A Practical Approach for Generic Bootkit Detection and
Prevention

Bernhard Girill, Christian Platzer
Secure Systems Lab
Vienna University of Technology

{bgrill,cplatzer}@seclab.tuwien.ac.at

ABSTRACT

Bootkits are still the most powerful tool for attack-
ers to stealthily infiltrate computer systems. In this
paper we present a novel approach to detect and
prevent bootkit attacks during the infection phase.
Our approach relies on emulation and monitoring
of the system’s boot process. We present results of
a preliminary evaluation on our approach using a
Windows system and the leaked Carberp bootkit.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Invasive software

General Terms
Security, Design

Keywords

bootkit detection and prevention, dynamic malware analy-
sis, x86 emulation

1. INTRODUCTION

Bootkits (BK) are a sophisticated type of malware de-

signed to interfere with the boot process of an infected sys-
tem by executing malicious code even before the OS kernel
takes control. Having been around for years, bootkits are
still very common as the Careto APT infection shows, which
is a recent example for such an attack [6]. Typical scenarios
include compromising and patching the kernel itself. Those
infections are extraordinarily difficult to detect as they have
full system access and can hide deeply within the OS.
In this paper we aim to thwart primary infection by im-
plementing a detection engine that emulates and monitors
the system’s boot process. Virtual Machine Introspection
(VMI) is used to detect malicious behavior during emulated
startup in order to identify bootkit activity.

In this paper we make the following contributions:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EuroSec’14 April 13 - 16 2014, Amsterdam, Netherlands

Copyright 2014 ACM 78-1-4503-2715-2/14/04 ...$15.00.
http://dx.doi.org/10.1145/2592791.2592795

Jurgen Eckel
IKARUS Security Software GmbH
Vienna, Austria
eckel.j@ikarus.at

I. We propose techniques to separate malicious BK be-
havior during system boot from benign boot processes.

II. We design a system to detect and prevent bootkit at-
tacks, and

III. we present results of a preliminary evaluation based on
a prototypical implementation of our system for Win-
dows.

2. RELATED WORK

A number of papers discuss malware behavior [20, 23],
their distribution [16,18] and detection [13]. There are sev-
eral contributions dealing with automatic malware analysis
like [9,25] but few are concerned with bootkits as such [14].
In [14], the authors give an overview on offensive techniques
used by bootkits and perform a classification on BKs ac-
cording to the infected boot process stage. Typical mal-
ware analysis sandboxes such as e.g. Anubis [9], do not
deploy any bootkit detection technology either. Other ap-
proaches utilize native systems to analyze hard disk sectors
post-infection [26]. Idika et al. [12] show a survey on mal-
ware detection techniques, while [11] gives an overview on
automated dynamic malware analysis. However, both pa-
pers don’t deal with bootkits in particular. Virtual machine
introspection (VMI) is a widely deployed technology nowa-
days [19].

3. BACKGROUND

Before discussing our approach in detail, we provide a
brief introduction on boot procedures and how they can be
exploited by bootkits.

3.1 Boot process

The boot process on x86 BIOS (Basic Input Output Sys-
tem) systems using MBR (Master Boot Record) is outlined
in Figure 1 and can be summarized as follows:

The CPU starts in real mode and the BIOS locates and exe-
cutes the MBR, which is located in the first 512 bytes of the
first hard disk of the system. The MBR code parses the par-
tition table (PT) to determine which partition is marked as
“bootable”; containing the operating system to start. The
first 512 bytes of this bootable partition are called VBR
(Volume Boot Record), sometimes also referred to as PBR
(Partition Boot Record). The VBR contains information on
the used file system and the location of the bootloader (typi-
cally only the first part of the code). The bootloader (BL) is
typically located right after the VBR on the hard disk. The

BL loads further code from the disk, switches to protected
mode, loads the kernel and finally hands over control to the
kernel [7,8].

ulhon]~ U5 - T - b T

Figure 1: A boot process overview.

MBR partition tables support only four partitions limit-
ing the partition size field to 32 bits. Since blocks of 512
Bytes are addressed, the maximum addressable size of the
disk is limited to the well-known 2 TiB. Figure 2 outlines
the MBR structure. The executable code is marked green,
whereas the error messages are displayed in blue. The parti-
tion table shows all four partition table entries in red, start-
ing at Ox1BE. The MBR concludes with the MBR signature
0x55A A marked in yellow.

Absolute Sector 0 (Cylinder 0, Head 0, Sector 1)

0140 62 6C &5 00 45 72 72 6F 72 20 6C 6F €1 64 €39 6E ble.Error loadin
0150 &7 20 6F 70 65 72 €1 74 &9 6E 67 20 73 79 73 74 g operating syat
0160 65 6D 00 4D 69 73 73 69 6E 67 20 &F 70 65 72 61 em.Missing opera
0170 74 69 E 67 20 73 73 73 74 65 6D 00 00 00 00 00 ting system.....

Figure 2: MBR structure overview, taken from [2].

The difference between GPT (GUID Partition Table) and
MBR is the size and quantity of supported partitions [2].
GPT maintains an arbitrary number of partitions and ap-
plies 64 bit partition size fields increasing the maximum ad-
dressable size to 2 ZiB [5]. However, an MBR is still present,
it is simply followed by the GPT and features a slightly dif-
ferent MBR, code.

3.2 Bootkits

The term bootkit is a combination of the terms “boot”
and “rootkit”. Bootkits interfere with the system’s startup
process before the OS kernel is started. Therefore, malware
has to execute malicious code in any stage before the kernel
is started to gain control over the system and hence interfere
with the kernel boot process [14]. The stages are depicted
in Figure 1.

A typical attack vector is passing arbitrary kernel parame-
ters on OS startup to deactivate security features. More ad-
vanced attack scenarios include patching and injecting code
into the kernel itself. Advanced BKs even deploy sophis-
ticated self-protection and hiding techniques and are diffi-
cult to detect in post-infection scenarios. Figure 3 shows
the boot process on an infected system with malicious code
marked red. According to [14] four different types of BKs
exist: BIOS-, MBR-, NTLDR- and Other-Technology-based
bootkits. BIOS-based BKs write their malicious code di-
rectly into the BIOS FLASH/ROM, e.g. the research proto-
type IceLord [1], while MBR-based infect the MBR or VBR
as TDL4, Rovnix or Gapz does [3]. NTLDR-based BKs in-
fect the bootloader, e.g. Carberp [4], whereas some rely on
other technologies, like boot.ini-based or hive-based BKs.

3.3 Kernel-level infections

x86 based Windows malware often uses drivers to infect
the OS at the kernel level. It can hide deeply inside the ker-
nel, has full system access and is therefore extremely difficult
to detect [24]. Modern operating systems include advanced
security features to defend against such malware. Windows,
e.g. introduced kernel patch protection (PatchGuard) and
driver signature enforcement policy on all x64 Windows OS
to reduce the risk of kernel-level malware infections [22]. As
these technologies to prevent malware from entering the ker-
nel level became increasingly common, malware authors de-
vised new ways to compromise the OS [22]. Recent malware
uses BK technology to circumvent those defense strategies.

34 Int13

Int13 is an x86 assembler instruction calling interrupt 13,
which is responsible for disk control in x86 BIOS based sys-
tems. Depending on registers and memory content, the call
handles hard disk access attempts (e.g. different modes of
read and write requests to the disk, or getting information
on the installed drives). Malware authors hook this call to
transfer control flow back and forth between malicious code
and the original OS.

4. DESIGN CONSIDERATIONS

With this knowledge about startup procedures and basic
bootkit behavior, we finally want to design our system.

4.1 Objectives

Our goal is to detect and prevent bootkit infections during
run time within the system and to detect infections from
outside the system after infection. Therefore, we consider
malware that tries to install a bootkit on the local hard
disk to areas responsible for system startup. Furthermore,
our detection technique should be deployed in a pre-existing
anti-malware solution and thus, should provide the following
features:

I. Integration: The system should not interfere with
other widely used security measures such as anti-virus
software, intrusion detection systems, DEP, ASLR, etc.

II. Generic: Our system must be capable of detecting
unknown (0-day) bootkits like the recently discovered
Careto BK [6].

III. Performance: Since our approach will be integrated
in a commercial product, the overall performance im-
pact to the hosting system must not exceed 3%.

hard disk

‘ GUID PT ! J

BIOS (= MBR| PT (if existing) VBR

| 512 bytes ‘arbitrary size g 512 byte

L arbitrary snze_ e arbitrary size L ____Jup to 8192 byles_

|
boot partition !

i i 1
vl — O | [

\ arbitrary siz_eI

Figure 3: An example execution flow for an infected boot loader.

To meet these objectives, the following assumptions have to
be made: To prevent and detect infections, the system has
to be installed on the host to be defended. Furthermore, we
assume a clean hosting system without any malware infec-
tions. Otherwise the malware could deploy self-protection
techniques, tamper with the environment and fool the de-
tection system. Furthermore, we assume an x86 BIOS based
system using MBR boot process as described in Section 3.1
and we do not support UEFI (Unified Extensible Firmware
Interface) systems.

4.2 Bootkit Behavior & Techniques

On a typical infected system, the original startup code
is still executed first. Afterwards, the BKs code replac-
ing parts of the original boot code is loaded from the disk
and executed. If implemented, the BK code performs self-
decryption. Subsequently, the configuration is loaded and
the malware installs an Int13 hook. The hook is responsi-
ble for transferring control back to the BK after the original
code has loaded the kernel. Then the original boot code re-
sponsible for loading the OS kernel is invoked. After loading
the kernel into memory, the hook performs a control transi-
tion back to the malicious code. Finally, the malware alters
kernel behavior and starts the OS. Due to their design, BKs
have some special properties:

1. Persistence: They have to persist themselves on disk
sectors responsible for system startup to execute prior
to the kernel.

II. Backup: BKs have to back up the original boot code
preserving the ability to finally load and start the ker-
nel. This code is stored together with the BK config-
uration in a hidden section, usually at the very end of
the hard disk. Since this hidden section is unknown to
the OS file system it is preferably stored at the infre-
quently used hard disk’s end and is additionally often
protected by the BK after installation from accidental
write request by the OS.

III. Polymorphism: Although polymorphism is not strictly

required for BK malware, it is used in most recent sam-
ples such as Carberp, Rovnix [15], Wapomi [10], etc.

4.3 Indicators for Infection

Based on these techniques and their characteristics we de-
fine the following indicators to detect bootkit attacks:

I. Modifying boot sectors: Since boot sector modi-
fications are uncommon during normal operation, we
define this event as a trigger condition for our detec-
tion engine.

II. Disk access indicator: We monitor disk access dur-
ing startup by intercepting every disk read attempt. As
BKSs load their configuration and the original boot code
from the end of the disk, we consider loading content
from the hard disk’s end at boot time as malicious.

III. Self-modifying code indicator: Since self-modifying
code should not appear in legitimate boot processes
we define every attempt on code modification during
startup as malicious. We define self-modification as
memory areas which are written by code and executed
afterwards.

IV. Decryption routine indicator: Because space, both
on disk and in memory, is very limited in boot pro-
cesses, BKs typically perform only trivial decryption
routines, like simple XOR based decryption (e.g. Car-
berp, Rovnix [15]) or ROR (Rotate Right) based (e.g.
TDL4 [10]). These decryption loops are passed sev-
eral hundreds to thousands of times. Hence, we spec-
ify loops having large iteration counts and performing
certain instructions as prohibited.

V. Int13 hook indicator: To the best of our knowledge,
every bootkit performs Int13 hooking, as this is the
only way to regain control after executing the legiti-
mate boot code. Therefore we observe alteration on
the Interrupt Vector Table’s (IVT) target address of
interrupt 13 to detect Int13 hooks during system boot.

5. SYSTEM OVERVIEW

In this section we outline our approach. Depending on
the application scenario it consists of one or two major com-
ponents: a kernel level driver and a detection engine. The
applications scenarios are also described in this section.

5.1 Driver Component

On startup the driver scans the partition table to locate
disk areas containing boot code. It observes write attempts
on those areas and notifies the detection engine on write re-
quests to these sections. Write attempts on non-monitored
areas and read requests are passed through without any fur-
ther processing.

5.2 Detection Engine

The engine detects bootkit attacks based on the indicators
for infection proposed in Section 4.3. It uses an emulator to
emulate the system’s boot process using the current boot
configuration and code stored on disk. The engine retrieves
the initial boot code from the system’s MBR and starts the

emulation. During MBR code execution, the emulator will
try to load the next stage (VBR) from the hard disk per-
forming an Int13 call. Those interrupts are intercepted by
the emulator and analyzed. Write requests are handled on
the emulated disk but read request are redirected to the
host’s physical drive getting the authentic hard disk’s con-
tent. Thus, the emulator fetches physical disk content to
perform emulation. Write requests in the emulator on the
other hand, are not forwarded to the physical disk.

Using this approach the emulated system can access poten-
tially malicious code stored by the BK on the host’s system
(e.g. further code, configuration) and fully trace the mal-
ware’s execution path.

The boot process monitoring is based on VMI. It observes
startup behavior and collects information relevant for com-
promise detection. The gathered information is returned to
the engine, which decides whether or not an infection at-
tempt has occurred. In this case, the engine restores the
original boot sectors.

5.3 Application Scenarios

The system can be used in two different application sce-
narios: deploying the engine within the protected system to
detect and prevent attacks or from outside of the system to
detect bootkit infections.

Deploying the detection engine within the protected sys-
tem requires a clean environment without any malware in-
fections. This scenario uses both system components, the
driver and the engine. The driver intercepts write requests
to boot sectors, while the engine detects the infection at-
tempts itself. In this scenario the system is able to detect
and prevent bootkit installations.

The engine may also be used from outside a potentially in-
fected system (e.g. a stopped virtual machine environment)
to determine whether or not it is infected. In this scenario
only the engine is used. The engine extracts the initial boot
code from the investigation target’s disk and redirects read
attempts to this hard disk. As the detection engine is run-
ning outside the potential infected machine it can be used
in post-infection scenarios.

6. IMPLEMENTATION

As this project is still ongoing work, we have not yet im-
plemented all parts of the system. Furthermore, we consider
integration of the system into industrial anti virus software
utilizing its emulator and virtual machine environment.

We implemented a fully functional Windows driver capa-
ble of write request interception. The engine is a user-land
application developed in C++. It is engineered to run on
multiple platforms, but as the driver is restricted to Win-
dows and BKs are most widely spread on this OS, it is our
major testing platform. The engine emulates the boot pro-
cess but does not perform an emulation of the running OS.
It uses different filters to detect an infection. Every filter
represents an implementation of the indicators for infection
proposed in Section 4.3. If a single filter reports the boot
process as malicious, the engine reports an infection. Con-
sequently, the BK only has to trigger one filter condition to
get detected. The engine applies the template design pat-
tern for filter implementation to support fast and easy engine
modifications. So far we have implemented the disk-access-
monitoring filter and the decryption-routine filter. The loop
detection algorithm is based on [17], including adjustments

to facilitate instruction tracing.

Before applying filters, the engine performs a white-listing
approach determining whether the executed code is a known
non-malicious one to avoid false-positives. To this end, we
gathered eleven distinct boot processes (MBR, VBR and
BL) from uninfected Windows systems (XP to Win7 and
Server 2003 to Server 2008, x86 and x64 mixed). This ap-
proach proved to be quite effective, as boot code changes
very infrequently e.g. XP SPO0-3 all have the same boot
code. Since white-listing existing operating systems is not
generic though, we use the proposed filters to detect infec-
tions. If the executed code is not white-listed, the engine
proceeds detection by applying the filters.

On every scan request, the engine initializes the emulator
with the initial boot code and starts the emulation. On
every hard disk read, the emulator instructs the engine to
load the corresponding hard disk content. During runtime,
the emulator collects information on the executed code via
VMI. For now we use the emulated instruction counter (e.g.
500.000) as exit criterion for the emulation. After boot simu-
lation the emulator delivers the collected information to the
engine. The engine distributes the needed information to
every filter, each of which decides whether or not malicious
behavior has been detected.

7. EVALUATION

To evaluate our approach, we used a Virtual Machine with
Windows XP SP3 and 512 MiB RAM running on a Win7
SP1, Intel Core2 Duo E6550 @ 2.30 GHz using VMware
Workstation 10. We installed the driver and the engine in
the virtual machine to measure the performance impact of
the driver and evaluate the engine.

7.1 Driver Performance Measurement

To evaluate the performance impact of our on-write-access-
driver we copied 5.06 GiB of data (31,508 files in 4,802 di-
rectories) with and without the driver. We performed the
copy procedure five times and resetted the virtual machine
after every copy. Table 1 outlines the results. We measured
an average copy time of 19 min 57 sec without the driver
and 20 min 09 sec with the driver installed, resulting in an
average performance overhead of 1.0% during full load. The
copy resulted in 128,724 handled write requests and 140,511
handled read requests by the driver. For comparison, we
also measured the average handled read and write requests
during 20 minutes runtime in an idle system. Without any
user interaction, the driver handled a negligible amount of
59 read requests and 409 write requests.

5.06 GiB copy time without driver 19:57

5.06 GiB copy time with driver 20:09
Performance overhead 1.0%
Handled read requests (copy) 140511
Handled write requests (copy) 128724
Handled read requests (IDLE) 59
Handled write requests (IDLE) 409

Table 1: Overview on the performance measurement
results for the driver.

7.2 Engine Evaluation

For the preliminary engine evaluation, we use the leaked
Carberp bootkit from [4]. This choice was motivated by the
availability of the full malware’s source code.

We infected the virtual machine with the malware and
used the second application scenario described in Section
5.3, hence detecting the BK in a post-infection scenario.
Both implemented filters detected the installed bootkit, while
none of the eleven captured benign boot processes were
flagged malicious. Figure 4 outlines the output of the de-
cryption loop filter, detecting the self decryption performed
by Carberp. The self decryption loop’s entry point is located
at 0xd000008c9, which was iterated 1,217 times performing
XOR as decryption instruction. The second alert was caused
by Carberp’s persistence method, which places bootloader
code at the end of the disk and therefore triggers our disk
read access filter.
=== === printing potential decryption loop info
loop entry point: BxdABABEBBCY?
loop exit point: BxdBBBAf8ea
printing loop iteration information:

loop iteration countepr: 1217
instruction count of loop iteration: 7

printing instructions:
BxdBBd8c?: 33c2 Hor
Bxd@Bd8ch: 268985 mou

AX. DX
[ES:DI1. AX ; 9f686:
BxdBBdice: 83c602 SI. B2
HxdB@Bdidl: 83c782 DI, @2
BxdBBd8dd: e212 dBe8
: 8hB4 AR, [DE:8I1 ; BdBA:
ehdd j d8c?

Figure 4: Output of the decryption loop information
printed by the corresponding filter.

8. LIMITATIONS & DISCUSSION

Naturally, our approach comes with a set of restrictions.
We already mentioned that we do not support UEFI as
it fundamentally differs from BIOS/MBR based boot pro-
cesses. We also don’t support GPT yet but since it uses
the same concept as MBR PT, we will include it at a later
point. The driver component which handles disk accesses is
currently available for Windows only, restricting the modus
operandi for other operating systems to the post-infection
use case. Furthermore, our approach is only effective for
MBR/VBR and NTLDR-based BKs, which are also the
most widely spread BK types.

8.1 Evasion Techniques

There are several techniques to detect a system emula-
tor [21]. In our case, there are two possibilities: Either the
emulator is detected before the malware infects the target
host, or a well-crafted bootkit detects the emulator while
being executed. The first case is undoubtedly preferable
since it results in an uninfected, protected system. In the
following iteration we discuss possibilities on how to achieve
this:

e Driver/engine detection: Before infecting the boot
process, malware could try to detect our system by
probing for the engine e.g. with a full disk search or
detecting the presence of the on-write-access-driver.

e Modifying boot sectors trigger: As bootkits have
to modify data on the hard disk responsible for boot-

ing, to interfere with the start-up process, malware
would have to remove the on-write-access-driver to by-
pass the triggering condition for the detection engine.
This scenario assumes sufficient permissions by the at-
tacker to remove the driver and the malware would
have to restart the system, probably alerting the user.

The second case assumes that an infected bootloader be-
haves differently under emulation compared to native exe-
cution. It is important to note here, that capabilities during
boot time are limited, making a successful implementation
of the following techniques very difficult.

e Environment detection: During boot process em-
ulation, bootkits could try to detect the emulator by
fingerprinting the environment , e.g. by detecting the
used CPU in combination with other peripherals.

Instruction counter exhaustion: Due to perfor-
mance reason we limit the amount of executed instruc-
tions in the emulator. The bootkit could exhaust the
instructions counter before performing malicious ac-
tivities.

e Disk read access filter: The malware could store
its data in unsuspicious disk sectors to evade the fil-
ter, inducing more risk for the BK to accidentally be
overwrite by the OS, because it is unaware of the disk
sectors allocated by the bootkit. The BK could also
store its data in the file system’s slack space, but using
this approach would introduce several problems and
certain complexity to the malware, e.g. the BK would
have to be aware of the file system’s implementation,
know the location of every single utilized file and its
slack space and observe copy, move, update and delete
operations on all utilized files to keep the data consis-
tent.

Self-modifying code filter: The bootkit could sim-
ply refrain from using self modifying code and decryp-
tion routines, but would consequently be susceptible
to common pattern-based detection.

e Int13 hook filter: To the best of our knowledge ev-
ery bootkit performs Int13 hooking, as this is the only
way to regain control after executing the legitimate
boot code. Therefore we do not know any way to cir-
cumvent this filter, though this conjecture is part of
future research.

9. FUTURE WORK

Our main objective is to implement our approach in a
commercial scan engine. To this end, we will perform an
exhaustive evaluation with existing bootkits and operating
systems. This set of malicious and benign boot code must
not produce false-positives. Furthermore, we are confident
to be able to detect all currently available bootkits since
none of them exhibit sophisticated evasion techniques to the
best of our knowledge. Another improvement is planned for
the stop criterion of the emulator. In the current imple-
mentation it executes instructions even after the bootloader
handed control over to the kernel. By introducing stopping
emulation after this point, we can further increase the sys-
tem’s overall performance. Finally, we will check whether

every bootkit relies on Int13 hooking and if any benign boot
process is capable of triggering false positives. If not, we
could remove the white-listing functionality altogether.

10. CONCLUSION

In this paper we presented a novel bootkit detection and
prevention system. We presented several techniques to sepa-
rate normal from malicious behavior during system startup.
The approach is based on VMI for boot process emulation
and monitoring to detect bootkit infections. The systems
consists of two major components: an on-write disk access
driver, protecting disk sectors responsible for booting and
the detection engine evaluating if the system is infected or
not. The detection engine may either be installed within
the system to detect and prevent attacks or from outside
of the system detecting malware in post infection scenarios.
Our first evaluations were carried out on Windows using the
leaked Carberp bootkit.

Acknowledgments

We would like to thank IKARUS Security Software GmbH
for supporting this research project. Additionally, our thanks
go to Christian Ondracek for providing his knowledge on
Windows driver development and implementing the driver.
Furthermore, we would like to thank the reviewers for their
excellent input. The research leading to these results has
received funding from the European Union Seventh Frame-
work Programme under grant agreement n° 257007 (SysSec).

11. REFERENCES

[1] BIOS Rootkit: Welcome home, my Lord! http://
blog.csdn.net/icelord/article/details/1604884,
2007, Last Accessed: 2014-03-11.

[2] Win2k Master Boot Record (MBR) revealed! http:
//thestarman.narod.ru/asm/mbr/Win2kmbr.htm,
2010, Last Accessed: 2014-03-11.

[3] Advanced Evasion Techniques by Win32/Gapz.
http://wuw.welivesecurity.com/wp-content/
uploads/2013/05/CAR0_2013.pdf, 2013, Last
Accessed: 2014-03-11.

[4] krab.rar - leaked Carberp malware source code.
https://mega.co.nz/#!0YsXWBRD!
CMqd9nrm1d0XABK1ifI9vmxprpQ6RnfsdhBHeKrDXao,
2013, Last Accessed: 2014-03-11.

[5] GUID Partition Table. https://wiki.archlinux.
org/index.php/GUID_Partition_Table, 2014, Last
Accessed: 2014-03-11.

[6] Kaspersky Lab - Unveiling "Careto” - The Masked
APT. https://www.securelist.com/en/downloads/
vlpdfs/unveilingthemask_v1.0.pdf, 2014, Last
Accessed: 2014-03-11.

[7] System Initialization (x86). http://wiki.osdev.org/
System_Initialization_%28x86%29, Last Accessed:
2014-03-11.

[8] x86 real mode. https://www.princeton.edu/
“achaney/tmve/wikil00k/docs/Real_mode.html,
Last Accessed: 2014-03-11.

[9] U. Bayer, C. Kruegel, and E. Kirda. Ttanalyze: A tool
for analyzing malware. In 15th European Institute for

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

(23]

[24]

(25]

[26]

Computer Antivirus Research (EICAR 2006) Annual
Conference, 2006.

H. Blinka. AVG - An Int 13 trick from the new
Wapomi sample. http://blogs.avg.com/
news-threats/int-13-trick-wapomi-sample, 2012,
Last Accessed: 2014-03-11.

M. Egele, T. Scholte, E. Kirda, and C. Kruegel. A
survey on automated dynamic malware-analysis
techniques and tools. ACM Computing Surveys
(CSUR), 44(2):6, 2012.

N. Idika and A. P. Mathur. A survey of malware
detection techniques. Purdue University, 2007.

C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda,
X.-y. Zhou, and X. Wang. Effective and efficient
malware detection at the end host. In USENIX
Security Symposium, pages 351-366, 2009.

X. Li, Y. Wen, M. Huang, and Q. Liu. An overview of
bootkit attacking approaches. In Seventh International
Conference on Mobile Ad-hoc and Sensor Networks
(MSN), 2011, pages 428-431. IEEE, 2011.

A. Matrosov. ESET - Rovnix bootkit framework
updated. http://www.welivesecurity.com/2012/07/
13/rovnix-bootkit-framework-updated, 2012, Last
Accessed: 2014-03-11.

N. P. P. Mavrommatis and M. A. Monrose. All your
iframes point to us. USENIX Security Symposium,
2008.

T. Moseley, D. Grunwald, D. A. Connors,

R. Ramanujam, V. Tovinkere, and R. Peri. Loopprof:
Dynamic techniques for loop detection and profiling.
In Proceedings of the 2006 Workshop on Binary
Instrumentation and Applications (WBIA), 2006.

A. Moshchuk, T. Bragin, S. D. Gribble, and H. M.
Levy. A crawler-based study of spyware in the web. In
NDSS, 2006.

K. Nance, B. Hay, and M. Bishop. Virtual machine
introspection. IEEE Computer Society, 2008.

M. Polychronakis and N. Provos. Ghost turns zombie:
Exploring the life cycle of web-based malware. LEET,
8:1-8, 2008.

T. Raffetseder, C. Kruegel, and E. Kirda. Detecting
system emulators. In Information Security, pages
1-18. Springer, 2007.

J. Rutkowska. Rootkit hunting vs. compromise
detection. Black Hat Federal, 2006.

S. Small, J. Mason, F. Monrose, N. Provos, and

A. Stubblefield. To catch a predator: A natural
language approach for eliciting malicious payloads. In
USENIX Security Symposium, pages 171-184, 2008.
J. Wilhelm and T.-c. Chiueh. A forced sampled
execution approach to kernel rootkit identification. In
Recent Advances in Intrusion Detection, pages
219-235. Springer, 2007.

C. Willems, T. Holz, and F. Freiling. Toward
automated dynamic malware analysis using
cwsandbox. IEEE Security and Privacy, 5(2):32-39,
2007.

Y. Zhu, S. L. Liu, H. Lu, and W. Tang. Research on
the detection technique of bootkit. In International
Conference on Graphic and Image Processing 2012,
2013.

