken in the modeling of this
abstract argument type.

On startup, TRINITY generates file descriptors from under
/proc, /sys and /dev and then passes a random file
descriptor out of this list to a system call. In contrast to
that, on startup, a victim directory can be specified, which
will be used as the source of file descriptors and pathnames.
We are currently reusing this victim directory functionality
from TRINITY in ERIS. Specifically, we generated a custom
directory structure explicitly for testing purposes, comprising
15 files. This approach can be seen as a limited category
partitioning. The determination of actual values in this regard
remains open to further research, depending on practical eval-
uations. Another option available in ERIS for the generation
of file descriptors is based on a customized nftw function.

TRINITY uses either existing paths, or creates mangled
paths or strings that should appear as directories. For simplic-
ity, we also reused the victim directory option of TRINITY for
ARG PATHNAME.

Remark 1: We would like to remark that the presented
choices for the generation of file descriptors represent an
instantiation of possible file descriptors. The option of using
more file descriptors (possibly from many different directories)
simply increases the coverage with respect to all files in the
file system. The same holds for the abstract argument type
ARG PATHNAME. Furthermore, it follows from our modular
design that it is possible to delegate the generation of path
names to another entity, which could generate pathnames based
on a grammar.

2) Examples for System Call Modeling using IPM with
Categories: To present the modeling of a system call, we give
below the ACTS configuration file for the chmod system call
(the second list runs through all values between 0 and 4095,
it is shortened for presentation here):

[ System ]
Name : chmod

[ P a r a m e t e r ]
ARG PATHNAME ( i n t ) : 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ,

10 , 11 , 12 , 13 , 14



TABLE I. ACTUAL STAGE VALUES FOR GLOBAL ABSTRACT PARAMETER TYPES

ARG CPU 1, 2, 3, 4, 5, 6, 7, 8

ARG MODE T 1, 2, 3, 4, . . . , 4095, 4096

ARG PID −3,−1, pid cron, pid acpid, pid ed, pid w3m, 9999999999

ARG ADDRESS NULL, KERNEL ADDRESS, page zeros, page 0xff, page rand, page allocs, get map(0), get map(1), get map(2), malloc

ARG FD fd1, fd2, fd3, . . . , fd15
ARG PATHNAME pathname1, pathname2, pathname3, . . . , pathname15

ARG MODE T ( i n t ) : 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 ,
11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , . . . ,
4095

Obviously we cannot exclude the possibility that for a given
system call with more than two arguments when we want
to generate covering array of strength greater than two, this
computation might become intractable.

The actual stage values for ARG PATHNAME are de-
termined by the victim directory option in ERIS using our
directory structure. The numbers in the configuration represent
indices into arrays which hold the actual parameter values.

Now, consider the renameat system call, which has the
following modeling in TRINITY and ERIS:

/∗
∗ SYSCALL DEFINE4 ( renameat , i n t , o ldd fd , c o n s t c h a r

u s e r ∗ , oldname ,
i n t , newdfd , c o n s t c h a r u s e r ∗ , newname )

∗ /
# i n c l u d e ” s a n i t i s e . h ”

s t r u c t s y s c a l l s y s c a l l r e n a m e a t = {
. name = ” r e n a m e a t ” ,
. num args = 4 ,
. arg1name = ” o l d d f d ” ,
. a r g 1 t y p e = ARG FD,
. arg2name = ” oldname ” ,
. a r g 2 t y p e = ARG ADDRESS,
. arg3name = ” newdfd ” ,
. a r g 3 t y p e = ARG FD,
. arg4name = ”newname ” ,
. a r g 4 t y p e = ARG ADDRESS,
. f l a g s = NEED ALARM,
. group = GROUP VFS,

} ;

Based on the description above, the combinatorial modeling
results in:

[ System ]
Name : r e n a m e a t

[ P a r a m e t e r ]
ARG FD ( i n t ) : 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 ,

12 , 13 , 14
ARG ADDRESS ( i n t ) : 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9
ARG FD ( i n t ) : 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 ,

12 , 13 , 14
ARG ADDRESS ( i n t ) : 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9

For example, the actual stage values for ARG ADDRESS are
given below.

/∗
i n i t a r g a d d r e s s s e t s t h e v a l u e s from t h e f u n c t i o n

g e t a d d r e s s i n f i l e random−a d d r e s s . c i n t o
t h e a r r a y v a l s a r g a d d r e s s

∗ /

vo id i n i t a r g a d d r e s s ( vo id )
{

v a l s a r g a d d r e s s [ 0 ] = ”NULL” ;
v a l s a r g a d d r e s s [ 1 ] = ( vo id ∗ ) KERNEL ADDR;
v a l s a r g a d d r e s s [ 2 ] = p a g e z e r o s ;
v a l s a r g a d d r e s s [ 3 ] = p a g e 0 x f f ;
v a l s a r g a d d r e s s [ 4 ] = page rand ;
v a l s a r g a d d r e s s [ 5 ] = p a g e a l l o c s ;
v a l s a r g a d d r e s s [ 6 ] = get map ( 0 ) ;
v a l s a r g a d d r e s s [ 7 ] = get map ( 1 ) ;
v a l s a r g a d d r e s s [ 8 ] = get map ( 2 ) ;
v a l s a r g a d d r e s s [ 9 ] = ma l lo c ( p a g e s i z e ∗ 2) ;

}

As it can be seen, we give ACTS a list of indices, and the
actual values are coded in arrays in ERIS’ source code and
the values obtained from ACTS are used as indices into these
arrays.

3) Advantages and Disadvantages of our Input Parame-
ter Modeling with Categories for APIs: One of the biggest
advantages of this IPM approach is the direct translation
between abstract and actual stages, which also implies a direct
translation between abstract stage values and actual parameter
values passed to system calls. The necessary configuration
management in ERIS was directly build upon available con-
figurations in TRINITY. This modeling further shows that the
concept of input parameter modeling with category partitioning
can be used to represent the abstract parameter types presented
in Listing III-2. ACTS-configurations were created with Bash-
scripts, parsing the source code of ERIS for the right identifiers.

However, this modeling approach was first implemented
with hard-coded values in the source code. This fact makes
the whole approach rigid and inflexible to adapt to new
requirements. For the practical evaluation it will be beneficial
to be able to quickly change some testing parameters during
consecutive calls to our testing framework. For example, being
able to use different strengths for the covering arrays. In the
beginning of our study, we tried to use different covering arrays
with hard-coded paths for each system call, which turned out
to be impractical. Finally, the separation into the two classes
local and global led to a very small list of system calls
available to test when compared with all possible system calls
- roughly about ten percent remained.

Remark 2: As a side remark we would like to mention
that in this approach we did not need the constraint support of
ACTS. The manual classification we performed into local and
global system calls handled any possible constraints.

C. Combinatorial Modeling - A Flattening Methodology

Here we present a more flexible approach to the problem of
modeling APIs, which also makes better use of some features
of combinatorial testing based on the asymptotic growth of



covering arrays. For example, this growth is logarithmic on
the number of stages.

The term flattening is to be understood as the process
of using several stages for one abstract parameter type of a
system call, encoding different properties of this abstract type
in several stages. The types of these newly added stages will
be adjusted to the necessities for each abstract argument type.
If possible, we flatten one abstract type to many new stages.
We would like to note that this is not done on stage values but
on the stage types.

As a marginal note, we want to mention that with the intro-
duction of the flattening methodology the difference between
global and local system calls is not necessary anymore. The
flattening methodology combined with a sophisticated policy
management entity in the design of ERIS now allows us to
also consider argument types like ARG OP. The modeling
of the latter argument type is firstly realized using category
partitions and then it is possibly refined using the flattening
methodology. Since the cardinalities of possible actual values
in for example ARG OP are often limited, it is feasible to
integrate this abstract argument type into our framework. This
gives us the possibility to model considerably more system
calls.

Please observe that in this setting a translation layer is
needed to convert a test case to actual parameter values, which
are then used in ERIS. For further details see Section IV-B.

1) Detailed Description of Flattening Methodology: The
abstract argument type ARG LIST represents a list, where zero
or more elements of this list can be bitwise-ored together. This
abstract argument type is used to capture different flags. The
used list entries are, generally speaking, system call specific
and therefore it was not possible to model this argument
type with the methodology presented in Section III-B. Lists
are canonical examples to be flattened. In [15], the authors
mention Multi-Selection, a similar approach to the flattening
methodology. The flattening methodology for ARG LIST is
implemented as follows: for each list entry we add a binary
stage. This stage decides whether a specific flag is set or not,
similar to the identification of the power set ℘(x) and x2 (the
set of all functions from x into 2). Again, a translation from
the abstract test obtained by ACTS to an actual input value
has to be implemented.

The flattening model obtained by our methodology for
a system call which has an abstract parameter of type
ARG LIST, is given below:

syscall (type1 arg1, type2 arg2,ARG LIST arg3) (1)

The first and second abstract argument type in relation (1)
are not further specified. The third parameter has abstract
argument type ARG LIST. Suppose that the respective list has
N entries. Now let ν1, ν2 be actual parameter values for their
respective types. In addition to them we now choose binary
flags (li)i=1,...,N , i.e. l(·) ∈ {0, 1}. This results in the following
modeling of the system call:

syscall (ν1, ν2, l1, l2, . . . , lN ) (2)

The abstract argument type ARG MODE T can be viewed
as a special instance of the type ARG LIST with fixed entries.

Therefore ARG MODE T will also be flattened out in the
modeling. This means that we add 12 additional binary stages
for each occurrence of an ARG MODE T abstract argument
type of a system call. This has to be considered in test case
generation and translation of tests into values, because the
generated tests will have more stages than the system call has
parameters. However, also in this methodology, one still has
to decide about how many invalid stage values one wants to
add. For example, by adding yet another boolean stage, which
decides about the validity of the generated flag, and with the
help of the constraint support in ACTS, similar to the approach
in the case of ARG ADDRESS below, it is possible to limit
the number of added invalid stage values.

The problem with memory addresses in general is that
it is mandatory to only read from initialized memory. The
abstract argument type ARG ADDRESS is used quite often
in the modeling of system calls and is processor architecture
dependent. TRINITY sometimes reuses addresses if a system
call has more than one address parameter, which has proven
to be useful. Under this consideration, the abstract argument
type ARG ADDRESS is local in terms of Section III-B.

The addresses that TRINITY generates are sometimes in-
cremented by values like page size − sizeof(int) to find off-
by-one-errors. Now we give a description of how to replicate
these advanced address transformations in our combinatorial
modeling. The flattening methodology for ARG ADDRESS
reads as follows:

• address value of the actual pointer, one actual value
taken from the IPM with categories, called x

• updownmunge: ternary stage: 1 means change up-
wards, 0 means unchanged, −1 means change down-
wards, called y

• size: value of how much to change the pointer:
{sizeof(int), sizeof(long), sizeof(char)}, called z

The translation into actual parameter values addr is according
to the following relation:

addr = x+ y × z (3)

In the case y = 0 the values of z are clearly irrelevant, since
they will all produce the same result according to relation (3).
We are therefore utilizing the constraint support of ACTS in
the following manner:

y = 0⇒ z = ζ (4)

where ζ is a fixed element out of the actual possible values
for z. This guarantees that ACTS will produce only a single
test for that.

Another thing to consider is the fact that system calls often
expect to find something (i.e. a structure of a specific type) at
an address. We therefore want to emphasize again the fact that
we are thinking of the address modeling in terms of syntactical
modeling, independent from semantic modeling.

2) Examples for System Call Modeling using the Flattening
Methodology: As an example resulting from the flattening
methodology, we revisit again the chmod system call.



[ System ]
Name : chmod

[ P a r a m e t e r ]
f i l e n a m e ( i n t ) : 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 ,

11 , 12 , 13 , 14
S ISUID ( b o o l e a n ) : TRUE, FALSE
S ISGID ( b o o l e a n ) : TRUE, FALSE
S ISVTX ( b o o l e a n ) : TRUE, FALSE
S IRUSR ( b o o l e a n ) : TRUE, FALSE
S IWUSR ( b o o l e a n ) : TRUE, FALSE
S IXUSR ( b o o l e a n ) : TRUE, FALSE
S IRGRP ( b o o l e a n ) : TRUE, FALSE
S IWGRP ( b o o l e a n ) : TRUE, FALSE
S IXGRP ( b o o l e a n ) : TRUE, FALSE
S IROTH ( b o o l e a n ) : TRUE, FALSE
S IWOTH ( b o o l e a n ) : TRUE, FALSE
S IXOTH ( b o o l e a n ) : TRUE, FALSE

Now, we present the mount system call. The flattening
methodology here leads to many stages. The abstract argument
type ARG ADDRESS is currently modeled with 3 stages and,
referring to man 2 mount, we firstly present the modeling
of mount from TRINITY, which is reused in ERIS:

/∗
∗ SYSCALL DEFINE5 ( mount , c h a r u s e r ∗ , dev name ,

c h a r u s e r ∗ , d i r name ,
c h a r u s e r ∗ , type , u n s i g n e d long , f l a g s , vo id

u s e r ∗ , d a t a )
∗ /

# i n c l u d e <l i n u x / f s . h>
# i n c l u d e ” s a n i t i s e . h ”
# i n c l u d e ” compat . h ”

/ / TODO: f i l l o u t ’ type ’ wi th some th ing random from /
p roc / f i l e s y s t e m s

s t r u c t s y s c a l l s y s c a l l m o u n t = {
. name = ” mount ” ,
. num args = 5 ,
. arg1name = ” dev name ” ,
. a r g 1 t y p e = ARG PATHNAME,
. arg2name = ” di r name ” ,
. a r g 2 t y p e = ARG PATHNAME,
. arg3name = ” t y p e ” ,
. a r g 3 t y p e = ARG ADDRESS,
. arg4name = ” f l a g s ” ,
. a r g 4 t y p e = ARG LIST ,
. a r g 4 l i s t = {

. num = 29 ,

. v a l u e s = {
MS RDONLY, MS NOSUID, MS NODEV,

MS NOEXEC,
MS SYNCHRONOUS, MS REMOUNT, MS MANDLOCK,

MS DIRSYNC,
MS NOATIME, MS NODIRATIME, MS BIND ,

MS MOVE,
MS REC, MS VERBOSE, MS SILENT ,

MS POSIXACL ,
MS UNBINDABLE, MS PRIVATE , MS SLAVE,

MS SHARED,
MS RELATIME, MS KERNMOUNT, MS I VERSION ,

MS STRICTATIME ,
MS SNAP STABLE , MS NOSEC, MS BORN,

MS ACTIVE ,
MS NOUSER, } ,

} ,
. arg5name = ” d a t a ” ,
. a r g 5 t y p e = ARG ADDRESS,
. group = GROUP VFS,

} ;

This meta information about the mount system call is then
translated according to the above mentioned flattening method-
ology into the following abstract stages given in the following
illustrative configuration file of ACTS below:

[ System ]
Name : mount

[ P a r a m e t e r ]
s t a g e 1 p a t h n a m e ( i n t ) : 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ,

10 , 11 , 12 , 13 , 14
s t a g e 2 p a t h n a m e ( i n t ) : 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ,

10 , 11 , 12 , 13 , 14
s t a g e 3 a d d r ( i n t ) : 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9
s tage3 addr updownmunge ( i n t ) : −1, 0 , 1
s t a g e 3 a d d r s i z e ( enum ) : s i z e o f ( i n t ) , s i z e o f ( l ong ) ,

s i z e o f ( c h a r )
MS RDONLY ( b o o l e a n ) : TRUE, FALSE
MS NOSUID ( b o o l e a n ) : TRUE, FALSE
MS NODEV ( b o o l e a n ) : TRUE, FALSE
MS NOEXEC ( b o o l e a n ) : TRUE, FALSE
MS SYNCHRONOUS ( b o o l e a n ) : TRUE, FALSE
MS REMOUNT ( b o o l e a n ) : TRUE, FALSE
MS MANDLOCK ( b o o l e a n ) : TRUE, FALSE
MS DIRSYNC ( b o o l e a n ) : TRUE, FALSE
MS NOATIME ( b o o l e a n ) : TRUE, FALSE
MS NODIRATIME ( b o o l e a n ) : TRUE, FALSE
MS BIND ( b o o l e a n ) : TRUE, FALSE
MS MOVE ( b o o l e a n ) : TRUE, FALSE
MS REC ( b o o l e a n ) : TRUE, FALSE
MS VERBOSE ( b o o l e a n ) : TRUE, FALSE
MS SILENT ( b o o l e a n ) : TRUE, FALSE
MS POSIXACL ( b o o l e a n ) : TRUE, FALSE
MS UNBINDABLE ( b o o l e a n ) : TRUE, FALSE
MS PRIVATE ( b o o l e a n ) : TRUE, FALSE
MS SLAVE ( b o o l e a n ) : TRUE, FALSE
MS SHARED ( b o o l e a n ) : TRUE, FALSE
MS RELATIME ( b o o l e a n ) : TRUE, FALSE
MS KERNMOUNT ( b o o l e a n ) : TRUE, FALSE
MS I VERSION ( b o o l e a n ) : TRUE, FALSE
MS STRICTATIME ( b o o l e a n ) : TRUE, FALSE
MS SNAP STABLE ( b o o l e a n ) : TRUE, FALSE
MS NOSEC ( b o o l e a n ) : TRUE, FALSE
MS BORN ( b o o l e a n ) : TRUE, FALSE
MS ACTIVE ( b o o l e a n ) : TRUE, FALSE
MS NOUSER ( b o o l e a n ) : TRUE, FALSE
s t a g e 5 a d d r ( i n t ) : 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9
s tage5 addr updownmunge ( i n t ) : −1, 0 , 1
s t a g e 5 a d d r s i z e ( enum ) : s i z e o f ( i n t ) , s i z e o f ( l ong ) ,

s i z e o f ( c h a r )

IV. TESTING FRAMEWORK

A. Components

The general overview of the software design of the com-
ponents of ERIS is depicted in Figure 2. The framework
consists of three components, where one component takes care
of the Setup, the Testing and the Analysis, respectively. In
the Setup, once a specific system call is selected as SUT, a
combinatorial model is used to derive a test suite with the help
of ACTS. In the Testing step, the system call is executed with
actual parameter values, which are created from the abstract
test cases. The Analysis makes use of a test oracle, which
automatically decides about the passing or failing of a single
test or of the test suite as a whole. As can be seen from this
high level description, the modular design of ERIS makes the
adaption of some (or parts) of the described components quite
easy to implement.



Fig. 2. General overview of components

Fig. 3. Implementation Design of Eris

B. Implementation Details

The configurable testing framework ERIS is technically a
fork of TRINITY, integrating all necessary logic to operate as a
combinatorial tester. Our approach for IPM with categories can
be directly translated into ERIS. The flattening methodology
relies on a translation layer, which translates abstract tests into
concrete tests. This approach is similar to [13], but we want
to capture the flexible flattening approach in this translation
layer. We are aiming to use a central authority, called policy,
which should integrate not only the modeling, but also the
configuration options for generating ACTS configuration files
and used interaction strength. We believe a central managing
authority is indispensable regarding the ability to, for example,
change among predefined modeling schemes in an automatic
manner. This is complicated by the fact that these changes
might require a recompilation of ERIS, at least sometimes
some changes will require the patching of ERIS’ source code.
For the concrete implementation we refer to Figure 3.

1) Trinity specific: Apart from the modeling, there are
certain practical limitations which arise by using TRINITY as
a starting point. Firstly, the TRINITY program is constantly
being extended with new features, which entails work to
integrate with new upstream versions. Apart from that, the
implementation of TRINITY is not finished. For example, not
all system calls that TRINITY handles have all their type
information annotated. Therefore, such system calls have to
be excluded, which leads to complicated parsing of TRINITY’s
source code. The extension of specific code for the arm archi-

tecture further complicates this task. As already mentioned, we
did not consider any modeling of network related system calls
or network related abstract argument types.

2) Eris: To provide for a most easy deployment of ERIS,
we are currently building a complete, contained and indepen-
dent system structure similar to a continuous integration testing
deployment. Some aspects to consider are how the core testing
of ERIS should be run in fully virtualized environments like
virtualbox/kvm/xen or in containers (lxc). Moreover, the im-
plementation ERIS is able to test each modeled system call per
given Linux kernel version and per given interaction strength
(on the abstract argument types). This is accomplished by
calling ERIS in various wrapper scripts having as parameters
the system call, the Linux kernel version and the interaction
strength. Finally, ERIS has the functionality to use a top-level
script capable of executing a complete test suite for system
calls automatically.

C. Experiments

All of our conducted experiments were performed using
ACTS-2.8 as part of ERIS. We are running the software
primarily on the following system: Ubuntu server 12.04
with openjdk-7-jdk.

Assume the following cardinalities in the system call
renameat, which has four abstract argument types: twice
ARG FD and twice ARG ADDRESS. Using the presented
methodology on input parameter modeling based on cate-
gory partition of Section III-B1, ARG FD has 15 stages and
ARG ADDRESS has 10 stages. Thus, the cardinality of the
total search space is 15 × 15 × 10 × 10 = 22500. For this
example we generated a covering array of strength 2 by
ACTS in less than two seconds with size 229. Moreover, the
array with strength 3 has size 2382.

We would like to note that test generation with ACTS was
quite fast and overall we were impressed by its intuitive
interface. However, to build a fully automated test framework,
the command line interface was easier to use.

We run ACTS with the following calling in our scripts.



j a v a <o p t i o n s> −cp a c t s g u i . j a r edu . u t a . c s e . f i r e e y e .
c o n s o l e . ActsConso leManager cmd <i n p u t f i l e n a m e>
<o u t p u t f i l e n a m e>

Finally, in the case of a stage having a lot of stage values (i.e. >
1000), we also had to set the java stack size to a bigger value.
For example, we used the following parameters to generate
arrays: java -Xms1000m -Xmx5000m -Xss1000m.

Our proposed configurable testing framework ERIS can
be regarded as a proof-of-concept for combinatorial testing
of the system call interface of the Linux kernel. We have
it running on Debian 6 squeeze and Debian 7 wheezy. The
further development of ERIS towards a fully automated and
comprehensive tool is a work in progress. We are currently
working on implementing the flattening methodology in ERIS,
taking advantage of sophisticated features available in the
Linux kernel. We are aiming towards an empirical comparison
between the two presented modeling methodologies. Based on
these results, we aim to provide a detailed comparison with the
findings of the original TRINITY fuzz tester in future work.

V. RELATED WORK

We discuss the most related work in two areas, including
API testing and empirical studies on combinatorial testing.

In particular, fuzz testing has been applied for OKL4
system calls testing in [21] where research was focused on
security issues. In [22] a tool implementing an interesting
approach for a completely automated virtual machine monitor
based on a mutating fuzzer is developed. Fuzz testing and
functional testing has also been applied to APIs. For example,
an integrated environment to automate generation of function
tests for APIs has been presented in [23], while violating
assumptions with fuzzing has been explained in [24].

Last but not least, we give some references of empirical
studies related to combinatorial testing in the field of software
testing. We do not aim to provide a comprehensive, or by
all means complete, treatment of the subject of combinatorial
testing, as this is not the purpose of the present paper. This
objective is covered by recent surveys of research for combina-
torial testing that can be found in [25] and [26]. We are merely
interested in giving a flavor of the many different application
areas involved, in order to exhibit that while combinatorial
testing is a specialized methodology for test case generation,
its application to the domain of software testing is of current
and growing interest.

For example, three different case studies of combinatorial
testing methods in software testing have been given in [27].
Applying combinatorial testing to the Siemens Suite and
testing ACTS with ACTS have been presented in [13] and
[14], respectively. A case study for pairwise testing through
6-way interactions of the Traffic Collision Avoidance System
(TCAS) has been presented in [28], while in [29] a study was
conducted to replicate the Lockheed Martin F-16 combinatorial
test study in a simplified manner. Moreover, a proof-of-concept
experiment using a partial t-wise coverage framework to
analyze integration and test data from three different NASA
spacecrafts has been presented in [30]. Finally, combinatorial
testing on ID3v2 tags of MP3 files was given in [31].

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented the combinatorial testing work-
flow of a new testing framework, ERIS, targeted on testing the
Linux system call API. In particular, we modeled the input
space of the Linux system calls in terms of combinatorial
testing and in the aftermath we gave some implementation
aspects on how ERIS can be integrated with existing testing
infrastructures like the ACTS test generation tool and the
TRINITY fuzz tester. Moreover, our empirical study so far
provided evidence for the applicability of combinatorial testing
to the domain of API testing.

As future work, we envision a lot of different oppor-
tunities for further development of our testing framework.
The durations of development cycles are shrinking, time to
market is short, with the help of a lot of frameworks and
integration between different layers of the software stack. From
a development perspective, regarding quality assurance pro-
cesses like continuous integration, it is necessary to be able to
decide in time whether a given release candidate fulfills certain
requirements such are security controls and the availability of
the kernel (in terms of being able to recover from non-terminal
errors and running correctly). Another possible application
for the presented modeling methodologies could target the
intra Linux kernel API, and in particular the communication
between different subsystems via function calls. Last but not
least, we would like to mention that the system call interface is
tightly coupled with security frameworks in the Linux kernel
like SELinux.
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