
InnoDB Database Forensics:
Enhanced Reconstruction of Data Manipulation Queries from Redo Logs

Peter Frühwirta, Peter Kieseberga, Sebastian Schrittwiesera, Markus Hubera, Edgar Weippla

aSBA Research gGmbH, Favoritenstraße 16, 1040 Vienna, Austria

Abstract

The InnoDB storage engine is one of the most widely used storage engines for MySQL. This paper discusses possibilities
of utilizing the redo logs of InnoDB databases for forensic analysis, as well as the extraction of the information needed
from the MySQL definition files, in order to carry out this kind of analysis. Since the redo logs are internal log files
of the storage engine and thus cannot easily be changed undetected, this forensic method can be very useful against
adversaries with administrator privileges, which could otherwise cover their tracks by manipulating traditional log files
intended for audit and control purposes. Based on a prototype implementation, we show methods for recovering Insert,
Delete and Update statements issued against a database.

Keywords: MySQL, InnoDB, digital forensics, databases, log files

1. Introduction and Background

When executing a SQL statement, the InnoDB stor-
age engine keeps parts of the statements in several stor-
age locations [1]. Thus, forensic analysis engaging with
these locations can reveal recent activities, can help creat-
ing a (partial) timeline of past events and recover deleted
or modified data [2]. While this fact is well known in
computer forensics research and several forensic tools [3]
as well as approaches [4, 5, 6, 7] exist to analyze data,
the systematic analysis of database systems has only re-
cently begun [8, 9, 10, 11]. Still, to this day, none of these
approaches incorporate the data stored in InnoDB’s redo
logs, which not only constitute a rich vault of information
regarding transactions, but even allow the reconstruction
of previous states of the database.

Since version 5.51 InnoDB is the default storage engine
for MySQL databases. It is transaction-safe and supports
commits, rollbacks and crash-recovery [12, 13]. Transaction-
safe means that every change of data is implemented as
an atomic mini-transaction (mtr), which is logged for redo
purposes. Therefore, every data manipulation leads to at
least one call of the function mtr commit(), which writes
the log records to the InnoDB redo log. Since MySQL ver-
sion 5.1, InnoDB compresses the written data with a spe-
cial algorithm [14]2. In our research, we disassembled the

Email addresses: pfruehwirt@sba-research.org (Peter
Frühwirt), pkieseberg@sba-research.org (Peter Kieseberg),
sschrittwieser@sba-research.org (Sebastian Schrittwieser),
mhuber@sba-research.org (Markus Huber),
eweippl@sba-research.org (Edgar Weippl)

1See http://blogs.innodb.com/wp/2010/09/mysql-5-5-innodb-as-
default-storage-engine/

2See Appendix A for a description of the algorithm

redo log files, which are used internally for crash-recovery,
in order to identify and recover transactions for digital
forensic purposes.

The content of this paper is based on our contribution
to the latest ARES-conference [15], where we outlined the
basic methods used. In Section 2 we describe the gen-
eral structure of the log files that are used in the course
of our analysis, in Section 3 we detail our approach for
identifying recent operations, as well as using the redo in-
formation for recovering overwritten data. Furthermore,
in addition to the methods outlined in [15], we present
methods for gathering the needed basic information on
the table structure and keys in Section 4. Section 5 gives
a detailed demonstration on the capabilities of our foren-
sic method by analyzing example log entries. In Section 6
we conclude our work and give an outlook to future plans
regarding the development of additional methods for re-
covering more complex statement types.

2. Log File Structure

2.1. General Structure

As default behavior, InnoDB uses two log files ib_logfile0
and ib_logfile1 with the default size of five megabytes
each if MySQL is launched with the innodb_file_ per_table
option activated [16]. Both files have the same structure
and InnoDB rotates between them and eventually over-
writes old data. Similar to the data files [17], the log files
are separated into several fragments (see Figure 1):

1. One Header block containing general information on
the log file.

Preprint submitted to Information Security Technical Report (ISTR), Special Issue: ARES 2012 February 15, 2013

2. Two Checkpoints securing the log files against cor-
ruption.

3. Several Log Blocks containing the actual log data.

The header block combined with the two checkpoints and
padding is often referred to as file header and is exactly
2048 bytes long. Each log block contains a header, a trailer
and several log block entries. Since each log block is ex-
actly 512 bytes long, log block entries can be split and
stored in two log blocks (see the description of the log
block header for further information).

Figure 1: Structure of the log files

2.2. Header Block

The first part of the log file consists of the header block,
which contains general information about the file. This
block has a fixed length of 48 bytes and starts at offset
0x00, i.e. at the beginning of the file header. Table 1 gives
an overview on the contents of the header block.

Offset Length Interpretation
0x00 4 Group Number of the log file
0x04 8 First log sequence number (lsn) of this

log file
0x0C 4 Archived log file number
0x10 32 This field is used by InnoDB Hot

Backup. It contains the ibbackup and
the creation time in which the backup
was created. It is used for displaying
information to the user when mysqld is
started for the first time on a restored
database.

Table 1: Interpretation of the header block

2.3. Checkpoints

InnoDB uses a checkpoint system in the log files. It
flushes changes and modifications of database pages from
the doublewrite-buffer[18, 19, 20] into small batches, be-
cause processing everything in one single batch would hin-
der the processing of SQL statements issued by users dur-
ing the checkpoint process.

Crash Recovery. The system of checkpoints is vitally im-
portant for crash recovery: The two checkpoints in each log
file are written on a rotating basis. Because of this method
there always exists at least one valid checkpoint in the case
of recovery. During crash recovery [21, 22] InnoDB loads
the two checkpoints and compares their contents. Each
checkpoint contains an eight byte long log sequence num-
ber (lsn). The lsn guarantees that the data pages contain
all previous changes to the database (i.e. all entries with
a smaller lsn). Therefore, each change that is not written
to the disk has to be stored in the logs for crash recovery
or rollbacks. InnoDB is forced to create the checkpoints
in order to flush data to the disk [21].

Location in the log files. The two checkpoints are located
in the log files ib_logfile0 and ib_logfile1 at addresses
0x200 and 0x400 respectively. Every checkpoint has the
same structure with a fixed length of 304 bytes. A de-
tailed explanation of the checkpoint structure can be found
in Table 2. When flushing the log data to the disk, the
current checkpoint information is written to the currently
unfinished log block header.

Offset Length Interpretation
0x00 8 Log checkpoint number
0x08 8 Log sequence number of checkpoint
0x10 4 Offset to the log entry, calculated by

log_group_calc_lsn_offset()[23]
0x14 4 Size of the buffer (a fixed value: 2·1024·

1024)
0x18 8 Archived log sequence number. If

UNIV_LOG_ARCHIVE is not activated,
InnoDB inserts FF FF FF FF FF FF
FF FF here.

0x20 256 Spacing and padding
0x120 4 Checksum 1 (validating the contents

from offset 0x00 to 0x19F)
0x124 4 Checksum 2 (validating the block with-

out the log sequence number, but in-
cluding checksum 1, i.e. values from
0x08 to0x124)

0x128 4 Current fsp free limit in tablespace 0,
given in units of one megabyte; used
by ibbackup to decide if unused ends of
non-auto-extending data files in space 0
can be truncated [24]

0x12C 4 Magic number that tells if the check-
point contains the field above (added
to InnoDB version 3.23.50 [24])

Table 2: Interpretation of the checkpoints

2.4. Structure of the Log Blocks

The log file entries are stored in the log blocks (the
log files are not organized in pages but in blocks). Every

2

block allocates 512 byte of data, thus matching the stan-
dard disk sector size at the time of the implementation
of InnoDB [25]. Each block is separated into three parts:
The log block header, data and the log block footer. This
structure is used by InnoDB in order to provide better
performance and to allows fast navigation in the logs.

In the following subchapters, we discuss the structures
of header and trailer records, in Section 3 we demonstrate
how to reconstruct previous queries from the actual con-
tent of the log blocks.

2.4.1. Log Block Header

The first 14 bytes of each block are called the log block
header. This header contains all the information needed by
the InnoDB Storage Engine in order to manage and read
the log data (see table 3). After every 512 bytes InnoDB
automatically creates a new header, thus generating a new
log block. Since the log file header containing the header
block, the checkpoints and additional padding is exactly
2048 bytes long, the absolute address of the first log block
header in a log file is 0x800.

Offset Length Interpretation
0x00 4 Log block header number. If the most

significant bit is 1, the following block
is the first block in a log flush write seg-
ment. [24].

0x04 2 Number of bytes written to this block.
0x06 2 Offset to the first start of a log record

group of this block (see 2.4.3 for further
details).

0x08 4 Number of the currently active check-
point (see 2.3).

0x0C 2 Hdr-size

Table 3: Interpretation of the log block header

As described in Section 2.3, the currently active log
block always holds a reference to the currently active check-
point. This information is updated every time log contents
is flushed to the disk.

2.4.2. Log Block Trailer

The log block trailer only contains a checksum for ver-
ification of the validity of the log block (see table 4).

2.4.3. Splitting log entries over log blocks

In case a log entry is too big to fit into the remaining
space left in the currently active 512-byte log block, it is
split over two log blocks. To this end, the currently active
block is filled up until the last four bytes that are needed
for the log block trailer. A new log block is then generated,

Offset Length Interpretation
0x00 4 Checksum of the log block contents. In

InnoDB versions 3.23.52 or earlier this
did not contain the checksum but the
same value as LOG_BLOCK_HDR_NO [24].

Table 4: Interpretation of the log block trailer

holding a log block header and the remaining contents of
the split log entry. The offset at position 0x04 and 0x05
in the log block header is used to specify the beginning of
the next log entry, i.e. the byte after the end of the split
entry (see Figure 2). This is needed in order to identify
the beginning of the next entry without having to refer to
the log block before, thus enhancing navigation in the log
file drastically.

Figure 2: Splitting a log entry over two log blocks

3. Query Reconstruction

In this section we demonstrate how to reconstruct ex-
ecuted queries on the basis of information derived from
the log files described in the last chapter. As several
parts of the data are stored in a compressed form (see
Appendix Appendix A), it is not always possible to give
an exact length definition for each field, since the length
of these fields is determined by the decompression routine.
These values are marked with a circle symbol (◦) in the
field “length”. Length definitions containing an asterisk
are defined by other fields in the log entry, whereas the
number before the asterisk refers to the field where the
length was defined. In this paper, we focus on the analysis
of InnoDB’s new compact file format, which is recognized
by the prefix mlog comp in the log types. Older versions
of InnoDB logs need much more space and are not in the
scope of this paper.

In our analysis, we focus on three different basic state-
ments, Insert, Delete and Update, since they form the ma-
jority of all log entries. Furthermore they are of main
interest in most cases of forensic analysis.

3

Descriptions of the log entries. Since the lengths, amounts
and the positions of the relevant fields inside the log entries
are highly variable, we refrain from giving any offsets for
the data fields in question. In order to provide a certain
amount of clarity, the fields are numbered in ascending
order and fields being of the same type (e.g. a variable
number of fields containing length definitions) are given
the same value.

3.1. Statement Identification

All log entries can be identified by their log entry type
which is provided by the first byte of each entry. A com-
plete list of all existing log entry types can be found in
the source code 3. However, for our forensic analysis, all
information needed can be harvested from only a few, dis-
tinctive log entries (see Table 5).

1st byte Name Description
0x14 mlog undo insert Identifies data manipula-

tion statements.
0x26 mlog comp rec insert Insertion of a new record.

Table 5: Distinctive log entries

For every data manipulation statement, InnoDB cre-
ates at least one new log entry of the type mlog undo insert.
This log type stores the identification number of the af-
fected table, an identifier for the statement type (Insert,
Update, Delete . . .), as well as additional information that
is largely depending on the specific statements type (see
Table 6).

Field nr. Length Interpretation
1 1 Log entry type (always 0x14).
2 ◦ Tablespace id.
3 ◦ Page id.
4 2 Length of the log entry.
5 1 Data manipulation type.
. . . variable Rest of the log entry, depending on

the data manipulation type.

Table 6: General structure of a mlog undo insert log entry

The most important field for the identification of the
statement is the field holding the data manipulation type.
In our analysis, we focus on the values for this key param-
eter shown in Table 7.

The form of each mlog undo insert log entry is very
much depending on the content of the actual statement
it represents. Therefore, there is no general structure for

3innobase/include/mtr0mtr.h

Data manipulation type Description
0x0B Insert statement.
0x1C Update statement.
0x0E Mark for Delete.

Table 7: Analyzed values for the data manipulation type

the log entries, but every type of entry is represented dif-
ferently, to allow an economical form of storing the log
entries without any padding. In the case of Update and
Delete statements, the remaining log undo insert log en-
try specifies the statement completely, whereas in the case
of Inserts, the mlog comp rec insert log entry following
the log undo insert log entry provides information on
parameters of the statement.

3.2. Reconstructing Insert Statements

In the case of Update or Delete statements, most of the
information needed is stored in this mlog undo insert log
entry, which is not valid in the case of Insert statements.
In the course of inserting a new record into a table, InnoDB
creates nine log entries in the log files (see Table 8 for an
ordered list).

Log entry type Name Log entry type Name
0x01 8byte 0x1F multi rec end
0x18 undo hdr reuse 0x14 undo insert
0x02 2byte 0x26 comp rec insert
0x02 2byte 0x02 2byte
0x02 2byte

Table 8: All log entries for an Insert statement

While most of the log entries are not relevant for the
forensic analysis outlined in this paper, the mlog comp rec insert-
log entry (log entry code 0x26) contains a variety of de-
tailed information that can be used to reconstruct the
logged Insert statement (the identification of the Insert
statement was done by checking the data manipulation
type in the mlog undo insert entry right before).

Table 9 gives a detailed description of the fields found
inside the mlog comp rec insert log entry for Insert state-
ments.

The structure of log entries of log entry type comp rec insert

is quite complex. After the first general log entry data
fields (log entry type, tablespace ID and page ID), which
also define the database table used, two data entries hold-
ing information on the columns of the underlying table
are provided: n and nunique. n defines the number of
data fields that can be expected in this log record, whereas
nunique specifies the number of data fields holding primary
keys. The number n of data fields is not equal to the num-
ber of columns in the table, since definitions for system

4

Field nr. Length Interpretation
1 1 Log entry type (fixed value: 0x26)
2 ◦ Tablespace ID
3 ◦ Page ID
4 2 Number of fields in this entry (n)
5 2 Number of unique fields (nunique)
6 2 Length of the 1st unique field (pri-

maryKey).
. . . 2 Length entries for unique fields.
7 2 Length of the last unique field.
8 2 Length of the transaction ID)
9 2 Length of the data rollback pointer
10 2 Length of the 1st non-unique col-

umn.
. . . Length definitions for other non-

unique columns.
11 2 Length of the last non-unique col-

umn.
12 2 Offset
13 ◦ Length of the end segment.
14 1 Info and status bits.
15 ◦ Origin offset.
16 1 Mismatch index.
17 ◦ Length of the 1st dynamic field like

varchar.
. . . Length entries for dynamic fields.

18 ◦ Length of the last dynamic field.
19 5 Unknown
20 6* Data for the first unique column.

. . . Data for unique columns.
21 7* Data for the last unique column.
22 8* Transaction ID
23 9* Data rollback pointer
24 11* Data for the last non-unique col-

umn.
. . . Data for non-unique columns.

25 10* Data for the first non-unique col-
umn.

. . .

Table 9: mlog comp rec insert log entry for Insert statements

Figure 3: Context between the data fields in a mlog comp rec insert
log entry

internal fields like the transaction ID and the data roll-
back pointer are stored in data fields too.

Following the definition of nunique, the next 2 · nunique

bytes are reserved for the definition of the lengths of these
unique columns, two bytes for each column. Furthermore,
the lengths of data fields holding the transaction ID and
the data rollback pointer are defined. The following 2·(n−
nunique) bytes hold the length definitions for the columns
that do not contain primary keys. It must be taken into
account that the length definitions given in the section
refer to the lengths defined by the table definition, not
the actual length of the inserted data. In case of static
data types like int, the actual length is always the defined
length, however in the case of dynamic data types like var-
char (containing data of variable length), the above men-
tioned length definitions only hold the fixed value 0x8000.
The actual length of the data to be inserted is defined later
in the log entry. Figure 3 shows the context between the
length definitions and the data fields.

The following bytes contain meta information about
the record itself which, however, are not needed for the
reconstruction of the Insert statement. After that, length
information of all columns containing dynamic data types
(the length definitions of these columns are filled with the
fixed value 0x8000 as mentioned before), each one byte
long and in compressed form (see Figure 3) are stored.
The following five bytes are additional bytes and flags,
which are, again, not needed for our forensic approach.

Finally, the content of the inserted record is defined
column by column: The first nunique fields hold the data
of the primary key columns (lengths of the fields are de-
fined before in the record), followed by one field holding
the transaction ID and one field holding the data rollback
pointer. These are followed by the n − nunique − 2 fields
holding the non-primary key columns, lengths again with
respect to the definitions given before at the start of the
record. Still, for the correct interpretation of the data
fields (especially the data type), knowledge on the under-
lying table definition is needed, which can be derived from
an analysis of the .frm files [17].

5

3.3. Update

In case of Update statements, two log entries are needed
for the reconstruction: The mlog undo insert log entry
(which in case of Insert statements is only used for deter-
mining the statements type) is needed for recovering the
data that was overwritten, the following mlog comp rec insert

log entry is needed for reconstructing the data that was in-
serted in the course of the Update. In this demonstration
we focus on Update statements which do not change the
value of a primary key, since these would result in more
log entries and changes in the overall index structure.

3.3.1. Reconstruction of the overwritten data

As InnoDB internally stores overwritten data for re-
covery and rollbacks, we focus on the mlog undo insert

log entry for our forensic purposes.

Field nr. Length Interpretation
1 1 Log entry type (fixed value: 0x94).
2 ◦ Tablespace ID
3 ◦ Page ID
4 2 Length of the log entry
5 1 Data manipulation type (0x1C = up-

date existing record)
6 2 Table ID
7 6 Last transaction ID on updated field
8 ◦ Last data rollback pointer
9 1 Length of the primary key
10 9* Affected primary key
. . .
11 1 Number of changed fields
12 1 Field id of first changed field
13 1 Length of first changed field
14 13* Overwritten data value of first changed

field
. . .

Table 10: mlog undo insert log entry for Update statements

For an interpretation of the first five fields, please refer
to Section 3.1.

The next two bytes hold a table identifier. This identi-
fier can also be found in the table definition (it is stored in
the .frm files at address 0x26). In combination with this
information it is possible to derive the name of the table.

The next six bytes hold the transaction identification
number and the following compressed field holds the data
rollback pointer of the data field. The transaction ID iden-
tifies the last executed transaction before the Update. By
using these references it is possible to reconstruct the com-
plete history holding all changes of a data set, even span-
ning multiple Updates of the same records while maintain-
ing the correct order.

The following fields hold information on the updated
primary fields involved. For each primary key, there is a
field holding the length of the new value (one byte) and
one containing the updated value itself. This is repeated
for every primary key of the underlying table, thus it is
important to know the number of primary keys for the
forensic analysis. The next byte defines the number of
non-primary columns affected by the Update, therefore the
following three fields exist for each updated non-primary
column: The id of the changed field, length information
on the updated value and the new value for the field.

3.3.2. Reconstruction of the executed query

InnoDB creates a mlog comp rec insert log entry con-
taining information on the newly inserted data after the
mlog undo insert entry, i.e. the updating with new data
is logged similar to an Insert statement. The created
mlog comp rec insert log entry possesses the same struc-
ture as the log entry described in Section 3.2, thus the only
way to distinguish Update statements from Inserts lies in
the evaluation of the mlog undo insert entry preceding the
mlog comp rec insert entry.

3.4. Delete

The reconstruction of Delete statements is similar to
reconstructing Update queries. Basically, two forms of
Delete operations have to be discerned: Physical deletion
of a data row and execution of queries, which mark a record
as deleted. In the current analysis we only consider the
second form, since physical deletion can happen at an ar-
bitrary time.

Log records of statements which mark records as deleted
are very short, they usually only generate four log en-
tries. For forensic reconstruction, only the data in the
mlog undo insert log entry is needed. Table 11 shows the
log entry for an executed Delete statement which is rather
similar to the one generated in the course of an Update
statement without information on the values of the deleted
record, except the primary keys involved. Still, these can
be identified by using field number 7, the last transaction
id on the deleted record. For an detailed interpretation of
the log record, please refer to Section 3.3.

As a precondition for a correct analysis the number of
primary keys of the table needs to be known. Otherwise it
is not possible to calculate the number of affected primary
key fields (fields 9 and 10). Note that this log record only
gives information on the primary key of the record marked
as deleted.

6

Field nr. Length Interpretation
1 1 Log entry type (fixed value: 0x94).
2 ◦ Tablespace ID
3 ◦ Page ID
4 2 Length of the log entry
5 1 Data manipulation type (0x0E =

delete record)
6 2 Table ID
7 6 Last transaction ID on deleted

record
8 ◦ Last data rollback pointer
9 1 Length of the primary key
10 4 Affected primary key
. . .
11 3 Unknown
12 1 Length of primaryKey field
13 4 PrimaryKey of deleted field

Table 11: mlog undo insert log entry for Delete statements

4. Table Reconstruction

In order to be able to reconstruct the queries from the
Redo-logs, detailed knowledge on the structure of the un-
derlying tables is of vital importance. In this section we
demonstrate, how to reconstruct the table structures from
the MySQL table definition files. This analysis is based on
the results published in [17].

4.1. General structure of the table definition files

For each table definition inside a database, MySQL
generates a separate .frm-file in the databases folder struc-
ture called table name.frm. The files define most of the
characteristics of the table, including key definitions.

File Header
Padding

0x00

0x1000

Column Definitions

Key Definition
Padding

0x2100*

Offset Blocks in the log file

Figure 4: Structure of the .frm-Files

Since the file header does not contain information needed
for the reconstruction of the query logs, we will omit it in
this paper. A detailed discussion of the contents of the file
header can be found in [17].

4.2. Reconstructing Keys

Keys, especially indexes, are very interesting in the
course of forensic analysis (e.g. [10]). Furthermore, the

definition of primary keys can reveil further important as-
pects. Figure 6 details the structure of the key block which
is starting at offset 0x1000 in the log file.

Header Block
Key Entry 1

Key Header
Key Part 1

Key Part k
...

...
Key Entry n
Key Names

Figure 5: Structure of the Key Block

The key block can be divided in three parts:

1. The header block.

2. The key entries, containing most of the information
on the actual key definition

3. A block containing the key names.

Header Block.
The header block is rather short and simple (see Table 12
for a definition). The most important information con-
tained there is k the number of keys in the definition file,
which is needed for determining the end of the key block.
With this information it is possible to decode the blocks
containing the key entries as well as the one containing the
key names.

Field nr. Length Interpretation
1 1 The number of keys k.
2 2 Flags.

Table 12: The header block

Key Entries.
Since one key can span multiple columns of the table, each
key entry is divided into several parts: (i) One key header
containing general information on the overall key like id or
type and (ii) a key part for each column inside the key (see
Figure 6). Table 13 details the content of a key header.

Field nr. Length Interpretation
1 2 Flags containing the key-type.
2 2 Key length.
3 1 Number of additional key parts.
4 1 Key algorithm.
5 2 Block size.
6 3 Padding with zeroes.

Table 13: Structure of a key header

The flag field (field one) is of special importance for the
forensic analysis of the keys, since it determines the type
of the key:

7

• If the seventh bit of the flag-field is set to one and the
name of the key is ”PRIMARY”, the key definition
constitutes the primary key of the table.

• In case the seventh bit is set to one and the name is
different from ”PRIMARY”, the key is of type index.

• If the seventh bit is set to zero, the key defines an
unique constraint.

It must be noted, that the key name block is needed for
determining the exact type of the key. The second field
holds the key length, the third the number of additional
key parts for the given key, i.e. the number of columns the
key uses minus one. Furthermore, some information on
the actual algorithm used for matching the key is stored
in field number 4. Still, we will not use this information,
as well as the block size in field number 5, in the course
of our analysis. The end of the key header is padded with
three 0x00-bytes.

The columns affected by the key are defined in the key
parts. For each column, there exists a separate key part,
the number of these parts per key can be obtained from
the key header (field number three). Table 14 details the
structure of one key part: The first field holds the id of
the used column in the table in an encoded form (column
number + 1 + the constant value FIELD NAME USED),
the second an offset that is not needed for our analysis.
The next field gives information on the sort order, followed
by a field detailing the type of the key part and the length
(both are not needed for our analysis). Each key part is
finished with a padding and alignment field holding 0x00.

Field nr. Length Interpretation
1 2 Encoded column id.
2 2 Offset.
3 1 Sort order (fixed value 0x00).
4 2 Type of key part.
5 1 Length of key part.
6 1 Padding with 0x00.

Table 14: Structure of a key part

Key Name Block.
The last block contains the names of all keys, the entries
are in the same order as the key definitions before, i.e.
the first name in this block belongs to the first key entry.
The structure of this block is rather simple and straight
forward: It starts with a separator (0xFF) and the name
of the keys, each separated by 0xFF. The block is finished
with a final 0xFF-separator. The key name block is also
needed for the definition of the primary key of the table
(see Table 13 and the subsequent description).

4.3. Reconstructing the table structure

In the forensic analysis presented in Section 3, detailed
information on the actual table structure was needed. In

this section, we will give a detailed description on how to
retrieve this information.

Header Block
Column Definition 1

Column Names

...
Column Definition n
Column Structure 1

Column Structure n
...

Figure 6: Structure of the column definition block

Figure 6 gives an overview on the structure of the col-
umn definitions. Normally, the column definitions start at
offset 0x2100 (see Figure 4). Still, in case of many keys,
the key definitions don’t fit in the space between the off-
sets 0x1000 (start of key definitions) and 0x2100 (start of
column definitions) and need to be moved to a later posi-
tion. The byte at offset 0x2100 marks, whether the column
definitions start here (0x01) or not (else).

Header Block.
The last two bytes of the header block contain the number
of columns inside the table, including the number of inter-
nal columns set by MySQL itself. Since the header block is
not needed any further for the forensic analysis presented
in this paper, it is omitted and can be found in [17].

Column Definition Block.
The column definition block can be divided in two sec-
tions: First, all internal columns, i.e. columns defined by
MySQL itself are defined. Afterwards, all columns defined
by the user are appended. This is especially important
when looking at the corresponding entries in the column
structure block, since these usually don’t exist for the in-
ternal columns. Table 15 details the structure of the col-
umn definition block. This block is mainly concerned with
defining the column names and ids, the notation of field
lengths follows the same conventions as described in Sec-
tion 3, i.e. ”3*” in the length denotes that the field in
question possesses the length defined by the content of
field three.

Field nr. Length Interpretation
1 1 Column id.
2 1 Unknown
3 1 Length of column name.
4 3* Column name.

Table 15: The column definition block

Column Structure Block.
The column structure block defines the properties for each
column, most of the attributes in this block are concerned

8

with the data type (see Table 16 for more details).

Field nr. Length Interpretation
1 1 Column id.
2 1 Unknown
3 1 Length of column.
4 2 Size of the data type.
5 3 Offset for data pointer.
6 2 Data type property flags and preci-

sion.
7 2 Additional property flags.
8 1 Interval id (reference for ENUM and

SET).
9 1 SQL-type
10 1 Encoding
11 2 Comment length
12 11* Comment

Table 16: The column structure block

Field three, the column length, denotes the length of
the data in the column (e.g. 10 for int(10), while field
four contains the size of the underlying data type (e.g. 4
for int(10)). Field number five contains a pointer to the
columns data. Fields six and seven contain flags for the
specification of several attributes. The following flags are
interesting for our forensic analysis: Bit seven of field six
is set to zero in case of unsigned and to one in case of
binary data. In case bit nine is set to one, the isZerofilled
attribute is set. Bit one of field seven denotes whether
null is allowed as a value inside this column. Furthermore,
bits three to eight contain the precision in case of num-
bers, e.g. in case of float(10,3) field three contains 10,
field four contains 4 and bits three to eight of field 7 con-
tain 3. Field nine contains the SQL data type as defined in
/include/mysql com.h, field ten the encoding, while fields
eleven and twelve deal with addition comments.

Column Names.
At the end of the file, an additional block holding a dupli-
cate of all user-defined column names follows. The struc-
ture of this block is very simple, it is lead by one separator-
byte holding 0xFF, followed by the names of all columns,
each separated by a 0xFF-byte. The block (and thus the
whole .frm-file) is completed with the fixed value 0xFF00.

5. Demonstration

In this section we demonstrate the techniques outlined
in Sections 3 and 4 by analyzing real-life log entries derived
from a demonstration database.

5.1. Retrieving the table structure

The first step of our forensic analysis lies in the retrieval
of the table structure and the keys. For this we use a dump
of the table “fruits.frm”, the relevant parts are shown in
the respective paragraphs.

Deriving table rows.
Table 17 shows the parts relevant for the column definition
from the file “fruits.frm” (offset 0x2100 to the end of the
file). The blocks were colored in order to better visualize
their borders.

0x02100 01 00 04 00 5C 00 07 03
0x02108 00 00 04 03 22 00 00 00
0x02110 00 00 00 00 00 00 50 00
0x02118 16 00 00 00 00 00 00 00
0x02120 5C 00 05 04 02 14 29 20
0x02128 20 20 20 20 20 20 20 20
0x02130 20 20 20 20 20 20 20 20
0x02138 20 20 20 20 20 20 20 20
0x02140 20 20 20 20 20 20 20 20
0x02148 20 20 20 20 20 20 20 00
0x02150 04 00 0B 70 72 69 6D 61
0x02158 72 79 4B 65 79 00 05 00
0x02160 07 66 69 65 6C 64 31 00
0x02168 06 00 07 66 69 65 6C 64
0x02170 32 00 07 00 07 66 69 65
0x02178 6C 64 33 00 04 0B 0A 0A
0x02180 00 01 00 00 1B 40 00 00
0x02188 00 03 08 00 00 05 07 48
0x02190 FF 00 05 00 00 00 40 00
0x02198 00 00 0F 08 00 00 06 07
0x021A0 48 FF 00 05 01 00 00 40
0x021A8 00 00 00 0F 08 00 00 07
0x021B0 07 48 FF 00 05 02 00 00
0x021B8 40 00 00 00 0F 08 00 00
0x021C0 FF 70 72 69 6D 61 72 79
0x021C8 4B 65 79 FF 66 69 65 6C
0x021D0 64 31 FF 66 69 65 6C 64
0x021D8 32 FF 66 69 65 6C 64 33
0x021E0 FF 00

Table 17: File ”fruits.frm” from offset 0x2100 to EOF

We start by analyzing the first and last bytes of the
header block (red block starting at offset 0x2100). The
entry 0x01 at offset 0x2100 identifies the start of the col-
umn definitions, the last byte of the header returns the
number of columns in the table (0x04).

The following five (four plus one) blocks define the col-
umn names and ids (the first column with id 0x02 is an
internal column with empty spaces as column name), e.g.
(second block) a field with column id 0x04 (offset 0x2150),
named ”primaryKey” (the byte at offset 0x2152 contains
the length of the name (10), the next 10 bytes contain the
name itself). Starting at offset 0x217C we find the corre-
sponding column structure entry for column 0x04. From
field three we derive that the column length is 10 (0x0A),
bit one in field seven tells us that the ”NOT NULL” option
is set for the column, bits three to eight of the same field

9

determine that the column possesses no decimal places.
Furthermore it is possible to derive the SQL type from
filed nine (0x03=int). The column does not possess any
comments, thus the field containing the comment length
holds the value 0x0000. Repeating this analysis for all
entries in the column structure block yields the following
SQL-DDL-statement:

Listing 1: Used table structure

CREATE TABLE ‘ f r u i t s ‘ (
‘ primaryKey ‘ int (10) NOT NULL,
‘ f i e l d 1 ‘ varchar (255) NOT NULL,
‘ f i e l d 2 ‘ varchar (255) NOT NULL,
‘ f i e l d 3 ‘ varchar (255) NOT NULL

The last block (from offset 0x21C0 to the end) holds a
copy of all user-defined column names.

Deriving key definitions.
Furthermore, in order to get a complete description of the
DDL-statement, we will analyze the parts of the .frm-file
that contain the key definition (see Table 18).

0x01000 01 01 00 00 0A 00 00 00
0x01008 04 00 01 00 00 00 01 80
0x01010 01 00 00 1B 40 04 00 FF
0x01018 50 52 49 4D 41 52 59 FF

Table 18: File ”fruits.frm” from offset 0x1000 to 0x1020

The first byte of the header block (offset 0x1000) re-
turns the number of keys for this table (1). The following
11 bytes constitute the key header for this key entry. Since
the seventh bit of the first field in the key header is one, we
can determine that the key is either a primary key or an
index, the third field shows that this key is only containing
one single column. The next nine bytes hold the informa-
tion on the first (and only) key part: With knwledge on
the constant FIELD NAME USED it is possible to calcu-
late the column id (0x04).

Offset 0x1017 marks the start of the key name block
with a 0xFF-separator. The key name is ”PRIMARY”,
together with the information derived from the first field
of the key header we can determine that the column with
id 4 (and name ”primaryKey”) is a primary key. Thus we
derive the following DDL-statement:

Listing 2: Used table structure

CREATE TABLE ‘ f r u i t s ‘ (
‘ primaryKey ‘ int (10) NOT NULL,
‘ f i e l d 1 ‘ varchar (255) NOT NULL,
‘ f i e l d 2 ‘ varchar (255) NOT NULL,
‘ f i e l d 3 ‘ varchar (255) NOT NULL,
PRIMARYKEY (‘ primaryKey ‘) ;

5.2. Reconstructing Inserts

In our example we use the excerpt shown in Table 19
containing a comp rec insert log entry. In order to im-
prove the clarity of our example, the blocks inside the log
entry are distinguished by colors.

0x00000 26 58 03 00 06 00 01 80
0x00008 04 80 06 80 07 80 00 80
0x00010 00 80 00 00 63 59 00 08
0x00018 00 04 05 0A 00 00 30 FF
0x00020 56 80 00 00 04 00 00 00
0x00028 00 40 01 00 00 00 00 33
0x00030 21 28 73 74 72 61 77 62
0x00038 65 72 72 79 61 70 70 62
0x00040 65 6B 69 77 69 XX XX XX

Table 19: Example for a comp rec insert log entry

The first entry (containing the value 0x26) marks the
entry as comp rec insert log entry. The two bytes at
offset 0x03 and 0x04 denote the number of data fields
in this Insert statement (0x0006, i.e. 6 data fields), the
two bytes at offset 0x05 and 0x06 the number of unique
columns (0x0001, i.e. one unique column). Since two of
the data fields are reserved for transaction ID and data
rollback pointer, we can derive that four columns were in-
serted, with one being a column containing unique values.
The length of the unique column is given in the two bytes
at offset 0x07 and 0x08 (encoded as signed integers, thus
0x8004 represents 4) followed by the length definitions for
the transaction ID and data rollback pointer (0x8006 and
0x8007 respectively). The length definitions for the three
remaining data columns are set to the key value 0x8000,
thus denoting columns of dynamic length — the values
of the actual data inserted can be found at offsets 0x19,
0x1A and 0x1B respectively (containing the values 0x04,
0x05 and 0xA). Using the length definitions, the rest of
the log entry can be split into the data inserted into the
table: An unique column containing the value 0x80000004,
a transaction ID (signed integer 0x00000000332128) and a
data rollback pointer (value 0x00000000332128), followed
by the data in the non-unique columns number 3 (value
0x73747261776265727279), number 2 (value 0x6170706265)
and number 1 (value 0x6B697769).

Together with knowledge on the table model extracted
from the corresponding .frm files, we can derive the cor-
rect interpretation of the data fields: The primary key
field holds an integer (4), the non-unique columns one to
three ASCII-encoded strings (”kiwi”, ”apple” and ”straw-
berry”). Thus, it is possible to reconstruct the Insert
statement (see Listing 3).

Listing 3: Reconstructed Insert Statement

INSERT INTO f r u i t s
(primaryKey , f i e l d 1 , f i e l d 2 , f i e l d 3)

VALUES (4 , ’ s t rawberry ’ , ’ apple ’ , ’ k iwi ’) ;

10

0x00000 94 00 33 00 1B 1C 00 68
0x00008 00 00 00 00 40 01 00 00
0x00010 33 21 28 04 80 00 00 04
0x00018 01 04 05 61 70 70 6C 65

Table 20: Example of a mlog undo insert log entry for an Update
statement

0x00000 94 00 33 00 1E 0E 00 66
0x00008 00 00 00 00 28 01 E0 80
0x00010 00 00 00 2D 01 01 10 04
0x00018 80 00 00 01 00 08 00 04
0x00020 80 00 00 01 XX XX XX XX

Table 21: Example of a mlog undo insert log entry for a Delete state-
ment

5.3. Reconstructing updated data

In this demonstration, we reconstruct data that was
overwritten by an Update statement. Since, from the log-
ging point of view, an Update can be considered as over-
writing a data field together with an additional Insert
statement, we only demonstrate recovering the overwrit-
ten data, a demonstration on recovery of the inserted data
can be found in Section 5.2.

In our example we use the record shown in Table 20.
After interpreting the header identifying this log entry
as an Update, the table ID (0x0068) (which is the Table
“fruits” according to the .frm file), the last transaction id
on the updated field (0x000000004001) and the last data
rollback pointer (0x0000332128) can be retrieved. The
byte at address 0x13 identifies the length of the value for
the primary key field (0x80000004), which is the signed
integer representation of 4, i.e. the primary key field with
value 4 was updated. Furthermore, we conclude that one
(address 0x00018) data field, the fourth (address 0x00019),
got changed and that the old value was 0x6170706C65, i.e.
“apple”.

5.4. Reconstructing Deletes

This example refers to the excerpt shown in Table 21
containing a mlog undo insert log entry. Again, the blocks
inside the log entry are distinguished using colors.

Together with knowledge on the table structure, we can
reconstruct the query (see Listing 4): The row where the
primary key with id one (addresses 0x18-0x0x1B) contain-
ing the original value 0x80000001 (addresses 0x20-0x23)
was deleted.

Listing 4: Reconstructed Delete statement

DELETEFROM f r u i t s
WHERE primaryKey=1;

5.5. Prototype implementation

We validated our approach described in this paper with
a prototype implementation written in Java. Our tool first
analyzes the structure of an InnoDB table based on the its
format stored in the table definition file (.frm). As de-
scribed in the paper, the table’s structure is ultimately re-
quired for further analysis of the redo log files as it is used
for calculating offsets in the log files, which are parsed
in the second analysis step performed by our tool. We
assume a static table structure, thus, Alter table state-
ments are not supported in the current version of the tool.
The result of the analysis is a history of Insert, Delete and
Update statements. Additional types of SQL statements
can be added easily because of the modular architecture
of the tool. It allows deep insights into the history of a
InnoDB table, thus it’s main application area is the foren-
sic investigation of a MySQL database using InnoDB as
storage engine.

To validate the effectiveness of our approach, we mea-
sured how long one specific record stays inside one of the
log files before it is overwritten by new log data. The
methodology of our evaluation setup is as follows: In an
iterative process we added records to a simple database
table consisting of a MD5 message digest (128 bit stored
in a 256 bit varchar field) and a primary key of the type
int with 32 bit length (INSERT statement), followed by a
SELECT statement over this table. Note that both state-
ments have an effect on the InnoDB log files as redo logs
have to be created for every statement that is executed
by the storage engine. We used the default file size of 5
megabytes for InnoDB log files. In a second step, the log
files are automatically analyzed and searched for the mes-
sage digests that previously were added to the table. The
described process is repeated until any hash value cannot
be found in one of the log files anymore (i.e. when the first
inserted database record got overwritten by newer data).
In our exemplarily evaluation, we were able to insert ap-
proximately 80.000 database records before the first hash
value was overwritten in the log files. Depending on the
size of inserted, updated or deleted data, the number of
recoverable statements in the redo logs can, of course, be
lower than in our evaluation. Nevertheless, we were able
to show the real-life feasibility of our approach.

The current version of our prototype implementation
is not optimized for performance. Due to the choice of
programming language we cannot apply optimizations of
InnoDB such as pointers within the log file. Nevertheless,
our prototype can process a log file with the default size
of 5MB in under one minute.

6. Conclusions and Future Work

In this paper we proposed a practical forensic approach
for reconstructing basic SQL statements from InnoDB’s
redo logs based on our work in [15]. This includes the
reconstruction of the table’s Create Table statement to-
gether with the defined keys. Thus our method is not only

11

able to reconstruct the history of tales together with the
possibility of restoring deleted or updated values based on
a given table definition, but it is also able to retrieve this
basic information itself. Since InnoDB stores log infor-
mation for every single transaction, these methods are to
be considered powerful allies in the task of reconstructing
whole timelines and table histories for forensic purposes.
For verification, we enhanced our existing prototype by
integrating all these methods and thus being able to re-
cover information on table creation, as well as emphInsert,
Delete and Update statements.

After enhancing our prototype by implementing meth-
ods for retrieving the basic table structure in the course of
this paper (as outlined in the future work section in [15]),
we plan on adding support for recovering data in more
complex scenarios, as well as recovering other DDL state-
ments like Alter Table, Truncate Table or Drop Table. Fur-
thermore, we plan on enhancing the prototype in terms
of performance, in order to be able to create a practical,
easy-to-use tool set for practical investigations. Another
interesting research topic would be the in-depth analysis
of InnoDB’s B-tree based index due to its forensic value.

Appendix A. InnoDB Data Compression

InnoDB uses a special compression method for writing
unsigned integers (smaller than 232), where the most sig-
nificant bits (msbs) are used to store the length of the data.
Table A.22 gives an overview on the encoding-modes.

First byte Compressed data
0[rest] The first byte is interpreted as number

smaller than 128.
10[rest] The first byte is xored with 0x80, this and

the second byte are interpreted as number.
110[rest] The first byte is xored with 0xC0, this and

the following two bytes are interpreted as
number.

1110[rest] The first byte is xored with 0xE0, this and
the following three bytes are interpreted as
number.

1111[rest] The first byte is omitted, the following 4
bytes are interpreted as number.

Table A.22: Compressing unsigned integers

Acknowledgments

The research was funded by COMET K1 and grant
825747 by the FFG - Austrian Research Promotion Agency.

References

[1] K. Pavlou, R. Snodgrass, Forensic analysis of database tamper-
ing, ACM Transactions on Database Systems (TODS) 33 (4).

[2] P. Stahlberg, G. Miklau, B. N. Levin, Threats to privacy in the
forensic analysis of database systems, in: Proceedings of the
2007 ACM SIGMOD international conference on Management
of data, 2010.

[3] G. Francia, K. Clinton, Computer forensics laboratory and
tools, Journal of Computing Sciences in Colleges 20 (6).

[4] P.-H. Yen, C.-H. Yang, T.-N. Ahn, Design and implementation
of a live-analysis digital forensic system, in: Proceedings of the
2009 International Conference on Hybrid Information Technol-
ogy, 2009.

[5] G. Francia, M. Trifas, D. Brown, R. Francia, C. Scott, Visualiza-
tion and management of digital forensics data, in: Proceedings
of the 3rd annual conference on Information security curriculum
development, 2006.

[6] J. T. McDonald, Y. Kim, A. Yasinsac, Software issues in digital
forensics, ACM SIGOPS Operating Systems Review 42 (3).

[7] H. Jin, J. Lotspiech, Forensic analysis for tamper resistant soft-
ware, 14th International Symposium on Software Reliability En-
gineering.

[8] P. Wright, D. Burleson, Oracle Forensics: Oracle Security Best
Practices (Oracle In-Focus series), Paperback, 2008.

[9] M. Olivier, On metadata context in database forensics, Digital
Investigation 4 (3-4).

[10] P. Kieseberg, S. Schrittwieser, M. Mulazzani, M. Huber,
E. Weippl, Trees cannot lie: Using data structures for forensics
purposes, in: Intelligence and Security Informatics Conference
(EISIC), 2011 European, IEEE, 2011, pp. 282–285.

[11] P. Kieseberg, S. Schrittwieser, L. Morgan, M. Mulazzani,
M. Huber, E. Weippl, Using the structure of b+-trees for en-
hancing logging mechanisms of databases, in: Proceedings of
the 13th International Conference on Information Integration
and Web-based Applications and Services, ACM, 2011, pp. 301–
304.

[12] Storage engines (28.07.2010), http://dev.mysql.com/doc/

refman/5.1/en/storage-engines.html.
[13] M. Widenius, D. Axmark, MySQL reference manual: documen-

tation from the source, O’Reilly, 2002.
[14] Changes in release 5.1.x (production),

http://dev.mysql.com/doc/refman/5.1/en/news-5-1-x.html
(2008).

[15] P. Fruehwirt, P. Kieseberg, S. Schrittwieser, M. Huber,
E. Weippl, Innodb database forensics: Reconstructing data ma-
nipulation queries from redo logs, in: The Fifth International
Workshop on Digital Forensics, 2012.

[16] Using per-table tablespaces (11.08.2010), http://dev.mysql.

com/doc/refman/5.1/en/multiple-tablespaces.html.
[17] P. Frühwirt, M. Huber, M. Mulazzani, E. Weippl, Innodb

database forensics, in: Proceedings of the 24th International
Conference on Advanced Information Networking and Applica-
tions (AINA 2010), 2010.

[18] M. Kruckenberg, J. Pipes, Pro MySQL, Apress, 2005.
[19] Mysql performance blog - innodb double write (11.08.2010),

http://www.mysqlperformanceblog.com/2006/08/04/

innodb-double-write/.
[20] R. Bannon, A. Chin, F. Kassam, A. Roszko, Innodb concrete

architecture, University of Waterloo.
[21] H. Tuuri, Crash recovery and media recovery in innodb, in:

MySQL Conference, 2009.
[22] Innodb checkpoints (11.08.2010), http://dev.mysql.com/doc/

mysql-backup-excerpt/5.0/en/innodb-checkpoints.html.
[23] H. Tuuri, Mysql source code (5.1.32), /src/storage/in-

nobase/log/log0log.c (2009).
[24] H. Tuuri, Mysql source code (5.1.32), /src/storage/innobase/in-

clude/log0log.h (2009).
[25] P. Zaitsev, Innodb architecture and performance optimization,

in: O’Reilly MySQLConference and Expo, 2009.

12

