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A B S T R A C T

Crop rotation planning is the process of deciding the types and the temporal succession of plants on agricultural
areas to increase soil quality, crop yield, and pest/weed resistance. The data sources and modalities available
for crop rotation planning are very diverse and the domain lacks solely data-driven approaches. In this paper we
used literature- and NDVI-measurement-based successor crop suitability matrices and crop-specific attributes
such as contribution margin and nitrogen demand as input for training an DQN-based reinforcement learning
agent to generate crop rotation sequences. Practitioners and crop rotation experts validated the generated crop
rotation sequences and concluded that most of the sequences are realistic, comply with existing crop rotation
rule sets, and can be applied in practice.
1. Introduction

Crop rotation planning is the process of deciding the types and the
temporal succession of crop plants on agricultural areas to increase
soil productivity, crop yield, and pest/weed resistance. In conventional
farming, crop rotation planning is becoming an increasingly important
factor, while in organic farming it is an essential process. Particu-
larly in the latter, choosing successor crops for various years is done
by considering agronomic, environmental, ecological and economic
factors.

The data sources and modalities available for analysis in the context
of crop rotation planning are very diverse, ranging from structured,
e.g. well-known sensors for temperature or humidity, which contribute
continuous-like readings, to discrete data about timings and amounts
of planting and cultivation, fertilization, or irrigation, to unstructured
data provided e.g. by satellite imagery or other, similar remote sensing
approaches. This demands a similar diverse approach to learning from
this data, where hybrid approaches, integrating various techniques and
angles, can be integrated to improve the performance of the final
analysis tools. In the following we describe existing approaches to crop
rotation planning.

The problem of selecting ideal crop rotation plans can be for-
mulated as a combinatorial problem. In the combinatorial setting,
the cost function of the crop rotation problem, is of linear nature,
which means the combinatorial problem can be formulated as a linear
program. Alfandari et al. (2015) did formulate it as a sub category,
an integer programming problem. The main objective for finding an
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optimal crop sequence solution is profit. Other objectives such as
sustainability should be of similar importance, especially in organic
farming. Incorporating additional objectives, into the combinatorial op-
timization problem can be done in two ways. By regarding them in the
cost function in the combinatorial problem setting, the achieved prob-
lem formulation is called multi-objective combinatorial optimization.
Another approach is to implement the environmental and ecologic ob-
jectives and constraints into the algorithm, by disregarding states which
do not meet these conditions, and by only using the single-objective
combinatorial optimization for profit.

Pavón et al. (2009) compared three multi-objective evolutionary
algorithms in the process of solving the multi-objective crop rota-
tion optimization problem (Strength Pareto Evolutionary Algorithm
2, Non-dominated Sorting Genetic Algorithm and the micro-Genetic
Algorithm). The work describes how a vector of integers can be used
to describe the crop sequences. The objectives used were to minimize
cost, maximize accumulation of nutrients in soils, maximize economic
rise, promote diversification of crops in subsequent seasons.

Bachinger and Zander (2007) proposed a tool for evaluating crop ro-
tations for organic farming systems in central Europe. It is a static-rule
based planning tool (using Microsoft Access) at field level for farmers
and advisers, i.e., ROTOR includes a database with all relevant crops
separately defined with inputs and outputs, machinery and timing. The
user enters a few crops and ROTOR designs possible crop rotations
around them. It defines the field operations for each fruit type. Each
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crop can be cultivated in different ways, whereby the system defines
the different cultivation methods by varying previous crops and types
of cultivation, such as ploughing, reduced tillage, undersowing of crops,
catch crops, organic fertilization, straw harvesting. The crop rotations
in ROTOR describe a sequence of cultivation methods. The crop rota-
tions are evaluated using the criteria: Yield, N discharge, N withdrawal,
N balance, humus reproduction, weed risk. The user defines his location
properties, including land, soil quality, precipitation/year together with
the desired duration of the crop rotation (in years) and the planned crop
types. In addition, production measures, such as fertilization, and straw
harvesting, fodder use, share of legumes, as well as catch crops can be
planned.

Adewumi and Chetty (2017) used local search meta-heuristic algo-
rithms to find optimized solutions for the annual crop planning problem
(i.e., finding the optimal just for a year and not several years). The
authors compared the enhanced Best Performance Algorithm (eBPA)
against two well-known local search meta-heuristic algorithms (Tabu
Search and Simulated Annealing). Previous research of this authors
included other algorithms in the field of swarm intelligence (cuckoo
search, firefly algorithm and glowworm swarm optimization) (Chetty
and Adewumi, 2014) or other local search meta-heuristic techniques
(Best Performance Algorithm, Iterative Best Performance Algorithm
and Largest Absolute Difference Algorithm) (Chetty and Adewumi,
2013).

von Lücken et al. (2021) considered a 7-objective crop rotation
problem (including cost minimization, crop diversification, etc.). Five
multi- and many-objective evolutionary algorithms with a compari-
son metric to find the Pareto optimal solutions were compared. The
RVEA (Reference Vector Guided Evolutionary Algorithm) obtained the
best values for metrics and instance used. Other algorithms, next to
RVEA, that were studied include NSGA3 (Reference Point-Based non-
dominated Sorting Genetic Algorithm III), MOEA/D (Multiobjective
Evolutionary Algorithm with Decomposition), SPEA2 (Strength Pareto
Evolutionary Algorithms 2) and NSGA2 (Non-Dominated Sorting Ge-
netic Algorithm II).

Osman et al. (2015) proposed a machine learning approach to crop
rotation modeling that can predict the crops most likely to be present
in a given field using crop rotations from the past 3 to 5 years at the
beginning of the agricultural season. The approach is able to learn from
data and integrate expert knowledge represented as first-order logical
rules. The authors’ evaluation showed that the proposed approach is
able to predict the crop type of each field before the beginning of
the harvest season with an accuracy up to 60%, which is better than
the results obtained with current approaches based on remote sensing
images.

Pahmeyer et al. (2021) developed the web-based, open source de-
cision support system ‘Fruchtfolge’ (German for ‘crop rotation’) which
provides decision makers with crop management recommendations for
each field based on a single farm optimization model. ‘Fruchtfolge’
includes big data related to farm, location and management char-
acteristics and provides instant feedback on alternative management
choices. The authors used the crop rotation matrix from the CropRota
model (Schönhart et al., 2011) to generate yield-maximizing crop
rotation sequences.

Zhang et al. (2019) proposed a machine learning framework for
predicting field-level crop planting before the growing season using
historical crop planting maps from the Cropland Data Layer (CDL), a
satellite-based data set of land cover in the United States. The frame-
work uses a multi-layer artificial neural network to learn the patterns
of crop rotation from CDL time series and generate crop planting maps
for future years. The paper evaluates the framework on the U.S. Corn
Belt and shows that it can achieve high agreement with the future CDL
and high correlation with the official crop acreage statistics.

Yaramasu et al. (2020) developed a novel system for predicting crop
type maps before the growing season using deep neural networks and
2

Fig. 1. Reinforcement learning entities and their interactions (Sutton and Barto, 2018).

historical crop maps from the Cropland Data Layer (CDL), a satellite-
based data set of land cover in the United States. The system consists
of two modules: an encoder that learns the spatio-temporal patterns of
crop rotation from CDL time series, and a decoder that generates crop
type maps for future years. The paper tests the system on Nebraska
data and shows that it can achieve high accuracy and outperform a
Markov Chain based approach. The paper aims to provide early crop
information for satellite-based agricultural applications and decision
making.

Abernethy et al. (2023) proposed a novel method for preseason
crop-type prediction using historical crop rotations from the Cropland
Data Layer, a satellite-based data set of land cover in the United States.
The method identifies groups of pixels with similar cropping history
and summarizes them as polygons representing field boundaries, called
crop sequence boundaries. These polygons reduce the computational
cost and uncertainty of using all the Cropland Data Layer data for
predictive modeling. The paper compares the polygon-based method
with existing methods that use sampling and shows that it achieves the
highest accuracy in most cases.

Compared to existing approaches the approach described in this
paper is, to the best of our knowledge, the first one which uses rein-
forcement learning to train an agent which is capable of instantly gener-
ating realistic crop rotation sequences based on successor crop suitabil-
ity matrices, soil nitrogen level, contribution margin, and cultivation
breaks.

2. Algorithm and data

In organic farming, environmental and ecological objectives, are
usually met by following heuristic rules. Especially successor crop
suitability, like (Kolbe, 2006), is used to help reduce pest and weeds,
and increase overall quality of the grown crops. As a subfield of artifi-
cial intelligence, reinforcement learning (RL) addresses the problem of
automated learning of optimal decisions over time.

Fig. 1 shows entities in reinforcement learning and their inter-
actions. The agent (learner and decision-maker) interacts with the
environment (crops and their attributes in the crop rotation) which
comprises everything outside the agent. The environment responds to
actions conducted by the agent (selecting a specific crop after the
current crop in the crop rotation) and presents new situations (new ag-
gregated contribution margin, soil nitrogen level, etc.) to the agent. In
some new situations the environment distributes rewards (yield) to the
agent. The agent tries to maximize rewards (yield) over time (Sutton
and Barto, 2018). In the reinforcement learning context combinatorial
optimization problems may be formulated as a single player game: with
states defined as the current solution, actions defined by adding or
removing graph nodes or edges, and a reward (Drori et al., 2020).

The problem of crop rotation planning is suitable for reinforcement
learning as we have an explicit transition and reward model: the revised
and extended predecessor/successor crop suitability matrices by Kolbe
(2006) (cf. Fig. 2) and by Fenz et al. (2023) (cf. Fig. 3). Both matri-
ces describe which predecessor–successor crop combinations produce
higher or lower yield based on long-term experiments (cf. Fig. 2) or
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Fig. 2. Kolbe matrix (cf. Kolbe (2006)) extended by Wohlmuth, Friedel, Wagentristl, Surböck and mapped to discrete crops used in this project. Dark green: 120%–110% yield,
light green: 110%–100% yield, yellow: 100%–90% yield, red: 90%–80% yield.
NDVI (Normalized Difference Vegetation Index) around harvesting time
derived from satellite images as indicator for the yield (cf. Fig. 31).
Thus, both matrices can be used to generate long-term yield-enhancing
crop rotation sequences.

Table 1 shows crop data (obtained from literature and experts) used
at model training and the crop rotation sequence generation.

Based on Table 1 the following rules were used in the reward
function defined in the environment of the reinforcement learning
agent:

1 Please see Fenz et al. (2023) for further details on the matrix creation
process.
3

• During training the agent aims to maximize the reward within a
crop rotation sequence of 5 and 7 steps (episode). If one of the
following rules is violated during a transition from one step to
another a negative reward (−2x the highest contribution margin
in Table 1) will be added to the total reward of the episode.

• Each crop adds or removes nitrogen from soil during the crop
rotation sequence. If nitrogen in soil drops below 0 a negative
reward will be added.

• Only suitable successor crops should be planted after each crop,
planting non suitable crop combinations will results in a negative
reward. See Figs. 2 and 3 for the used successor crop suitability
matrices.
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Fig. 3. Crop successor suitability matrix: measured NDVI (Normalized Difference Vegetation Index as indicator for the yield) effects for relevant crop combinations based on
standardized NDVI values across all clusters. Dark green: 1.00–0.92 NDVI, light green: 0.92–0.84 NDVI, yellow: 0.84–0.75 NDVI, red: 0.75–0.67 NDVI, white: no or insufficient
data available (data for less than 20 plots available). Cell numbers indicate the number of considered plots.
• If the same crop is planted earlier than indicated in the Recom-
mended Break column a negative reward will be added.

• Crops which are classified as root crops are not allowed to be
planted directly after each other. Otherwise a negative reward
will be added.

3. Results

Based on (Mnih et al., 2015) and its Tensorflow/Keras implemen-
tation we developed a DQN-based crop rotation sequence generator
which generates crop rotation sequences in line with the rules described
above. DQNs (Deep Q Networks) learn control policies directly from
sensory input using reinforcement learning. The environment for the
4

reinforcement learning agent (DQNAgent) is defined as follows (cf.
Fig. 4):

• Initialize the crop rotation sequence (episode) with a random crop
from Table 1 and a soil nitrogen level of 200.

• The action space of the environment is defined by crops defined
in Table 1 which can be planted after each other.

• When the agent observes the current environment it is able to
observe the following facts: previously planted crop, currently
planted crop, current nitrogen level in soil, current accumulated
reward

• At each step nitrogen is added to the nitrogen level of the entire
episode (cf. Column Nitrogen balance in Table 1)
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Table 1
Crop data used in the training process. Nitrogen balance values are valid, when
co-products remain on the field.

Crop (action space) Nitrogen Contribution Rec. Root crop
balance margin (yield) break 0/1:

Unit [kg/ha] [EUR/ha] [yrs] no/yes

CLOVER GRASS (perennial) 291 362 4 0
LUCERNE (perennial) 283 538 6 0
FIELD BEANS 59 137 5 0
GRAIN PEAS 29 4 6 0
LENTILS −2 770 6 0
SOYBEANS 6 1097 4 0
WINTER SOFT WHEAT −63 647 2 0
SPRING SOFT WHEAT −46 429 2 0
WINTER DURUM WHEAT −60 716 2 0
WINTER SPELT −36 468 3 0
WINTER TRITICALE −44 106 3 0
WINTER RYE −30 31 2 0
WINTER FODDER BARLEY −48 159 3 0
SPRING FODDER BARLEY −41 96 2 0
SPRING OAT −36 −40 5 0
MILLET −36 318 2 0
SILO MAIZE −116 1061 2 1
GRAIN MAIZE −80 406 2 1
SUGAR BEET −101 1328 4 1
POTATOES −41 1974 4 1
WINTER RAPE −46 83 6 0
SUNFLOWER −50 474 6 1
OIL PUMPKIN −10 1134 5 1
BUCKWHEAT −31 922 1 0
HEMP −22 896 1 0

Fig. 4. DQN crop rotation generation framework.

• The reward is calculated and accumulated to the episode reward
at each step as follows:

– If the combination of previous and current crop is not
suitable according to the successor crop suitability matrices
the reward of the current step is set to a negative reward
(see below). If the combination is suitable or very suitable
the yield of the current crop (cf. Column Yield in Table 1)
is multiplied by 1.1 or 1.2 and added to the accumulated
episode reward.

– The reward for the current step is set to a negative re-
ward (two times the maximum yield in Table 1) if soil
nitrogen level falls below 0, non-suitable crop combination,
crop break rule violated, crop maximum occurrence rule
violated, or row crop rule violated.

At the training phase the DQN Agent is initialized with

• three-layer sequential neural network (input and output layer
take as input the current crop and provide the successor crop as
output)

• sequential memory for experience replay
• EpsGreedyQPolicy as training and test policy
• disable double DQN
• 1000 warm up steps

At DQN training we use the Adam optimizer with a learning rate
of 0.035 at 120.000 training steps. The average rewards during one
5

Fig. 5. Average rewards in one DQN training run.

exemplary DQN training run are shown in Fig. 5. As the first crop of
the crop rotation sequence (episode) is chosen randomly, the average
rewards vary over different training runs. Therefore, we saved the
trained model’s weights to a file if the model’s performance was satis-
factory after training (i.e., diverse and highly rewarding crop rotation
sequences are produced by the model).

Figs. 6 and 7 show the DQN testing debug output for the Kolbe-
based and NDVI-measurement-based crop successor suitability matri-
ces. The DQN environment renders detailed information for each step
to check if rewards are distributed according to the intended rules
described previously.

The trained model is executed 100 times with random start crops to
produce crop rotation sequences of 10 steps. From these 100 sequences
the details (i.e., the crops in the single steps) of the best sequences (in
terms of reward) are shown to the user as possible and high rewarding
crop rotation sequences. Figs. 8 and 9 show the exemplary top three
sequences generated by the trained model using the Kolbe-based and
NDVI-measurement-based crop successor suitability matrices.

Once the models are trained they allow for a fast generation of crop
rotation sequences (compared to e.g., generation of sequences based on
rules sets such as ontologies and genetic algorithms). As described in
the next section we validated, together with practical and theoretical
experts, crop rotation sequences generated by (i) the developed rein-
forcement learning approach using the Kolbe crop successor suitability
matrix, and (ii) the developed reinforcement learning approach using
the NDVI-measurement-based crop successor suitability matrix.

3.1. Validation

We validated the developed approach with relevant stakeholders to
confirm its applicability in practice. Crop rotation exports and farmers,
validated the generated crop rotation sequences with regard to their
compliance to known rules from literature and practical experience.
The evaluation results support the iterative optimization of the devel-
oped methods. In the following we list evaluation tasks for theoretical
experts and the questionnaire for practical experts which was used
during validation. Evaluation tasks for crop rotation expert:

1. Verification that crop rotation rules from literature are being fol-
lowed in the generated crop rotation sequences (for Kolbe-based
sequences)

2. Check crop rotation sequences for the practical suitability based
on empirical knowledge of the theoretical expert (for Kolbe- and
NDVI-based sequences)

3. What are the most prominent differences in crop rotation se-
quences produced by Kolbe- and NDVI-based matrices?

Questionnaire for practical experts (e.g., farmers):
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Fig. 6. DQN testing debug output with Kolbe-based crop successor suitability matrix.
Fig. 7. DQN testing debug output with NDVI-measurement-based crop successor suitability matrix.
1. General questions about crop rotation design

(a) What are the main factors influencing your crop selection

at the crop rotation planing?
(b) How many crop rotations do you have on the farm?
(c) How often do you change your crop rotation(s)?
(d) How do you plan your crop rotation?

2. Input data questions

(a) Does the required input data reflect operational reality?
(b) Is the range of crops sufficient?
(c) What crops are missing to reflect your farm operations?

3. Output data questions

(a) How realistic and applicable are the generated crop rota-

tion sequences?
(b) Which rotations do you think are not realistic? And why

not?

(c) Can you find familiar crop rotation in the selection?
6

(d) Does the output have the potential to encourage you to
rethink your current crop rotations?

(e) Are there any other comments, hints or suggestions for
improvement that you would like to share with us?

The following sequences, generated by the developed approach,
were used at the validation with one crop rotation expert and two
farmers. Each sequence (episode) is referenced by a unique number,
the total reward in terms of contribution margin, and the contribution
margin after each step (grown crop). AI- and Kolbe-based crop rotation
sequences are based on the crop successor suitability matrix shown in
Fig. 2, AI- and measured NDVI-based crop rotation sequences are based
on the crop successor suitability matrix shown in Fig. 3.

5-step AI- and Kolbe-based crop rotation sequences

Episode: 51 Reward: 4707
POTATOES 1974 CLOVER GRASS 398 WINTER DURUM WHEAT 859 OIL
PUMPKIN 1361 SPRING BARLEY 115

Episode: 45 Reward: 3692
BUCKWHEAT 922 SPRING BARLEY 115 CLOVER 434 WINTER DURUM
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Fig. 8. DQN output — high rewarding sequences with Kolbe-based crop successor
suitability matrix.

Fig. 9. DQN output — high rewarding sequences with NDVI-measurement-based crop
successor suitability matrix.

WHEAT 859 OIL PUMPKIN 1361

Episode: 41 Reward: 3244
SUNFLOWER 474 SPRING BARLEY 115 CLOVER 434 WINTER DURUM
WHEAT 859 OIL PUMPKIN 1361

Episode: 98 Reward: 2475
SUMMER OAT -40 BUCKWHEAT 1106 SPRING BARLEY 115 CLOVER 434
WINTER DURUM WHEAT 859

Episode: 12 Reward: 3199
SPRING SOFT WHEAT 429 OIL PUMPKIN 1361 SPRING BARLEY 115 CLOVER
434 WINTER DURUM WHEAT 859
7

Episode: 48 Reward: 2730
SUMMER OAT -40 CLOVER 434 WINTER DURUM WHEAT 859 OIL PUMPKIN
1361 SPRING BARLEY 115

Episode: 38 Reward: 5115
SPRING SOFT WHEAT 429 BUCKWHEAT 1106 CLOVER 434 WINTER SOFT
WHEAT 776 POTATOES 2369

Episode: 33 Reward: 4967
POTATOES 1974 WINTER TRITICALE 127 LUCERNES 646 WINTER DURUM
WHEAT 859 OIL PUMPKIN 1361

Episode: 79 Reward: 4391
SILO MAIZE 1061 CLOVER GRASS 398 WINTER DURUM WHEAT 859 OIL
PUMPKIN 1361 WINTER SOFT WHEAT 712

Episode: 3 Reward: 3736
GRAIN MAIZE 406 CLOVER GRASS 398 WINTER DURUM WHEAT 859 OIL
PUMPKIN 1361 WINTER SOFT WHEAT 712

7-step AI- and Kolbe-based crop rotation sequences

Episode: 43 Reward: 6662
POTATOES 1974 SPRING SOFT WHEAT 515 OIL PUMPKIN 1361 CLOVER 398
WINTER RYE 34 BUCKWHEAT 1106 SILO MAIZE 1273

Episode: 74 Reward: 4228
WINTER RAPE 83 CLOVER 434 WINTER RYE 34 BUCKWHEAT 1106 WINTER
BARLEY 191 BUCKWHEAT 1106 SILO MAIZE 1273

Episode: 7 Reward: 6953
SILO MAIZE 1061 CLOVER GRASS 398 WINTER RYE 34 BUCKWHEAT 1106
SILO MAIZE 1273 WINTER SOFT WHEAT 712 POTATOES 2369

Episode: 26 Reward: 3004
WINTER RAPE 83 CLOVER 434 WINTER RYE 34 BUCKWHEAT 1106 SILO
MAIZE 1273 WINTER TRITICALE 117 SUMMER OAT -44

Episode: 94 Reward: 7006
POTATOES 1974 CLOVER 398 WINTER RYE 34 BUCKWHEAT 1106 SILO
MAIZE 1273 WINTER DURUM WHEAT 859 OIL PUMPKIN 1361

5-step AI- and measured NDVI-based crop rotation sequences

Episode: 90 Reward: 4846
POTATOES 1974 WINTER SPELT 515 CLOVER GRASS 398 WINTER SOFT
WHEAT 712 OIL PUMPKIN 1247

Episode: 32 Reward: 3519
WINTER SOFT WHEAT 647 OIL PUMPKIN 1247 WINTER SPELT 515 CLOVER
GRASS 398 WINTER SOFT WHEAT 712

Episode: 95 Reward: 2968
SPRING BARLEY 96 CLOVER GRASS 398 WINTER SOFT WHEAT 712 OIL
PUMPKIN 1247 WINTER SPELT 515

Episode: 63 Reward: 2880
GRAIN MAIZE 406 WINTER TRITICALE 117 CLOVER GRASS 398 WINTER
SOFT WHEAT 712 OIL PUMPKIN 1247

Episode: 0 Reward: 2581
BUCKWHEAT 922 WINTER SPELT 515 CLOVER GRASS 398 WINTER SOFT
WHEAT 712 WINTER RYE 34

Episode: 85 Reward: 3988
BUCKWHEAT 922 WINTER SPELT 515 LUCERNES 592 WINTER SOFT WHEAT
712 OIL PUMPKIN 1247

Episode: 79 Reward: 3472
GRAIN MAIZE 406 LUCERNES 592 WINTER SOFT WHEAT 712 OIL PUMPKIN
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1247 WINTER SPELT 515

Episode: 89 Reward: 3713
WINTER SOFT WHEAT 647 OIL PUMPKIN 1247 WINTER SPELT 515
LUCERNES 592 WINTER SOFT WHEAT 712

Episode: 37 Reward: 2832
SUMMER OAT -40 CLOVER GRASS 398 WINTER SOFT WHEAT 712 OIL
PUMPKIN 1247 WINTER SPELT 515

Episode: 40 Reward: 3301
SPRING SOFT WHEAT 429 WINTER SPELT 515 CLOVER GRASS 398 WINTER
SOFT WHEAT 712 OIL PUMPKIN 1247

7-step AI- and measured NDVI-based crop rotation sequences

Episode: 69 Reward: 5162
POTATOES 1974 WINTER SPELT 515 CLOVER GRASS 398 WINTER SOFT
WHEAT 712 WINTER RYE 34 BUCKWHEAT 1014 WINTER SPELT 515

Episode: 41 Reward: 4110
BUCKWHEAT 922 WINTER SPELT 515 CLOVER GRASS 398 WINTER SOFT
WHEAT 712 WINTER RYE 34 BUCKWHEAT 1014 WINTER SPELT 515

Episode: 66 Reward: 3827
GRAIN MAIZE 406 WINTER SPELT 515 CLOVER GRASS 398 WINTER SOFT
WHEAT 712 WINTER RYE 34 OIL PUMPKIN 1247 WINTER SPELT 515

Episode: 72 Reward: 3754
OIL PUMPKIN 1134 WINTER SPELT 515 CLOVER GRASS 398 WINTER SOFT
WHEAT 712 WINTER RYE 34 GRAIN MAIZE 447 WINTER SPELT 515

Episode: 49 Reward: 3169
BUCKWHEAT 922 WINTER SPELT 515 CLOVER GRASS 398 WINTER SOFT
WHEAT 712 WINTER RYE 34 SPRING SOFT WHEAT 472 WINTER TRITICALE
117

3.1.1. Validation results (Crop rotation expert)
Validation has been conducted with a crop rotation expert on

27.01.2023. The crop rotation sequences were presented to the expert
to gather feedback based on the developed questionnaire:

1. Output data questions regarding AI- and Kolbe-based crop rota-
tion sequence generation

(a) How realistic and applicable are the generated crop rota-
tion sequences?
Much is possible, but only partly realistic or sensible in terms
of position in the crop rotation.

(b) Which rotations do you think are not realistic? And why
not?
See detailed description regarding each sequence below.

(c) Can you find familiar crop rotation in the selection?
See detailed description regarding each sequence below.

(d) Does the output have the potential to encourage you to
rethink your current crop rotations?
In principle, yes. There are several ways in which crop rota-
tions can be designed.

(e) Are there any other comments, hints or suggestions for
improvement that you would like to share with us?
In organic farming, the positions of crops are to be assessed
differently in part on the basis of experiential knowledge. E.g.
sunflower would be favorable to place at the end of the crop
rotation, since the weed pressure would then be lower. In the
7 step sequence some sequences are not as realistic as in
the 5 step sequences. There are a few points to reconsider,
e.g. winter rye should be further back in the crop rotation
8

after forage legumes.
2. Output data questions regarding AI- and measured NDVI-effect-
based crop rotation sequence generation

(a) How realistic and applicable are the generated crop rota-
tion sequences?
Many things possible, but only partially realistic or sensible in
terms of position in the crop rotation.

(b) Which rotations do you think are not realistic? And why
not?
See detailed description regarding each sequence below.

(c) Can you find familiar crop rotation in the selection?
Yes.

(d) Does the output have the potential to encourage you to
rethink your current crop rotations?
In principle, yes. There are several ways in which crop rota-
tions can be designed.

(e) Are there any other comments, hints or suggestions for
improvement that you would like to share with us?
In the last crop rotation cereals are present 4 years in a row.
The 7 years sequences are more realistic with NDVI than those
created with Kolbe.

Feedback on 5-step AI- and Kolbe-based crop rotation sequences

Episode: 51 Reward: 4707
POTATOES 1974 CLOVER GRASS 398 WINTER DURUM WHEAT 859 OIL
PUMPKIN 1361 SPRING BARLEY 115

Potatoes and then clover grass is unusual, in practice rather unrealistic, as
a good previous crop is not used, because after potatoes, for example, cereals
can be grown.

Episode: 45 Reward: 3692
BUCKWHEAT 922 SPRING BARLEY 115 CLOVER 434 WINTER DURUM
WHEAT 859 OIL PUMPKIN 1361

Realistic.

Episode: 41 Reward: 3244
SUNFLOWER 474 SPRING BARLEY 115 CLOVER 434 WINTER DURUM
WHEAT 859 OIL PUMPKIN 1361

In principle possible, but with sunflowers there is a risk of shoot-through
in the following crop, therefore it is better to plant sunflowers before clover.

Episode: 98 Reward: 2475
SUMMER OAT -40 BUCKWHEAT 1106 SPRING BARLEY 115 CLOVER 434
WINTER DURUM WHEAT 859

Realistic.

Episode: 12 Reward: 3199
SPRING SOFT WHEAT 429 OIL PUMPKIN 1361 SPRING BARLEY 115 CLOVER
434 WINTER DURUM WHEAT 859

Realistic.

Episode: 48 Reward: 2730
SUMMER OAT -40 CLOVER 434 WINTER DURUM WHEAT 859 OIL PUMPKIN
1361 SPRING BARLEY 115

Realistic.

Episode: 38 Reward: 5115
SPRING SOFT WHEAT 429 BUCKWHEAT 1106 CLOVER 434 WINTER SOFT
WHEAT 776 POTATOES 2369

Realistic.

Episode: 33 Reward: 4967
POTATOES 1974 WINTER TRITICALE 127 LUCERNES 646 WINTER DURUM
WHEAT 859 OIL PUMPKIN 1361

Realistic.

Episode: 79 Reward: 4391
SILO MAIZE 1061 CLOVER GRASS 398 WINTER DURUM WHEAT 859 OIL

PUMPKIN 1361 WINTER SOFT WHEAT 712
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Basically realistic, but silage corn before clover grass rather unfavorable.

Episode: 3 Reward: 3736
GRAIN MAIZE 406 CLOVER GRASS 398 WINTER DURUM WHEAT 859 OIL
PUMPKIN 1361 WINTER SOFT WHEAT 712

Basically realistic, but grain corn before clover grass rather unfavorable.

Feedback on 7-step AI- and Kolbe-based crop rotation sequences

Episode: 43 Reward: 6662
POTATOES 1974 SPRING SOFT WHEAT 515 OIL PUMPKIN 1361 CLOVER 398
WINTER RYE 34 BUCKWHEAT 1106 SILO MAIZE 1273

Rather less realistic or favorable because of winter rye after clover, possibly
put silage corn after clover.

Episode: 74 Reward: 4228
WINTER RAPE 83 CLOVER 434 WINTER RYE 34 BUCKWHEAT 1106 WINTER
BARLEY 191 BUCKWHEAT 1106 SILO MAIZE 1273

Rather less realistic or favorable because of winter rye after clover, possibly
put silage corn after clover. Winter rape before clover rather not so favorable
either.

Episode: 7 Reward: 6953
SILO MAIZE 1061 CLOVER GRASS 398 WINTER RYE 34 BUCKWHEAT 1106
SILO MAIZE 1273 WINTER SOFT WHEAT 712 POTATOES 2369

Rather less realistic or favorable. Winter rye after clover grass, winter
wheat would be better here, also for the Potatoes, earlier crop rotation would
be better.

Episode: 26 Reward: 3004
WINTER RAPE 83 CLOVER 434 WINTER RYE 34 BUCKWHEAT 1106 SILO
MAIZE 1273 WINTER TRITICALE 117 SUMMER OAT -44

Rather less realistic or favorable because of winter rye after clover.
Buckwheat may also be placed further back. Put winter triticale and silage
corn further to the front.

Episode: 94 Reward: 7006
POTATOES 1974 CLOVER 398 WINTER RYE 34 BUCKWHEAT 1106 SILO
MAIZE 1273 WINTER DURUM WHEAT 859 OIL PUMPKIN 1361

Rather less realistic or favorable: because of position potatoes, before
clover, winter rye, buckwheat after clover. Silage corn, winter durum wheat
too far back in the crop rotation.

Feedback on 5-step AI- and measured NDVI-based crop rotation
sequences

Episode: 90 Reward: 4846
POTATOES 1974 WINTER SPELT 515 CLOVER GRASS 398 WINTER SOFT
WHEAT 712 OIL PUMPKIN 1247

Realistic.

Episode: 32 Reward: 3519
WINTER SOFT WHEAT 647 OIL PUMPKIN 1247 WINTER SPELT 515 CLOVER
GRASS 398 WINTER SOFT WHEAT 712

Realistic.

Episode: 95 Reward: 2968
SPRING BARLEY 96 CLOVER GRASS 398 WINTER SOFT WHEAT 712 OIL
PUMPKIN 1247 WINTER SPELT 515

Realistic.

Episode: 63 Reward: 2880
GRAIN MAIZE 406 WINTER TRITICALE 117 CLOVER GRASS 398 WINTER
SOFT WHEAT 712 OIL PUMPKIN 1247

Realistic.

Episode: 0 Reward: 2581
BUCKWHEAT 922 WINTER SPELT 515 CLOVER GRASS 398 WINTER SOFT
WHEAT 712 WINTER RYE 34

Realistic, but winter rye is very early in the rotation after two-year-
9

old clover-grass. A later crop rotation of winter rye would be possible, also
depends on the location and soil creditability.

Episode: 85 Reward: 3988
BUCKWHEAT 922 WINTER SPELT 515 LUCERNES 592 WINTER SOFT WHEAT
712 OIL PUMPKIN 1247

Realistic.

Episode: 79 Reward: 3472
GRAIN MAIZE 406 LUCERNES 592 WINTER SOFT WHEAT 712 OIL PUMPKIN
1247 WINTER SPELT 515

Realistic.

Episode: 89 Reward: 3713
WINTER SOFT WHEAT 647 OIL PUMPKIN 1247 WINTER SPELT 515
LUCERNES 592 WINTER SOFT WHEAT 712

Realistic.

Episode: 37 Reward: 2832
SUMMER OAT -40 CLOVER GRASS 398 WINTER SOFT WHEAT 712 OIL
PUMPKIN 1247 WINTER SPELT 515

Realistic.

Episode: 40 Reward: 3301
SPRING SOFT WHEAT 429 WINTER SPELT 515 CLOVER GRASS 398 WINTER
SOFT WHEAT 712 OIL PUMPKIN 1247

Realistic.

Feedback on 7-step AI- and measured NDVI-based crop rotation
sequences

Episode: 69 Reward: 5162
POTATOES 1974 WINTER SPELT 515 CLOVER GRASS 398 WINTER SOFT
WHEAT 712 WINTER RYE 34 BUCKWHEAT 1014 WINTER SPELT 515

Realistic or possible, but winter rye is very early after clover-grass, could
also be later in the Crop rotation, but wheat preceding crop favorable.

Episode: 41 Reward: 4110
BUCKWHEAT 922 WINTER SPELT 515 CLOVER GRASS 398 WINTER SOFT
WHEAT 712 WINTER RYE 34 BUCKWHEAT 1014 WINTER SPELT 515

Realistic or possible, but winter rye is very early after clover-grass, could
also be later in the Crop rotation, but wheat preceding crop favorable.

Episode: 66 Reward: 3827
GRAIN MAIZE 406 WINTER SPELT 515 CLOVER GRASS 398 WINTER SOFT
WHEAT 712 WINTER RYE 34 OIL PUMPKIN 1247 WINTER SPELT 515

Realistic or possible, but winter rye is very early after clover-grass, could
also be later in the Crop rotation, but wheat preceding crop favorable.

Episode: 72 Reward: 3754
OIL PUMPKIN 1134 WINTER SPELT 515 CLOVER GRASS 398 WINTER SOFT
WHEAT 712 WINTER RYE 34 GRAIN MAIZE 447 WINTER SPELT 515

Realistic or possible, but winter rye is very early after clover-grass, could
also be later in the Crop rotation, but wheat preceding crop favorable.

Episode: 49 Reward: 3169
BUCKWHEAT 922 WINTER SPELT 515 CLOVER GRASS 398 WINTER SOFT
WHEAT 712 WINTER RYE 34 SPRING SOFT WHEAT 472 WINTER TRITICALE
117

Not so favorable or realistic. 4 x cereals in sequence not recommended.
Better to use buckwheat in between.

3.1.2. Validation results (Practitioner 1)
Validation has been conducted with a practitioner (farmer) on

31.01.2023. The crop rotation sequences were presented to the expert
to gather feedback based on the developed questionnaire:

1. Output data questions regarding AI- and Kolbe-based crop rota-

tion sequence generation
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(a) How realistic and applicable are the generated crop rota-
tion sequences?
Doable, but in some parts not realistic.

(b) Which rotations do you think are not realistic? And why
not?
5-step AI- and Kolbe-based crop rotation sequences were fine.
Feedback for the 7-step AI- and Kolbe-based crop rotation
sequences: Episode 74 - Winter rape before clover rather
not so favorable. Episode 7 - Unrealistic, change wheat and
rye. Episode 26 - Winter rape before clover rather not so
favorable. Episode 94 - doable but unusual sequence.

(c) Can you find familiar crop rotation in the selection?
Yes, most of them.

(d) Does the output have the potential to encourage you to
rethink your current crop rotations?
Yes. Provides another point of view, and shows opportunities.

(e) Are there any other comments, hints or suggestions for
improvement that you would like to share with us?
Some of the generated sequences are not implemented in the
suggested way in practice (see comments above).

2. Output data questions regarding AI- and measured NDVI-effect-
based crop rotation sequence generation

(a) How realistic and applicable are the generated crop rota-
tion sequences?
The sequences are realistic.

(b) Which rotations do you think are not realistic? And why
not?
All sequences are realistic and doable.

(c) Can you find familiar crop rotation in the selection?
Yes.

(d) Does the output have the potential to encourage you to
rethink your current crop rotations?
Yes, the sequences reflect my own experience.

(e) Are there any other comments, hints or suggestions for
improvement that you would like to share with us?
No further comments.

.1.3. Validation results (Practitioner 2)
Validation has been conducted with a practitioner (farmer) on

6.02.2023. The crop rotation sequences were presented to the expert
o gather feedback based on the developed questionnaire:

1. Output data questions regarding AI- and Kolbe-based crop rota-
tion sequence generation

(a) How realistic and applicable are the generated crop rota-
tion sequences?
In some parts not realistic, but some problems are not taken
into account (see below).

(b) Which rotations do you think are not realistic? And why
not?
Too much summer crops in Episode 12, 43, and 98, prob-
lem of the proliferation in the following crop (Episode 45
after buckwheat, Episode 41 after sunflower), no leaf spar
sequences, with the 7-step sequences energy of the clover is
wasted for undemanding crops (Episode 74).

(c) Can you find familiar crop rotation in the selection?
Yes.

(d) Does the output have the potential to encourage you to
rethink your current crop rotations?
No, because too few crops are listed within the sequences.

(e) Are there any other comments, hints or suggestions for
improvement that you would like to share with us?
Improve the sequences in terms of leaf, spar, summer-, and
10

winter-crops combinations.
2. Output data questions regarding AI- and measured NDVI-effect-
based crop rotation sequence generation

(a) How realistic and applicable are the generated crop rota-
tion sequences?
The sequences are realistic.

(b) Which rotations do you think are not realistic? And why
not?
Most of them are realistic.

(c) Can you find familiar crop rotation in the selection?
Yes.

(d) Does the output have the potential to encourage you to
rethink your current crop rotations?
No, because too few crops are listed within the sequences.

(e) Are there any other comments, hints or suggestions for
improvement that you would like to share with us?
Minor: Improve the sequences in terms of leaf, spar, summer-,
and winter-crops combinations. Observe cultivation dates.

3.1.4. Validation results overview
Table 2 provides an overview in terms of how many sequences were

considered as realistic by the crop rotation expert and the practitioners.
While the 7-step AI- and Kolbe-based crop rotation sequences were
rated as mostly unrealistic, the 5-step sequences and the 7-step AI- and
measured NDVI-based crop rotation sequences were rated as mainly
realistic. Overall, it can be concluded that the approach has the po-
tential to generate meaningful and reasonable crop rotation sequences,
but needs to support more crops to increase acceptance.

4. Discussion

In this paper, we presented a novel approach to crop rotation
planning using reinforcement learning. We used literature- and NDVI-
measurement-based successor crop suitability matrices and crop-
specific attributes such as contribution margin and nitrogen demand
as input for training a DQN-based reinforcement learning agent to gen-
erate crop rotation sequences. We evaluated the generated sequences
with practitioners and crop rotation experts and found that most of
them were realistic, complied with existing rule sets, and could be
applied in practice.

Our approach has several advantages over existing methods for
crop rotation planning. First, it is data-driven and does not rely on
predefined rules or heuristics, which may not capture the complexity
and variability of crop rotation systems. Second, it is flexible and
can adapt to different scenarios, such as changing market conditions,
environmental factors, or farmer preferences. Third, it is scalable and
can handle large-scale problems with multiple crops and fields.

Our approach also has some limitations and challenges that need to
be addressed in future work. One limitation is that we assumed that
the successor crop suitability matrices and the crop-specific attributes
were fixed and known in advance, which may not be realistic in some
cases. For example, the suitability of a crop may depend on the weather
conditions, soil quality, or pest infestation of a specific year, which are
uncertain and dynamic. Similarly, the contribution margin or nitrogen
demand of a crop may vary depending on the input costs, output prices,
or fertilizer application of a specific year, which are also uncertain
and dynamic. Therefore, a possible improvement is to incorporate
uncertainty and dynamics into the input data and the reinforcement
learning model, such as using stochastic or adaptive successor crop
suitability matrices and crop-specific attributes.

Another challenge is that we did not consider the possibility of
planting more than one crop in the same field in the same year, which
may increase the diversity and productivity of the system. Therefore,
a possible improvement is to use a more realistic representation of
the crop rotation problem, such as using raster or vector data for
spatial information, using time windows or calendars for temporal

information, or using mixed-integer programming for intercropping.
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Table 2
Final validation round — results.

Total
sequences

Realistic sequences -
Crop rotation expert

Realistic sequences -
Practitioner 1

Realistic sequences -
Practitioner 2

5-step AI- and Kolbe-based crop rotation sequences 10 9 (90%) 10 (100%) 3 (33.33%)
7-step AI- and Kolbe-based crop rotation sequences 5 0 (0%) 2 (40%) 0 (0%)
5-step AI- and measured NDVI-based crop rotation sequences 10 10 (100%) 10 (100%) 10 (100%)
7-step AI- and measured NDVI-based crop rotation sequences 5 4 (80%) 5 (100%) 5 (100%)
We believe that our approach has great potential for supporting
gricultural decision making and improving crop rotation systems.
e hope that our paper will inspire further research on applying

einforcement learning to crop rotation planning and other agricultural
roblems.

. Conclusion

In this paper, we developed a new method for crop rotation plan-
ing using reinforcement learning. We trained a DQN-based reinforce-
ent learning agent to generate crop rotation sequences using succes-

or crop suitability matrices and crop-specific attributes from literature
nd NDVI measurements as input. We validated the generated se-
uences with experts and practitioners and showed that they were
ostly realistic, followed existing rule sets, and were applicable in
ractice.

Our method has several benefits over existing methods for crop
otation planning. It is data-driven, flexible, and scalable. It can account
or the complexity and variability of crop rotation systems, adjust to
ifferent scenarios, and deal with large-scale problems. Our method
lso has some drawbacks and challenges that require further work.
ne drawback is that we assumed that the input data were constant
nd known beforehand, which may not be true in some cases. Another
hallenge is that we used a simplified representation of the crop rota-
ion problem, which neglected some important aspects such as spatial
eterogeneity, temporal constraints, or intercropping.

We think that our method has great potential for supporting agri-
ultural decision making and improving crop rotation systems. We
ope that our paper will encourage more research on applying rein-
orcement learning to crop rotation planning and other agricultural
roblems. In future work we plan to extend the crops used for generat-
ng the sequences to provide farmers with more diverse crop rotation
equences.
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