Securing the Testing Process for
Industrial Automation Software

Matthias Eckhart®b*, Kristof Meixner?, Dietmar Winkler®, Andreas
Ekelhart®

@Christian Doppler Laboratory for Security and Quality Improvement in the Production
System Lifecycle (CDL-SQI), Institute of Information Systems Engineering, TU Wien,
Favoritenstrafle 9-11, Vienna, Austria
®SBA Research, Favoritenstrafle 16, Vienna, Austria

Abstract

The testing of automation applications has become a crucial pillar of ev-
ery production systems engineering (PSE) project with the proliferation of
cyber-physical systems (CPSs). In light of new attack vectors against CPSs,
caused, inter alia, by increased connectivity, security aspects must be consid-
ered throughout the PSE process. In this context, software testing represents
a critical activity, as a lack of adequate security mechanisms puts a variety
of valuable assets (e.g., system configurations and production details) at risk
of information theft and sabotage. Thus, organizations must analyze the se-
curity of their software testing process on a regular basis in order to counter
these threats. Yet, due to the required security knowledge or budget con-
straints for security-related expenses, these undertakings may be destined to
fail. In this work, we present a framework that supports the semi-automated
security analysis of an organization’s software testing process for industrial
automation software. This framework is based on the VDI/VDE 2182 guide-
line and integrates an ontological approach to model the necessary back-
ground knowledge, including, e.g., data flows, assets, entities, threats, and
countermeasures. The framework comprises a default model of the testing
process, which users can adapt so that the target of inspection accurately

*Corresponding author
Email addresses: matthias.eckhart@tuwien.ac.at (Matthias Eckhart),
kristof .meixner@tuwien.ac.at (Kristof Meixner), dietmar.winkler@tuwien.ac.at
(Dietmar Winkler), andreas.ekelhart@sba-research.org (Andreas Ekelhart)

Postprint. \Computers & Security 85 (2019) 156-180.

https://doi.org/10.1016/j.cose.2019.04.016

reflects their software testing environment. In particular, the testing process
considered for creating the default model is based on best practices observed
at a major system integrator, aligned with the ISO/IEC/IEEE 29119 series
of software testing standards. Moreover, we developed a tool that enables the
automatic generation of attack—defense trees from such formal models of the
organization’s software testing process. We demonstrate how the proposed
framework can be applied to a generic software testing process to answer
essential questions in conducting a security risk analysis. The results of the
exemplary security analysis provide guidance, should raise awareness in the
industrial domain, and support effective, yet cost- and time-efficient secu-
rity analyses. Finally, we evaluate the presented framework by performing a
comprehensive comparison of suitable security analysis tools.

Keywords: Security analysis, Threat modeling, Risk assessment, Security
ontology, Software testing, Industrial automation software, Cyber-Physical
Systems, Industrial control systems, VDI/VDE 2182, ISO/IEC/IEEE 29119

1. Introduction

In the past decades, the adoption of software in the industrial automa-
tion domain increased significantly. According to a report presented by the
Mechanical Engineering Industry Association (VDMA)[[the costs of soft-
ware development activities in engineering projects for automation systems
increased from approx. 20% in 2000 to more than 40% in 2010, and it is ex-
pected that this share continues to rise (Gausemeier, 2010; Vyatkin, |2013).
These findings indicate that software engineering already started to dominate
PSE projects, leaving other engineering disciplines (i.e., mechanics and elec-
tronics) behind in terms of spending. Strategic initiatives, such as Industry
4.0 (Kagermann et al., [2013]), underpin this trend, as CPSs are considered as
a stepping stone toward the realization of the “smart factory”. CPSs tightly
couple “cyber” (e.g., software) and physical components (e.g., sensors, actu-
ators) and operate on both dimensions (i.e., communicating with other cyber
systems and act in the physical environment) (Baheti and Gill, 2011). Due
to the fact that the behavior of these systems is governed by the software
that they execute, software testing is a vital activity to ensure that the CPSs

'WDMA: https://www.vdma.org.

https://www.vdma.org

perform as intended. Since CPSs interact with the real world, e.g., by con-
trolling manufacturing processes in case of industrial control systems (ICSs),
the functional safety but also security of these systems must be guaranteed.

As a matter of fact, security and safety are interdependent properties
(Knowles et al., 2015]), meaning that successful cyber attacks against CPSs
may damage plant equipment, put human health at risk or harm the envi-
ronment. For example, past CPSs or, more specifically, ICSs security inci-
dentsE] caused sewage to flow into waterways in Maroochy Shire (Slay and
Miller, |2008), the destruction of centrifuges at Iran’s Natanz nuclear facility
(Langner} [2013; [Falliere et al., 2011)) and severe physical damages to a Ger-
man steel mill’s blast furnaces (Lee et al., |2014). To counter cyber threats
for CPSs, security must be integrated into each phase of the PSE process,
following the principle “security by design”. PSE processes are embedded in
a multi-disciplinary environment, where engineers of different domains work
together using various specialized tools that produce heterogeneous plan-
ning artifacts (Biffl et al) 2017). Unprotected PSE data (i.e., engineering
artifacts) in general, pose a severe security threat, as adversaries may be
able to steal know-how or even introduce vulnerabilities into artifacts (e.g.,
blueprints or code of the CPS), for exploitation later on in the system’s
lifecycle (Kieseberg and Weippl, 2018; [Weippl and Kieseberg, [2017)).

Software testing of automation applications, in particular, represents a
critical phase in every engineering project, as a compromised testing process
may allow adversaries to steal or manipulate engineering artifacts. Besides
software piracy or the theft of intellectual property (IP), test artifacts may
be leveraged to launch highly effective and covert attacks against CPSs dur-
ing plant operation. For instance, if these artifacts enhance the attacker’s
knowledge of the physical process under control, he or she may be able to
introduce subtle changes in a way that covertly degrades the operation of the
plant (de Sa et al., 2017). Stuxnet is one of the most prominent examples
of such a covert attack, which required in-depth knowledge of the target sys-
tems and the controlled industrial processes (Langner, 2013} [Falliere et al.,
2011).

On the other hand, the manipulation of test results may allow adversaries

’Interested readers may refer to (Miller and Rowe, [2012; McLaughlin et al., 2016;
Stouffer et al., 2015)) for a list of documented ICSs security incidents that occurred in the
past.

to conceal malicious code that has been injected during the testing process or
previous PSE phases. The placed malware could then become active during
test execution or lie dormant until triggered during plant operation. The
criticality of the involved assets and the unique characteristics of the testing
process for industrial automation software motivate the need for a thorough
threat and risk assessment of software testing activities. Furthermore, as
the software testing approaches typically differ between organizations, it is
crucial to assess the individual situation of each organization.

In this article, we present a comprehensive framework that facilitates the
analysis of the security aspects of the software testing process for industrial
automation software. The overall objective of this article is to support or-
ganizations in securing their software testing approach and to increase the
awareness of cyber threats that target the PSE process.

First, we develop a generic process model for software testing that con-
siders the special characteristics of the industrial domain to define our as-
sessment scope. To define this model, we conducted interviews with a major
Austrian systems integrator, reviewed it together with a software quality
consulting company, and finally, aligned it with internationally recognized
standards for software testing.

Second, we introduce the developed security analysis framework, which
is based on the procedural model for risk analysis specified in the VDI/VDE
2182-1| (2011)) guideline to ensure conformance with the recommended state
of the art. This framework also integrates a STRIDE-based threat model-
ing approach (Shostack, 2014) for identifying relevant threats to the assets
involved. To ensure that the threat models are applicable to variants of the
herein described testing process, we developed a tool that enables users to
automatically generate attack-defense trees (ADTrees) (Kordy et al., 2011)),
specifically tailored to their environment. For the quantitative assessment of
risks, we take advantage of the open-source software ADTool (Kordy et al.,
20134). In this way, users are able to answer questions, such as, “Which roles
are authorized to access which assets?” or “Which threats may ezist for the
software testing process and how can they be mitigated?”.

Finally, we conduct a comprehensive evaluation of our framework by com-
paring it to other security analysis tools.

The contributions of this paper can be summarized as follows:

e We investigate the state of practice in testing industrial automation
software by (i) analyzing the testing approach of a major systems inte-

grator, and (ii) aligning it with international standards for software
testing (viz., the ISO/IEC/IEEE 29119 series). The outcome is a
generic and profound version of the software testing process that is
well applicable for industrial automation software.

e We present a novel framework for conducting semi-automated secu-
rity analyses of software testing processes in PSE projects, based on
the [VDI/VDE 2182-1| (2011)) guideline. Furthermore, we demonstrate
how this framework can be applied to understand threats and answer
security-relevant questions pertaining to the software testing process.

e Finally, we introduce a publicly-available prototype implementation of
the framework, and data models of the underlying security and process
knowledge. It includes ADTGenerator, a tool that allows users to au-
tomatically generate ADTrees (Kordy et al., [2011) for specific testing
setups, in order to facilitate threat modeling and a quantitative risk
assessment.

The remainder of this paper is structured as follows: Section [2| discusses
the methodology of our work and briefly reviews existing security concepts
that have been leveraged in our research. In Section 3, we introduce a generic
software testing process for automation applications, which also defines the
assessment scope for the proposed framework. Section [4| details the security
analysis framework and how it can be applied in the context of software
testing. In particular, this section first describes the ontologies that are
used to model relevant knowledge and then demonstrates how the proposed
framework can support each step of the security analysis. After presenting
the main contribution of this work, in Section [} we evaluate the developed
framework by comparing it to other tools, some of which support (semi-
Jautomated security analyses. Next, in Section |§|7 we discuss related work
in the areas of threat modeling for CPSs, automated threat modeling, and
information security ontologies. Finally, Section [7] concludes the article and
provides suggestions for future research directions.

2. Methodology

This work is based on the Design Science approach by Hevner et al.
(2004). The Design Science process, outlined in Figure , is on the one hand
influenced by the Environment, and on the other hand, by a Knowledge Base

Environment | } IS Research l < % | Knowledge Base
g EX
LN : 2B ~

[People J 58 [Analysis] S [Foundations]
A I IR
— —

[Solution Design]

I 1

[Methodologies]

[Evaluation j

Figure 1: A simplified adaptation of the Design Science in Information Systems Research
methodology based on (Hevner et al., [2004).

that provides foundations and methodologies. The research process is divided
into three tasks, viz., Analysis, Solution Design, and Fvaluation, which build
on but also contribute to each other. In the Analysis phase, the research
problem is investigated by means of the state of the art and the applicable
knowledge. In the Solution Design phase, a solution approach is drafted,
which may consist of theories, a particular design or other artifacts. The
proposed approach is then examined and justified in the Evaluation phase.

To build a generic software testing process for automation applications,
we first conducted qualitative, unstructured interviews with different roles
from a major Austrian-based systems integrator, aligned the resulting model
with existing standards for software testing and then discussed them with a
company experienced in testing industrial automation software. More specif-
ically, we interviewed four individuals to analyze their experiences and view-
points on software testing in depth. All male interviewees are working in
different departments and are filling various roles, viz., (i) Project Manager
in the department Automation Engineering, (ii) Head of the department PLC
Programming, (iii) Head of the department SCADA, and (iv) Head of Soft-
ware Quality in the department MES.

Prior to conducting the interviews, we prepared our view of the organi-
zation’s testing process based on background information that we had ob-
tained from an independent research collaboration. We graphically mapped
the testing process with the Business Process Model and Notation (BPMN)
(OMG, [2011)), as it is a standardized notation for the modeling of business
processes. However, we used the prepared BPMN model only as a tool to
guide discussions. Owing to the unstructured interviews, we were able to

focus on unanswered questions and blank spots. Furthermore, this setting
encouraged the interviewees to expand on software testing issues and security
concerns.

Subsequently, we reviewed our results together with an Austrian consul-
tant company that specializes in software quality in order to ensure that
the modeled software testing process is sound. In addition, we aligned the
state of practice of testing automation applications with the internationally
recognized standards for software testing, viz., the ISO/IEC/IEEE 29119 se-
ries, and relevant literature (Spillner et al., 2011}, |Lewis, 2008]). In this way,
we further refined our process model to establish a common ground for the
security analysis.

In developing our security analysis framework, we analyzed and leveraged
security models and standards, which are briefly described in the following.
The analysis steps are based on the VDI/VDE 2182-1|(2011)) guideline, which
specifies a uniform approach to increase the security of automation systems.
The VDI/VDE 2182-1] (2011)) guideline starts with a Structure Analysis anal-
ysis to define the assessment scope. Subsequently, the following eight steps
are performed: (i) identify assets, (ii) analyze threats, (iii) determine rele-
vant security objectives, (iv) analyze and assess risks, (v) identify measures
and assess effectiveness, (vi) select countermeasures, (vii) implement coun-
termeasures, and (viii) perform process audit.

Moreover, we adopt STRIDE (Shostack, [2014)), as it provides a structured
model of threats and thereby supports the threat analysis step. STRIDE is
an acronym that denotes a set of security threats, viz., (i) Spoofing, (ii) Tam-
pering, (iii) Repudiation, (iv) Information Disclosure, (v) Denial of Service,
and (vi) Elevation of Privilege (Shostack, [2014)). Using STRIDE may facili-
tate discovering threats, especially when applying one of its variants, namely,
STRIDE-per-element or STRIDE-per-interaction (Shostack, 2014)). However,
before applying STRIDE, we plot the data flows within the target of inspec-
tion by using a data flow diagram (DFD), consisting of the following elements:
(i) processes (i.e., code that is executed), (ii) data flows (i.e., exchanged data
between elements), (iii) data stores (i.e., elements that store data), (iv) and
external entities (i.e., people) (Shostack) 2014]).

Furthermore, we use ADTrees (Kordy et al., 2011) for graphically repre-
senting the enumerated threats in a tree structure. ADTrees extend attack
trees (Schneier, [1999; Mauw and Oostdijk, [2006) by defense nodes, allow-
ing users to analyze the security of a system from both an attacker’s and
defender’s point of view (Kordy et al., 2011). Adequate tool support is

7

available, viz., the ADTool (Kordy et al., |2013a)), which may foster wider
adoption.

Taking into account that the testing approach differs between organiza-
tions, the modeling of data flows must be dynamic so that the threats can be
accurately identified. As a result, we provide an ontology that allows users to
model a DFD, representing the data flows within their testing process. Ad-
ditionally, we created an ontology to model generic ADTrees that are based
on the threat trees defined in (Shostack, 2014). To ease the process of model-
ing threats, we developed a tool, named ADTGenerator, that automatically
extracts the DFD and generates ADTrees for chosen threat scenarios. The
ADTree generator was developed in Scala and the source code, including
both ontologies, is publicly available on GitHuhP|

Furthermore, we demonstrate how competence questions (cf. Table[2)) can
be answered by means of the developed framework. Due to space constraints,
we can neither show the SPARQL queries that attempt to answer these
questions, nor the corresponding query results. However, we provide the
SPARQL queries as well as the knowledge base, which can be used to execute
the queries, via the aforementioned GitHub repositoryﬂ.

Finally, we evaluate the framework by performing a comprehensive com-
parison with other state-of-the-art tools for threat modeling and security
analyses.

3. Generic Software Testing Process for Automation Applications

In general, the process of testing industrial automation software is quite
similar to that of testing traditional I'T software. One of the main differences
lies in the fact that industrial automation software runs on CPSs that inte-
grate physical components in order to interact with the real-world (Baheti
and Gill, [2011)) (e.g., a robot arm as part of an assembly line). As a conse-
quence, the system under test (SuT) consists of software that may run within
a simulation or a testbed of the production system. Another consequence is
that testing in the automation domain is still manually done on a regular
basis due to the difficulty to automate specific tests and the lack of effective
test measures (Dubeyl, [2011)).

As, to the best of our knowledge, there is no industry standard specifically
defining the testing process in PSE, we based our testing process for industrial

3ADTGenerator: https://github.com/sbaresearch/adtgenerator.

8

https://github.com/sbaresearch/adtgenerator

—> Planning & Control

v

—> Analysis & Design <

v

Implementation & Execution

v

Evaluation & Reporting —

v

— Completion

Figure 2: The high-level testing process (Graham et al., [2008; |Spillner et al., 2011)).

automation systems, which is shown in Figure [2| on the high-level software
testing processes of (Graham et al., 2008)) and (Spillner et al.| [2011)). In both
works, the testing process consists of the following five tasks: (i) Planning &
Control, (ii) Analysis € Design, (iii) Implementation € Execution, (iv) Eval-
uation & Reporting, and (v) Completion, which are executed in the testing
phase of a software system. The Planning € Control activity spans over the
other activities to enable the adaptation of the testing process if necessary.
The results and artifacts of tasks are handed over to the next task of the
process, for example as logical test cases and testing source code. Further-
more, to allow the control mechanism to work properly, particular results of
the tasks are fed back to previous tasks as a basis for further decisions and
to improve the specific testing process and quality.

Utilizing the process descriptions from (Spillner et al. [2011; |Graham
et al., 2008), we developed a detailed, yet comprehensible software testing
process that especially considers requirements for industrial automation soft-
ware. Very similar to non-automation software, testing an engineering solu-
tion are tested on different levels (Dubey, 2011) — from unit and module
testing to on-site testing. However, the site acceptance testing level (Dubey;,
2011)) during the commissioning phase of a production system is out of the
scope of this article. Figure [3| illustrates this software testing process. For
further explanation, we will provide a description of the process steps and
describe the involved stakeholder roles.

The first of the five BPMN swimlanes in Figure [3|represents the activities

of Test Management, which corresponds to the Planning € Control task in
the high-level process illustrated in Figure[2l We chose this different name of
the Test Management swimlane after interviewing the test expert of the con-
sultancy company and aligning the process with the ISO/IEC/IEEE 29119
series to better conform to the standard. All other names follow the conven-
tion in the depicted high-level process. The management activities in this
process define the test strategy (e.g., automated behavior-driven testing),
create a test plan that considers the quality expectations, define the require-
ments for testing, and monitor and control the testing process. The second
swimlane contains the Test Analysis € Design activities, where engineers
analyze the test basis, derive test conditions, define the logical test cases and
the test environment, and describe the test procedure. In contrast to the
business software testing process, the testing process for industrial automa-
tion software has to describe the environment with its simulation or physical
systems in the Environment Description. In the Test Implementation € Ex-
ecution swimlane, the activities for implementing the test cases with the
correct test data, preparing the environment and executing the tests, as well
as collecting the test results are embedded. Our interviews and investigation
showed that for automation software engineering it is crucial that the SuT is
appropriately prepared before, and torn down after the test execution. This
necessity is, e.g., for safety reasons due to a possible interaction between
physical systems and employees or the physical damage a component may
cause. Furthermore, physical systems and their components cannot be reset
to a clean state as easily as software systems and often require engineers to
perform manual activities. Therefore, we introduced the activities Prepare
SuT and Tear down SuT which are separated from the preparation of the
testing environment, covering the testing system, its tools, and the automa-
tion software itself. The fourth swimlane is the Test Reporting lane, which
consists of creating the test report and evaluating the test results, or, in case
of a test incident, the documentation of this incident. The last swimlane
of the BPMN process contains the tasks for Test Completion, which include
cleaning up the environment, archiving the tests and creating a completion
report that includes the lessons learned from the test run.

After interviewing our partners, we compared the testing process with
the ISO/IEC/IEEE 29119 standard and amended missing parts. For clarity
reasons we combined the Test Management Process and the Dynamic Test
Process and their relevant sub-processes to an integrated software testing
process, but also left out the Organizational Testing Process that describes

10

Create Test Plan Test Plan
Organizational AN
oanizt Determicallif: << EEC A - &
AN Criteria
Initiate Testing
Determig Define Test Panand
Objectives Envircozegy Resources — + 2
AT N
=)) 4 ad Prioriizing | J "\ V)L
Design Tests
Test
H Sty Quality Requirements Requirements
£ AN R Expectations
& &l
g
3
Z Monitor & Control Testing Process
& v(WNo
1A —~ Monitor Control Yes
L AN (Testing Testing Pf‘eﬁ:’sts 4>O
Process Process od Testing
- complete?
Improvements g
dentified in Test Srategy
Previous Cycles Test Status Adjust No, Change in
Report Test Plan Test Plan Required
=
=
Develop Test
5 (Test Cases Procedure
c |5 Analyze Derive Test + EYAN Description
212 Test Basis Conditions T Lu‘g(l:ca\
o ‘est Cases
gls 2 Create Test
Elz : : " el
S|le - [EJAN Description
<3 N FIN ...y PlanTest Environment
5(< Environment Description
2|8
gl°
8 Requirements, Test Plan, .. Test Conditions
Iy
g r
2 v AN T
el Test Cases Test Data Suites Evia. J { e J { Procedures
g Incident
£13 z TTAR ¢ ISR occurred?
3| - . E . .. X
. . N
< EIAN S0 EYA N - EYAN SN HESIAN AN EYaN S| collect
§ Test Reults
g
£
5
5 Concrete Test Data Test Suites Test Build Simulations _Physical Concrete SUT yoq
s Test Cases Environment Specification Components Test Cases
£ Description
% Teardown
b (SuT
N
> Create Evaluate RS &
£ Test Report Test Results
5 Test Incident
g) = J L1 Testhoident | © |,
& YN Testissues eport Test Incident
T s Test Report
g
e
Lessons
Leamed [
.. TN
Create Test
3 Clean Up Improvements .
g + Test i + I 2
8 Environment K - Se.
o AN o
: i | - -)
e
i Archived Artifacts
Test TestPlan TestResuls —TestStatus Testincident Test Completion
Archiving orts Reports

Figure 3: The testing process for industrial automation software based on (Spillner et al.,

2011} [Lewis|, [2008; ISO/IEC/IEEE 29119-2, [2013).

11

processes on a higher level than the project level. Furthermore, we omitted
a few tasks of the standard that seemed to make it less understandable in
a combined form, such as consenting on the test plan. Nevertheless, our
software testing process is a generic blueprint that still needs to be imple-
mented according to the specific requirements of the respective automation
engineering company that uses it. This also means that the testing process as
depicted might not be rigorously followed, e.g., on the supervisory or control
level.

Each of the tasks in our testing process is associated with a particular
role. Table [1| defines these roles and their responsibilities. In practice, a
single person often fills several roles, even though a clear separation of roles
would be preferable (Winkler et al., [2018)).

Abbrv. Role Responsibilities

PM Project Manager Project Controlling, Test Controlling

™ Test Manager Test Planning, Test Design, Test Management, Test Controlling

RM Release Manager Software Packaging, Software Releasing

D Developer SuT Code Implementation

T Tester Test Data Creation, Testcase Implementation

TAE Test Automation SuT Preparation & Tear Down, Environment Preparation & Tear
Engineer Down, Test Execution

DE Domain Expert Test Data Provisioning, Business Testcase Derivation, Domain Knowl-

edge Specification, Requirements Specification

Table 1: The roles and responsibilities in a software testing team (Winkler et al.l [2018;
ISO/IEC/IEEE 29119-2, [2013).

According to the developed testing process, the security analysis will focus
on an organizational and high-level technical view of the testing process.
Consequently, specific tools used as part of the testing process are out of
scope but could be extended by users or future research. However, we do
consider types of tools (e.g., test management tool) that are used for testing
activities in the threat modeling process.

4. Security Analysis Framework

This section discusses a framework for the semi-automatic security analy-
sis of software testing processes. First, an overview of the framework is given
by describing its structure and how it can support an organization’s efforts

12

to secure its software testing process. Second, we outline in Section how
we represent knowledge about (i) the software testing process, and (ii) poten-
tial threats including their respective countermeasures by using ontologies.
Third, Section demonstrates the steps of the security analysis and high-
lights the merits of the framework.

As stated in Section[2] the presented framework is based on the VDI/VDE
2182-1| (2011) guideline and aims to semi-automate multiple steps of the
procedural method. As can be seen in Figure 4l the procedural method is
cyclic in nature and the framework focuses on the first six steps, including
the Structure Analysis (the remaining two steps marked with €9 are out of
scope, as they cannot be automated).

Start
(Structure Analysis) Identify Assets |:> Analyze Threats

@ Perform Determine Relevant

Process Audit Security Objectives
Process
Documentation
@ Implement Analyze &
Countermeasures Assess Risks

Select j,: Identify Measures &
Countermeasures Assess Effectiveness

Figure 4: The procedural method, as described in and adapted from (VDI/VDE 2182-1,
2011)); steps marked with €9 are out of scope of the proposed framework.

Before the procedure can be performed, a structure analysis must be
conducted in order to define the assessment scope. The result of this analysis
is a specification of the target of inspection, i.e., a detailed description of the
object (e.g., device) to be assessed. Furthermore, the specific moments in
time when the security analysis ought to be conducted is dictated by certain
intervals (e.g., regular audits) or events (e.g., discovered vulnerabilities, a

13

major change in the target of inspection). To ensure a traceable process, the
VDI/VDE 2182-1| (2011) guideline suggests creating a process documentation
that is developed step by step throughout the procedural method. (VDI/VDE
2182-1}, [2011))

Table [2| summarizes the contribution of this work, or, more precisely,
how the herein presented framework supports the phases of the procedure
method described in the VDI/VDE 2182-1 (2011) guideline (cf. Figure [4).
Since we adopt an ontological approach, the knowledge models described in
the next section lay the foundation for the framework. For this very reason,
the framework also facilitates creating the process documentation.

4.1. Knowledge Representation

Due to the fact that the software testing process steps, used tools, and de-
fense mechanisms in place vary among organizations, the target of inspection
is dynamic to a certain extent. To ensure that the scope of the security anal-
ysis is clearly defined, yet flexible enough to analyze various software testing
processes, we developed a tool-supported semi-automated threat modeling
approach.

The foundation of this approach consists of two ontologies to model, on
the one hand, data flows within the software testing process, and ADTrees
on the other. Both ontologies were developed in the Web Ontology Language
(OWL) by using the open-source ontology editor Protégé (Noy et al., |2001)).
Although we provide a set of individuals for both ontologies in advance as a
starting point, we expect users to adapt the modeled DFD to their testing
process, and to extend the predefined ADTrees if necessary.

The DFD ontology is formed by the typical elements of a DFD, viz.,
Process, DataFlow, DataStore, and ExternalEntity classes. Furthermore,
an Asset class, with the subclasses Hardware, Software, and Document are
used to associate individuals of these types with elements of the modeled
DFD. Assets can be linked to DFD elements, via the object property usedBy.
Furthermore, bidirectional data flows are denoted by adding the flows object
property twice (one for each endpoint), while unidirectional data flows can
take on the object properties flowsFrom and flowsTo.

On the other hand, the ADT (ADTrees) ontology consists of the following
classes: AttackNode, DefenseNode, Goal (i.e., the root node of the ADTree),
TargetElement (i.e., a DFD element type), Threat (according to STRIDE),
and Connector with the two subclasses AndConnector and OrConnector

14

Phase Answered Question Semi-Auto. Provided Support

Structure What 1is the target of © The generic DFD for software testing depicted

Analysis inspection? in Figureis modeled with the DFD ontology
and can be adapted if needed. The knowledge
model can be queried to gain insights into the
organization’s testing process.

Identify Assets What are the assets to © Assets listed in Tableﬁ are modeled with the

be protected? DFD ontology and can be adapted if needed.

The knowledge model can be queried to gain
insights into the testing process and involved
assets.

Analyze What are the threats to (] ADTrees can be automatically generated

Threats assets? based on the modeled DFD and generic
ADTrees. The threat model can be eas-
ily shared and extended to reflect new and
organization-specific threats.

Determine Which security objec- (] The security objectives can be automatically

Security ~ Ob- tives are at risk? identified by querying the knowledge models.

jectives

Analyze & As- Which risks need to be O The generated ADTrees can be imported into

sess Risks treated? ADTool (Kordy et al) |2013a) in order to
conduct a (manual) quantitative risk assess-
ment (Kordy et al., [2013b).

Identify Mea- What are the counter- O The generic countermeasures are modeled with

sures & Assess measures to mitigate the ADT ontology and can be adapted if

Effectiveness the risks? needed. Users can query the knowledge base
to identify countermeasures to protect assets.

Select Counter- What are the most o The automatically generated ADTrees can be

measures

cost-effective counter-
measures?

analyzed with the quantitative risk assessment
features of the ADTool (Kordy et all 2013a)),
allowing to identify cost-effective countermea-
sures.

Legend: @ applicable, © partially applicable, O not applicable.

Table 2: An overview of how the proposed framework supports the security analysis

according to [VDI/VDE 2182-1| (2011)).

15

for representing conjunctive and disjunctive refinements of nodes, respec-
tively. Goals, attack, and defense nodes are connected to connectors, and
vice versa, by using the object property connectedTo. Furthermore, goals
point to DFD target elements and STRIDE threats with the object proper-
ties hasTarget and hasType, respectively. These two object properties can
also be used by subclasses of Connector in order to reference assets that
are put at risk by certain threats. For the purpose of identifying the most
cost-effective countermeasures, attack and defense nodes can have the data
properties successProbability and cost.

To provide users with a generic set of threats, including corresponding
countermeasures, we modeled the threat trees defined in (Shostackl 2014)
with the ADT ontology. Although Shostack (2014) provides mitigation strate-
gies that are geared towards developers and IT operations staff, we focus only
on the latter, as we assume that users of the proposed threat modeling ap-
proach cannot modify the software used as part of the software testing process
(e.g., test management tool). Owing to the modeled DFD and threat trees,
some threat scenarios (e.g., obtain test data) can be automatically derived
by executing SPARQL queries, due to the fact that the DFD elements that
are associated with assets (e.g., test data) and the modeled threats can be
queried jointly. However, to cover multi-stage attacks (e.g., covert sabotage
of the test code), we modeled additional ADTrees that represent specific
threat scenarios pertaining to the software testing process for automation
applications. These predefined ADTrees can reference other threat trees as
subtrees, but the acyclic nature of the trees must be preserved.

4.2. Security Analysis Steps

This subsection first outlines the assessment scope and then shows how
the framework allows to carry out a security analysis of the software testing
process in a semi-automated manner to answer the questions outlined in

Table 21

4.2.1. Structure Analysis

In this work, the target of inspection is the software testing process of
automation applications. Thus, other activities of CPS testing, such as hard-
ware testing, are out of scope. More specifically, we focus on analyzing the
security of the testing process described in Section [3] Furthermore, the secu-
rity analysis covers two levels of testing, namely unit testing, and integration
testing. Other levels of testing, e.g., factory acceptance testing (FAT), are

16

not covered as they are often too diverse to include in a general model but
could be considered in future work.

To further break down how information may be transferred, we modeled
the data flows of the software testing process explained in the previous section
by using a DFD (cf. Figure . We assigned each element in the DFD an
identifier so that we can reference them throughout the security analysis; a
way of dealing with references in a STRIDE-based threat analysis, which we
adopted from Khan et al| (2017). The DFD depicted in Figure |5 was also
modeled with the DFD ontology in order to provide users a starting point
for the structure analysis. In this way, they can adapt the modeled DFD so
that the target of inspection accurately reflects their setting. For instance, if
no test data generator is used, or instead of one source code repository, two
are deployed, the modeled DFD can be easily refined by adding or removing
the respective process elements. Moreover, the target of inspection can be
expanded (e.g., to consider IT operations components for the purpose of
DevOps) by extending the DFD ontology.

As can be seen in Figure [5] the tools used during the software testing
activities are modeled as processes, while the data repositories are denoted
as data stores. Furthermore, we used external entities for modeling the roles
in a software testing team and data flows to indicate communication among
tools, repositories, and roles. Owing to the modeled DFD, we can execute
SPARQL queries that can provide answers to a variety of questions related
to the target of inspection, such as: Which processes, external entities or
data stores transfer data to the test management tool?

4.2.2. Asset Identification

The first step of the procedural method is to identify assets within the
assessment scope. The VDI/VDE 2182-1| (2011) guideline states that the
components of automation device(s), the communication infrastructure (e.g.,
data flows) and the legal positions (i.e., claims that may arise from security
incidents) have to be considered. (VDI/VDE 2182-1] 2011)

For the identification of assets involved in the software testing process,
we utilized the BPMN diagram (cf. Figure [3)) and the DFD (cf. Figure [5)).
In particular, the data inputs and outputs depicted in the BPMN diagram,
except simulations, physical components, and the build, were classified as
documents. Furthermore, the DFD process and data store elements were
categorized as hardware and software assets.

Since all this information is modeled in the DFD ontology, we can derive

17

L—» Build Repository

=

Figure 5: A data flow diagram of the software testing process.

valuable know-how about the assets at risk, simply by executing SPARQL
queries. On the one hand, these modeled links allow deducing the attack
targets for a given asset. On the other hand, we can determine which role
(i.e., external entity) has access to which asset. Furthermore, additional
knowledge about possible attack strategies (e.g., the target’s attractiveness,
defined by the number of involved assets) may be gained by using a semantic
reasoner.

Besides assigning the DFD-IDs and authorized roles to each asset, we also
analyzed the potential legal implications of a compromise thereof. Hence, we
checked the potential posture that an organization might take in the event
of litigation that arises from compromised assets. In particular, the follow-
ing legal positions are examined: (i) protection of know-how, (ii) product
liability, and (iii) safety. For instance, a breach of the confidentiality of
documents may represent an infringement of the organization’s intellectual
property rights, while a violation of the integrity may lead to claims to be
filed against the organization due to safety issues or product defects, causing,
for example, machinery breakdowns.

The identified assets, together with the DFD-IDs, legal aspects to be
considered, and the roles authorized to use them, are listed in Table [3]

18

Legal Position Authorized Roles

Asset DFD-IDs
K L S PM ™™ RM D T TAE DE
1 Test management server P-1
2 Test management S-1 []
e repository server
; 3 Source code repository S-2 []
T server
3 4 Build (automation) P-3
m server
5 Build repository server S-3 []
6 Physical components - [] []
7 Test management tool P-1 [] [] [] []
8 Test management S-1 []
repository
9 Test data generator P-4 [] [] [] []
10 Software development P-2))
tools
I9) 11 Source code P-2, S-2, F-11, F- [] [] [] [])
3 12, F-13, F-14
g 12 Source code repository S-2 [] [] []
2 13 Build (automation) tool P-3 [[]
14 Build P-3, F-17,S-3,F- @ @ °
18
15 Build repository S-3 []
16 Simulations F-4, F-21, P-5 [] [] [] [] [
17 Test execution tool P-5 [] [] [] °
18 Organizational policy F-1, F-2, F-5, P- [] []
1, S-1
19 Test strategy F-1, F-2, F-5, P- [] [] []
1, S-1
20 Test plan F-1, F-2, F-5, P- [] [[]
1, S-1
21 Test status report F-2, F-3, F-4, F- [J o o
5, P-1, S-1
22 Test conditions F-2, F-3, F-5, P- [} [} [}
1, S-1
23 Logical test cases F-3, F-4, F-5, P- [} [} [} [} [J
1, S-1
24 Test environment de- F-3, F-4, F-5, P- [] [] °
scription 1, S-1
= 25 Test procedure descrip- F-3, F-5, P-1, S-1 [] []
E tion
= 26 Concrete test cases F-3, F-4, F-5, P- [] [] [] [] []
3 1, 8-1
A 27 Test data F-6, F-7, F-8, - ® @ ° ° °
4, 8-1
28 Test suites F-3, F-5, P-1, S-1)
29 Build specification F-15, F-17, P-3, [] [] [] [] []
S-3
30 Test incident report F-2, F-3, F-5, P- [] [] [] []
1, S-1
31 Test results F-2, F-5, F-19, F- [] [] [] [] [] [
20, F-21, F-22, P-
5, P-1, S-1
32 Test report F-2, F-3, F-5, P- [} [} [}
1, S-1
33 Test issues F-1, F-2, F-3, F- [} [} [} [} []
5, P-1, S-1
34 Improvements report F-1, F-2, F-3, F- [] [] [] []
5, P-1, S-1
35 Archived artifacts F-2, F-5, F-17, P- [] [] []
1, P-3, S-1, S-3
36 Test completion report F-1, F-2, F-3, F- [] [] [] []
5, P-1, S-1

Table 3: The identified assets and the corresponding IDs of the involved elements in
the DFD (cf. Figure , including a consideration of legal positions (K = protection of
know-how, L = product liability, S = safety) and the roles of the software testing team
(cf. Table [I| for role abbreviations) that are authorized to access the assets.

19

4.2.83. Threat Analysis

According to the VDI/VDE 2182-1| (2011) guideline, the threat analysis
step is performed in two phases, viz., the identification of threats and the cre-
ation of a threat matrix. Prior to conducting the threat modeling activities,
we will first discuss potential threat actors, their goals and attack targets.

Attacker Profiles. As past incidents in the industrial sector have shown, com-
mon threat actors are organizations with nation-state resources and criminal
groups or individuals (Miller and Rowe| 2012; Langner, 2013; [McLaughlin
et al., 2016). Since these attacks are often launched in a targeted fashion,
a special focus should be placed on Advanced Persistent Threats (APTs),
i.e., threats that emanate from attackers who pursue a multi-staged attack
strategy, targeting specific organizations with the aim to remain undetected
for an indefinite period.

In general, the adversary’s goals to attack the testing process for industrial
automation software can be categorized into two groups, information theft
and (covert) sabotage. The motives behind attacks that aim to steal testing
artifacts may be (i) monetary profit (e.g., imitating a competitor’s SuT),
(ii) reputation damage (e.g., a data breach involving the loss of artifacts), and
(iii) reconnaissance (e.g., obtaining knowledge about the SuT for subsequent
steps in the kill chain). On the other hand, motives behind sabotage attacks
targeting the testing process may be as follows: (i) equipment damage (e.g.,
increased deterioration of systems), (ii) environment and human safety risks
(e.g., sabotaged test execution on real hardware to put human health at
risk), (iii) manipulation of manufactured products (e.g., decreased product
quality), (iv) denial of service (e.g., impeding the PSE process). Finally,
gaining credit can be a further motive behind a cyber attack.

Table 4] summarizes the considered threat actors in the context of testing
automation applications, including their estimated capabilities and potential
motives behind cyber attacks.

Note that an adversary may also exploit a vulnerable testing process for
industrial automation software to attack the integrator’s customer who is
operating the plant. Consequently, a lack of proper security measures to
protect the testing process may lead to severe consequences, not only for the
integrator who is in charge of the testing process but also for operators who
rely on automation software to control physical processes.

20

. N &
@d (‘;\,\0 é&%‘b &Q}\ & 3

} 2y & e S o & S

& @"&f& S & o i@% S Q*&&QQ Lo
Threat Actor Capabilities ¢ <© x4 Ao QP %Q’&% > O
Basic User Low [] []
Insider Medium (] o (
Competitor Medium (] (] °
Hacktivist Medium o
Terrorist Medium [[
Cybercriminal Medium
Organized cyber- High (] o (] (] (] ° °
crime group
Nation-state threat High ° (] (] ° °
group

Table 4: The attacker profiles relevant to the software testing process.

Threat Modeling. As already mentioned in Section [2] we adopt a STRIDE-
based threat modeling approach. In particular, we use STRIDE-per-element
(Shostack, 2014) to facilitate the automated identification of threats. In
essence, this variant of STRIDE predetermines which types of threats are
relevant to which DFD elements (cf. Table |5)). Based on this, threat trees
(Shostack], |2014) can be defined, which provide generic attack vectors that
ease the threat modeling process.

DFD Element S T R I D E

External Entity

Process e O o
Data Flow [e o
Data Store e O o o

Legend: @ applicable, © partially applicable.

Table 5: The applicability of threats to DFD elements according to STRIDE-per-element
(Shostackl, [2014)).

Due to the fact that we modeled the threat trees with the ADT ontology,
we can derive specific threat scenarios that show, by means of ADTrees, how
an attacker’s goal may be achieved. Furthermore, we grouped these threat
scenarios by attacker goals, i.e., information theft or (covert) sabotage, and
also analyzed potential consequences. Table[6]shows the results of this threat

21

modeling activity. Since these threat scenarios describe the actions that are
executed with malicious intent in order to achieve a certain goal, the attacker
constitutes the proponent.

To formally represent ADTrees in Table[6], we adopt attack—defense terms
(ADTerms) (Kordy et al., 2011)). In a nutshell, ADTerms are elements of Ty,
where Ty, = TR U T2 (the union of the set of proponent’s and the set of
opponent’s ADTerms), and ¥ = (S, F), i.e., an AD-signature representing a
pair consisting of a set of types, S = {p, 0}, and a set of function symbols,
F, which is composed of disjunctive (V) and conjunctive (A) refinement op-
erators, and counteractions (c¢) for both the proponent (p) and the opponent
(o) (Kordy et al., [2011)). Furthermore, the ADTerm used to represent the
ADTree T is denoted by «(T) (Kordy et al., [2011)).

Thus, we denote the ADTerm used to represent a generic ADTree, which
is based on a threat tree defined in (Shostack), 2014) and concerns one or mul-
tiple DFD elements depicted in Figure , by L(Ti]:j), where i represents the
DFD-ID and j the threat according to STRIDE. For the sake of brevity,
we group generic ADTrees of a certain threat type by assets, (T} ;) =

VP (L(TIJEJ), cee L(TIJLJ)), where @ represents the assigned number of the as-
set (cf. Table [3)), i the DFD-ID, j the threat type (if applicable to the DFD
element), and k > 1. For instance, «(T5; 7) = VP (L(T;E_&T), L(TFT_ZT), L(Tg_&T),
L(TILLT), L(TST_LT)) is the ADTree consisting of the threat trees for tampering
test data (asset no. 27). Moreover, the ADTerm used to represent an ADTree
for a threat scenario (cf. Table[6)) is denoted by ¢(T%#), where n is the number

of the respective threat scenario.

22

‘s1owo)sno s Auedurod
99 o3rwep A[SNOIAQO p[nom so111A170® 93rUOIdSd [RLIJSNPUI JO 1[NSOI ® SB Joolay) oFeyes] 9y} ‘uorjewiojur Surousnbes pue
Suinpoaryos se [[om se ‘s30[uorjonpoid ‘siopio 3sed Jnoqe s[relop ‘elfe I9jur ‘urejuod sdwnp eviep 9soy) 2oulg ‘suorjesridde SHIN
pozrwolsnd Surysa) jo asodiand oy 10 uorrerado jue[d SULIND SISUWOISND WOI] POJIS[[0D BIRP pliom-[eal sosn toujred Kueduwod
pomorarajul oY) ‘ojdurexs 91910U00 © 9AIS O], ‘sSw9IsAs pur sossodolxd SurInjoejnuew oY) INOJR MOY-MOUY S[(RN[RA [BIADI Aewl
suoryesijdde uoryeuwroine o) paje[al sased 1599 10J syndur ‘oremijos J,J [eo1d4) 10] BIRp 1599 paysewun ‘orysifeal SUIsn 03 SOW0D
91 usyYMm omnsst ue oq Aew Adearid evIEP S[IYA\ UOIIRULIOJUI [BIIJLID-SSAUISN] ‘OAIlIsuUas A[yS1y Jo pesodwiod oq ued eep 3197,

*90UBSSIRUUOIDI 10 $oUO[d> jonpoid Jurjesrd 10y [njosn aq Aew ‘urede ‘@fpoimouy styJ, sjusuodwod [edrsAyd jo sSuriom rouut
pue 2In3onI3s 9Y} Jnoqe aFpo[mouy uled 0} SOLIRSISAPE MO[[e AW JOOIOY) SINSO[OSIP 97 ‘SUOIJRINTYUOD pUR ‘9IBRMIJOS ‘drem
-pIey 9y} jnoqe uoljeuLIojul SUIPN[OUT ‘Pa(Isa) POsN oY) 03 paje[al s[re1op sosadurod uorjdrIdsop JUSTWUOIIAUS 1S9} 9} dDUIS

‘quowrdolesap 110[dXe 10] [NJosn SI moy-mouy siyj ‘Ie[norpred U] ‘SUOIIIPUOD IOLIS OJUI UNI 9 URD NG
2y} moy osfe jnq ‘syjed Addey oyj purjsiopun o} 9[qe aq Aew sosed 3s93 jnoqe a3pa[mouy yjm paddmbe Jureq sieyoelly

‘SOI}IAIIOR 9OUBSSIRUUODDI
I9Y3INnJ 10J 1081e) © 9 P[NOd (UOrpRWIOJUl SUIUOISIOA ‘SJULWNOOP Palogs jo syjed ‘Suryse) 10y pasn sjooy L1red-paryy ‘so[npoyos
¢:3'9) yoeoirdde Surlse} [[BISAO 93 INOQe S[IeId(] °SII31AIOR SuIlse) oyads ur pjoyjooj e ured o4 Iopio ul sresn renoryred
Joejye 09 poajrojdxe oq pnod uoljeuwrojul Suiye)s searoym ‘Suppelye Yriom oq Aew jeyy syoSie) [euonyippe 3se988ns Aew
10951801 NSII oY} ‘erowrroylin,] ‘uorjerado juerd Sunnp dcoaey eeim pue HSJ Sulmp pedijouun of 09 I9pio ul SuUIIse] WOIf
pepn[oxe are jey) seuo ay3 A[uo Jurpendruew 10 (NG oY) Surkorysep ‘'3 9) uornoexs 3593 oYy Surnp wrey Jursned jo ssodind
99} I0J swell 359} dymdads Ioyje aSejoqes 09 pasn oq ued odods 3593 9Y) ‘©AI00(qo s 1o3deIYR oY) uo Suipuoadep ‘ojdwrexe
10, Appueoyrulis syoejye pauur[d jo uorjesrysiydos oY) aseaIdul 0} o[qe oq PYSIW SolIeSIsApR ‘Spuey A[puslijun ojur [[e] O}
arom uorjewrrojur siyy jy ‘yoeoidde Suigse) [[eIoAO oY) pur ‘sanjiqisuodsel pue so[0l ‘I193SIS0I NSII B ‘pPojso) o 0O} saInjes]
oy ‘erre rojur ‘sepnpour uerd 3s03 ouy ‘[£10g| [-6116¢ AAAI/OHI/OSI) prepuess 61167 HAHAI/OTI/OSI oUs 03 FuIpIoody

“I9UURUW PO[[OIJU0D © Ul padnpul st oSewep [edIsAyd jey) Suninsue ‘s)yorije Aq pesned seinfrej Surjye[nuwiis wodjy
Jyoua(OS[e URD SOIIBSIOAPE ‘JX0JUO0D SIY) U] ‘S[NPIAIPUI ain(ur 1o seSewep [eo1sAyd asned o} wire jey) syoelje Surwroyrad 10§
uorjyeuUIOjuUT o[qenyea juesardol Yorym ‘(wIe 2130qod ® jo sorjjiqeded uorjejor 1o projled ‘:3'9) sjueouodwoo reorsAyd jo seinjeay
97} [e9A8I OS[e ABUW SUOIR[NWIIS ‘OIOWIDYIIN] AE E ‘ooue)sUI 10] ‘'JO) sNO®IJR 3I0A0D Youne] o} sjusuoddo
Suimorre ‘sormeudp [eoisAyd oY) uieos] 03 pajrojdxe 9q Aew SUOIRINWIS WLISAS ‘purRY 1970 oy} u() ‘ss9dooxd Jurinjoejnuen syl
Jo jred se pasn S9OINOSAI 9 PUR MOJ [RIIDIRW YY) [BIADI P[NOD uoljenuis jue[d e seaIdaym ‘9INJIONIJS [EITURYDIDW ST Jnoqe
s[re1op sopiaoid 30qol ' Jo uolje[NWIS (Jg ® ‘IoULIO] 9} Jo sojdwexa om) aA18 oJ, "dojs uorjeredaid soejre ue se 10 sassodoxd
Sunmjoenuew pue sjusuodwIod 9)BAIDAI 0} PIsSN oq I9YjId ued afpormouy siyJ, ‘jue[d [[BISAO 9} U2Ad pue ‘sassadord yerry
-snpul ‘swalsAs (noqe 98paymouy] salsusyaidurod aamboe Aew sorresioApe ‘uolje[nuls paurelqo 9yl jo od4Aq oy uo Juipuado

‘(€102 pwzwzdd_I ‘e 19 wgm_:mm—v 19UXNIS [IIM 9SedD 9Y)

sem se ‘suorjeoidde 9rew]i8e] ‘ufruaq se srem[ewl 9SINISIP 01 sI9deIIe AQ posnge oq Arw Suru3is opod 03 paje[al s3urlyeg
‘sweysAs 19yjo 03 joard 03 sarIesIoApe mo[[e Aewl sA9y HSS pue s3UI}jes [013u0D uolsiaa painjdeo ‘erowrsyjinyg ‘sesodind
9OUESS[RUUODDI 10] Pasn oq 0} s3a31e) d[qen[ea are uorjewrojur Surproder pue ‘sspuspuadep ‘sani dn-ues[o ‘SUOI}IPUOD dIN[ref
PIINg ‘uorjeuriojur SuUIUOISI9A ‘O[npayds pling ‘siojouwrered ‘sdejs pling poindyuod oy ‘rernoiyred uy -sSuryjes pling oyl
Sururejqo jo jmsar e se ‘ssedoxd plmq ayj jnoqe poures 9Spo[mMOUY UO Poseq USNBIIGPUN 9] UED SUOIJOE SNOIDI[RUW SNOLIBA

‘SR OPOO 9DINOS JO 3JOYY OY) SB S90USNDOSU0D IR[IWIIS UT 3 NSOI
Lewr yorym ‘sisA[eur OI3e)S SB YONS ‘SOIIAIJOR SULIOOUISUS 0SI0Adl wiojrod 09 solIesIoApe mo[[e pinom Aieurq oyj Suunyde))

‘pejoojepun surewal 98LIOqeS 91} JeY) OS ‘SUNI 4599 SULIND POINOSIXd J0U I Jel) 9pOd 9y} Jo sqred osoyy A[uo
oje[ndiuru 09 SIS3DBIJE 9110Ul ABW SSLVISA0D 9POD 9} JO SUIPULRISIOPUN UR ‘DIOWISYIIN,] ‘POIO[Ie}-w04snd s1 uoipesrjdde oy J1
Aqreroadse ‘[o1juod 1epun sessodoxd [eLIISNPUT 913 ojur $3YSIsul opraoid Os[e AW PUE ‘SOSSOUNLIM PIISAOISIP A[maU Jo aFejuespe

[Ty (T (U
(DT (U] an

[Ty (T (U
(D (VD] an
[Ty (T (U
(P (D] an

(TR (U (ML)

Aﬁw.

[T oy (

NG

I'1g-d

WEVL an

ALK R VAL P

[Ty (U (1O
Aﬁi.%&i AH.E.W&VL ah

hAm

tm:»m&f AHAS‘?VL an

(&)U

d

+

L)

(& o ("
AHJTWEY ,AH,mH.w&vq

ejyep
3803 ureyqQ

uorydriosep
JUSWUOIIATUD

3503 ureyqo

sased
3803 ure1qO

uerd
1809 urelqO

suory
“e[nuls ure3qo

uoryeoyroeds
pIingq ure3qO

PIMq ure3qo

1J91], UOTyRULIOJUT

o) jer) syrojdxe dopeasp ‘uorjeosijdde oy 9redijdar 01 pasn oq ued a8poa[mouy siy], ‘uorjesijdde uoryewoine pado[oasp oYl . . opoo
gnoqe a8po[mouy punojoid ureS 0} SolIRSISAPE MO[[® P[nom suoljeInSyuod pue ‘s1deduod uSIsep ‘swyrI08[e JO 2INSO[ISIP O T, "AH NT%&? AH :.W_HVL an 9ounos urejqQO
soouenbasuod [erjuajloJ wIds LAV 1eon

23

‘(a8ej0qes 110400 1) T-¢T "OU ‘}JO1) UOIJRULIOJUT :g]—T "OU) SOLIRUIIS @I} POYIIUIPI oY T,

9 OIq®L,

‘jowl 9q jou Aew YO Tﬁm,mmrhvg AB@M&? “Am.mmrﬁvev aA sjoej
0} poje[el uoljewIIOJUl SUIJULWINIOP 10 sjuswedlinbar L10re[nger 10 [e39] [eijuajod ‘erownIaylin, 'siSeq ® Se S}0RJI}IR 9SOYY . . -131% PoAlydIR
osn Aoyj J1 pemey A[ejuswrepuny aq Aew ssodooxd Juilse) oY) JO suorjriell jusnbasqns ‘poaryoie aie sjoejiyie peoje[ndrurw jI ,AA~ m*ﬂrhv\\ “«(r w*ﬁrhvd aVv _ aVv arendrueiy LT
‘uoryeorjdde uorjewroine oy _HAA&,NMHVQ ,A&bom&qu aVv
JO I01ARYUD(O]qRIISOPUN UR A[ojRWI}[N PUR ‘@remlewl paling Anjsseoons ‘(sjyuswrpadur sseooid ggq 03 Surpeoy Aqerjuejod) cratte (L TE L), (S TE Y,
c : d s ® -souo ((FTEL) (L TEL) (S TEL)7) an synsox
sjyuowaanbar y©) oy S[[Y[nJ NS oY} eyl NUIY) A[SNOSUOIID ABUW SSODOI u11s99 9Y) JO sIop[oyae)s ‘Aem SIy) Uy N
possed se s1s0) pofrej SuISINSSIp A S10® SNOII[RW [BIOUO0D 0] A1} AW SI[NSdI 1593 o) oje[ndIuBW 0O} WIR OYM SOIIBSIOAPY ,AA%HLQ Awrﬁvd aVv g d 9809 ojendruey 91
ssa00ad Surysey oYy sopadwl A[UTe)I0D PUR UOIINIAXD X907 SUMINP IO JUSTUOIIAUD TAE,W@HVQ ,AEAom&vq \m)u
9591 oYy jo uoljeredeid oyy Sunnp toyjze sjuouoduwod [edIsAYd ALoi1jsep pInod poqise) paindyuodsim Yy jods 03 MOYIp "AEJNEYAEKHEKV <FAAN.¢N.HV< uorydriosep g
arow aq Aew uoljezirjewered 1091100Ul Ue ‘sjrodXe UIRWOP 0} SNOIACO oq AW 9IBMIJOS IO aremprer jo dnjas ayj Ul SIOIID X L d * JUOWUOITAUD 5
SIIYA ‘POq1s97 97 SUlINIYUOoISIW OJul SI9sN pue sjrodxe Urewop O11) Aewl UoI1dLIDSOP JUSWUOIIAUS 1897 oY) Sunpendiuen ‘(L d;wrﬁvq Am NWNVJQ> Aﬁmrﬁvau_ aVv 1591 oge[ndruriy [<3) be
¢ ¢ ‘ @
-sseooid FSd oys jo oseyd juenbesqns e SulmMp pojoojep Sem Or}je oY)} Tmrﬁ SEp)r (L TEL)? (L OEp) g
1ey? popraoid ‘sjuswiipeodwl pasned oY) O} 9NP UNIISAO 1500 pue Ae[op 109(oid & 9oe] Aew uorjeziuedio oyl ‘spiepuels Ajirenb &B.mﬂ.ﬁvq Arh,mﬁrwfv v FAA,NJL..HVQ B
joow 09 Jul[re] woj asue Aew jey) swre[d Liqer 1onpoxd sopisog ‘1onpoid arem)Jos aA11095op & diys Lew uorjeziuesio oyl X L d . * ®
‘30® SNOIdI[eW SIY) S[IDUO0D ‘90usnbesuod I19YlIny Ul ‘pur UOISIOA 9[BIS ® M NG 9Y3} 2IN3I3sqns 0} 9[qe SI Io¥delje Ue J[LTIy (S VEL)7) an AMEVL aVv Lng 9In3ysqng At
‘[01ju0D 19puUN ssedo0id [RLI}SNPUL 91} 0} Paje[ad Blep
97RI}[YXS 0} SILIBSIOAPR 9[qRUS OS[e Uayj} pinom siyJ, ‘uorjerado jue(d Sunnp wejlsAs pajeSie) 93 jO [0I3UOD PUR PUBRTIUWIOD . . .
ure8 o3 1epio ur sioopyoeq jurid 0} o[qe oq Aew sioYPRIe ‘elowrIoyjing MSLI je yjreey uewny Surnd pue juewrdmbe TAE Te€r) (L OEL)? < (L 9T)
Burjonagsep Aqreryusjod ‘e3e)s [ed13110 ® ojur uorjonpoad ur uoryesrjdde uorjpewone ayy ‘paddiys usay) pue y) ysnoiys s3e8 apod ,Ahhbﬁ&vq A,h,mﬁrﬁfv v FAAmh:qu opoo
snomIewW ayj j1 ‘10 INg oy} 10yj3e jnd 03 9pod oy} Yim Iodwe) URD SIONORIJR ‘@OURISUI 10, "SWIIOIA I10J S3091j0 Julje)sessp X x d * 20IN0S 03Ul 9POO
oARy U®D oSeWRp SUIINSSI OU} SOUIS SIONOR}IR I10J [ROS AYlom ' A[UIRIISD S OSBQOPOD o3 OjUI 9pod snoroifew Suijosluf (LT (ST L)) Q>AHH.HVL aVv snompifew 300Uy e1
‘g- (r't-s «r'e-d
130U} UOIJRULIOJUI IOJ S}081€) OAIORI}}R oIow A[[eIoUSS WOy} Soyew _HQ €751)7(,THVQ (,T.qu
S10RJILIR 1S9} POAIYDIR JO 2InjeU pajeSarSsSe oY) ‘I0AOMOJ] ‘O[PUN(PIAIYDIR O} Ul PIPN[OUI SIR JBY) SJ9SS® [RNPIATPUI JO 1]} AHJ.AHY AHKH.MEVQ
oY) sk sedouanbosuod IeIWIS SBY S)ORJIIIE POAIYDIR JO 2INSO[ISIP oY T, "(€107|[3-6T116¢ HAHI/OHI/OSI) 2SNl I0] PaAIydIe oIe Femd + g + sjoejIjIe
‘QUOWIUOIIAUD }S97 91} 0} POJR[dI S1ORJIIIR PUR ‘Blep 359} ‘saanpodoid 3s9) ‘sueld 1503 se yons ‘sjosse 1599 ‘uorjodwood 4se3 uodn) NG thvg “(;THVL an poAlyoIe urejqQO z1
*SOIYI[IBISUINA I0J YOIBIS O DIdYM SIUTY ~
a[qenyea sopraoxd [[I3s ‘SOINPOUW 9IBM)JOS UT SSTN(PAISAOISIP JO UOTINQILIJSIP 9Y) pU® ‘AIIIOADS PIJRWIIISD II9Y} YIIm sonssT uado))) E)
‘Arewwuns }09Jop ‘sorijewl 3599 oYy ‘(o3 Ajurorad-doy s 1exoerjje ur jou A[urelrsd st jrodex 3se3 oyj Jurfeels o[IYp\ (£T10T T~ H.mrﬁva ,Am H.nmrﬁva ,Am m.m&vq S
['Te 30 10uIdg)) suorjeralr aanyny ur se0RY WL} AYY JRYY SYSLI POSURYD 10 MOU SB [[9M SB SjUEpIOUl + . + o + qrod m
SOSSNOSIP pU® ‘S}NSAI 1§93 PIALIYDR 9y} UO paseq opewr ssarford ayj SOUI[INO ‘SOIJIAIIOR 1S9) sozlrewrwuins 3I0dal 3893 aYJ, ‘(I € Mﬂth,ﬁ e %rmv\@ an -o1 1s99 urejqQ T &
]
(1o ‘a- - =
-rouuew A[pwly TH ! Wrﬁvq (re MWHVQ ot MWHVQ g
ur paxy usaq jou aaey sSnq Surpuodsallod oY) JT 9sBI[2I aIemIJOs O]} Ia9Je o[qejrojdxe aq [[I19s JySTw jery) smey [erypusjod uo ,Aﬁmm.mrqu AH,HN.HJHY .Adom.wrqu g
sen[o sioxoe}je Juipraoid ‘I01ARYLQ PaIlsopun S}IqIYXa NG 93} jBYJ 93RIIPUI P[NOoM s3s93 pafrej ‘re[noljred ul "uorjerado juerd o1- + ema . syns =
Sunnp payoune[st jey3 Yoejje ue jo jied se seyejlopun Aresioape ue Miom Arojeredsid 93nj3I3suod Lew s3nsal 3593 Jul[ealS q(ret ,.Wrqu “(+r~\va “(+rﬁvL an -o1 1891 urelqQO [0} 8
‘a1emyjos
9y} 3ulses[ad 910joq PaXy U8a(j0U dARY sanssl pajro[dxa ayj jeys papraoid ‘9jels [BDI}IIO ® OjUI J,NG 93 9010J 0 SALIRSISAPE
Mmo[e Aew UoljRUWIOUL SIY} JOo ounso[dosip oy, ‘(€102 [€-6116¢ AHAHAI/OHI/OSI) (sioysusaios ‘sSo[*S'9) [erisjewr %«:m.uﬁwﬁ: TH H.,Fmrmviﬁ H..wrmvg
-orddns Suipraoid osye o[iym ‘sjueprour 8y} 2onpordal 03 moy pue ‘JI juswndop A[[estdAy sjrodear o9soy) ‘erowtaying ‘(€107 I'emd Fe-d j10dax juepio
[€-6116C AHAHI/DHI/OSI) 110des jueprout 3593 © Ul pepl1odal aie (sean[rej pejoadxaun '§'e) Surjse) Sulmp INod0 JeY) SHULPIOUT “(+r~\vq “(,TNVL an -ur 3se3 urejqO [
seouanbasuod TerjusloJ W,V reon #

24

The construction of ADTrees for threat scenarios related to informa-
tion theft (no. 1-12) is fully automated since we can retrieve those generic
ADTrees with the STRIDE threat Information Disclosure for the DFD ele-
ments that use the asset at risk. However, the threat scenarios that belong
to the (covert) sabotage group (no. 13-17) are more complex and, in further
consequence, deriving them requires prior modeling with the ADT ontology.
In particular, we assume that for sabotaging an asset in a covert manner,
an adversary must launch reconnaissance attacks prior to the actual asset
manipulation, and finally also execute certain attacks to cover up the sabo-
tage. Thus, ADTrees for representing these threat scenarios are composed of
multiple subtrees that are used to accomplish the attack phases (i) reconnais-
sance, (ii) actual sabotage of the asset, and (iii) concealment. All (covert)
sabotage threat scenarios described in Table [6] comprise these phases, ex-
cept threat scenario no. 17, as the target of inspection does not include the
reuse of archived artifacts (cf. Figure [3|) and therefore lacks the concealment
phase. While the subtrees for the sabotage phase can be constructed in a
fully automated fashion by retrieving the generic ADTrees with the STRIDE
threats Spoofing, Tampering, and Elevation of Privilege that are applicable
to the asset at risk, we had to model the subtrees that belong to the other
two phases. More specifically, we modeled links between the ADTrees repre-
senting these two phases and the assets that must either be obtained prior to
(reconnaissance) or manipulated after the sabotage (concealment) for each
(covert) sabotage threat scenario. To give an example, the covert manipula-
tion of test results (cf. threat scenario no. 16 in Table [6) can be performed
by (i) obtaining the test plan and test cases to provide the attacker with an
accurate understanding of the tests to be executed, (ii) spoofing, tampering
with or elevating privileges of applicable DFD elements that use the test
results, and (iii) tampering with the test incident report and test report to
conceal the sabotage.

Since the ADTrees described in Table [6] can be derived from the ontol-
ogy, users can select a threat scenario and start the ADTGenerator in order
to generate an XML file, which includes the corresponding ADTree. Upon
completion, they can import the generated XML file into the ADTool (Kordy
et al., |2013a)). In this way, users gain a comprehensive view about poten-
tial threats and can then start directly to inspect each attack path in detail,
focusing on the particular circumstances involved (e.g., system’s software ver-
sion). For instance, Figure |§| depicts an excerpt of the ADTree for obtaining
the source code (threat scenario no. 1 in Table [G).

25

Figure 6: An excerpt of the ADTree for obtaining the source code.

The VDI/VDE 2182-1| (2011)) guideline prescribes to create a threat ma-
trix to complete the threat analysis step. This threat matrix may include the
threats, which assets are affected, causes, vulnerabilities, and the resulting
direct consequences. The information required to create such a threat ma-
trix, excluding concrete vulnerabilities, can be obtained from the knowledge
base or from Table [3] and Table [(] However, we omit to present a dedicated
threat matrix in this work due to space constraints.

4.2.4. Security Objectives

After the threat analysis, the relevant security objectives have to be de-
termined. In essence, the security objectives of assets, which may be compro-
mised by one or multiple threats, are added to the threat matrix. (VDI/VDE
2182-1}, [2011))

Since each of the modeled generic ADTrees represents a specific threat
according to STRIDE, and in turn, each threat corresponds to a security
objective, users can automatically derive the following objectives that are at
risk by executing SPARQL queries: (i) Authenticity (Spoofing), (ii) Integrity
(Tampering), (iii) Non-repudiation (Repudiation), (iv) Confidentiality (In-
formation Disclosure), (v) Availability (Denial of Service), and (vi) Autho-
rization (Elevation of Privilege). The ontology can be further extended to
include other security objectives, such as auditability.

4.2.5. Risk Assessment

According to the VDI/VDE 2182-1] (2011)) guideline, this step focuses on
assessing the probability that threats manifest and the extent of damages.
The guideline does not specify a certain risk measurement technique that

26

has to be applied, nor does it state whether a qualitative or quantitative
risk analysis should be favored. Yet, the guideline provides a risk matrix as
an example, which is used to categorize risks into three groups, namely low,
medium and high. Furthermore, it is mentioned that a qualitative approach
represents the usual choice when measuring risks. (VDI/VDE 2182-1| 2011))

However, since a certain degree of vagueness is inherent to a qualitative
approach (Bojanc and Jerman-Blazic|, 2008)), a quantitative risk analysis may
be indispensable. Thus, we demonstrate in this section, how quantitative risk
measurement techniques can be applied in order to ensure a cost-effective
treatment of risks.

ADTrees allow answering a variety of quantitative questions related to
threat scenarios (Kordy et all 2013b). In particular, Kordy et al| (2013b)
define three classes of questions that can be answered by means of ADTrees,
viz., (i) “questions referring to one player” (e.g., minimal costs for the pro-
ponent), (ii) “questions where answers for both players can be deduced from
each other” (e.g., success probability for a threat scenario), and (iii) “ques-
tions referring to an outside third party” (e.g., maximal power consumption
of the threat scenario) (Kordy et al., |2013b)).

Recall that ADTGenerator allows the generation of XML files, which
represent ADTrees, based on the knowledge base. These XML files can then
be imported into ADTool for the purpose of conducting a manual quantitative
risk analysis. To illustrate how the risk analysis can be performed, we reuse
the exemplary ADTree depicted in Figure [fl Due to space constraints, we
focus on the attack nodes Side Channels and Storage Attacks, which are
connected to the goal of the generic ADTree representing the disclosure of
information from a data store (source code repository). This generic ADTree
is in turn connected to the root node of the entire ADTree, which constitutes
threat scenario no. 1 described in Table [6l

To determine which risks need to be treated in order to achieve an ac-
ceptable level of risk, we used the ADTool to compute the probability of
success for the exemplary threat scenario. Assuming that all actions are
independent, the success probability of a node with a disjunctive refine-
ment, connecting the basic actions A and B, can be calculated by the equa-
tion P,(A,B) = P(A) + P(B) — P(A)P(B), whereas the success proba-
bility of a node with a conjunctive refinement can be calculated as follows:
P~(A, B) = P(A)P(B), where P represents the probability distribution (Ko-
rdy et al 2013b). We assigned for each basic action in Figure |§] a value for
the probability that either the attack or defense, depending on the respec-

27

tive node type, is successful. In this context, it is worth mentioning that the
success probability of defense nodes represents the estimated countermea-
sures’ effectiveness, which is also determined by the fact of whether they are
in place. After the manual assignment, the probabilities for the remaining
nodes, including the ADTree’s goal, are automatically computed by ADTool.
The assigned and calculated values for the success probabilities of nodes can
be found in Table[7] As the table shows, the probability for an adversary to
successfully obtain data from the source code repository is 0.798.

Note that for the success probability computation with ADTool, it is
assumed that all actions are independent (Kordy et al., 2013b). However,
this limitation can be overcome by combining ADTrees with Bayesian net-
works (Pearl, [1988)), as proposed by Kordy et al.| (2014b).

Node Probability = Computed Probability
Source Code Reposi- - 0.798
tory: Information Dis-
closure
Side Channels - 0.211
Emissions - 0.011
& Other Radiation 0.01 0.01
2 Sound 0.001 0.001
f‘é Filesystem Effects 0.1 0.1
£ Power Draw 0.03 0.015
Timing 0.1 -
Storage Attacks - 0.744
Backup 0.75 0
Non Cleaned Storage 0.65 0.65
Physical Access 0.25 0.188
Reused Memory 0.1 -
Shielding 0 -
Remove Microphone 0 -
& Separate VMs 0 -
2 Protect Power Draw Logs 0.5 -
’% Cryptography 1 -
'g Destory Disks 0 -
Physical Access Countermeasure - 0.25
Physical Protection 0.25 -
Encrypt Filesystem 0 -

Table 7: The success probability of ADTree’s nodes depicted in Figure @

The beauty of the proposed approach is that the results from the risk

28

analysis can be transferred back to the knowledge base so that they can be
reused for subsequent iterations of the procedure. However, the results of the
quantitative assessment gained from ADTool must be manually transferred
between the knowledge base and ADTool, as we leave the development of a
prototype that automates these steps for future work.

4.2.6. Countermeasures

After analyzing the risks, countermeasures have to be identified and their
effectiveness against threats evaluated. Furthermore, the VDI/VDE 2182-
1/ (2011)) guideline states that the implementation costs of countermeasures
must be taken into account to aid the decision-making process when selecting
cost-effective countermeasures. (VDI/VDE 2182-1} 2011)

This step can be supported by the use of SPARQL queries, provided that
the success probabilities of attack and defense nodes as well as the imple-
mentation costs of countermeasures are represented in the knowledge base.
For instance, the respective SPARQL query that we provide via the GitHub
repositoryﬁ retrieves a list of potential countermeasures, including the esti-
mated effectiveness, implementation costs, the corresponding attacks they
aim to mitigate, and the estimated probability that these attacks will be
carried out successfully. The query returns the results ordered by the success
probability of attacks in descending order, and by the success probability of
countermeasures, as well as the implementation costs thereof in ascending
order. In this way, users can develop a defense strategy with the objective of
reducing risks to an acceptable level, while also considering the costs that are
associated with its implementation. Although we used a simplistic example
for the sake of clarity, the ontology can be extended to support additional fac-
tors (e.g., business requirements) that may be of significance for investment
decisions.

Now that the most cost-effective countermeasures have been identified,
their implementation can be initiated. Finally, a process audit has to be
carried out by someone not involved in the preceding steps of the procedure
(VDI/VDE 2182-1,2011)). Although these steps are crucial for ensuring that
the security measures take effect, they are out of the scope of the article at

hand.

29

5. Evaluation

In this section, we evaluate the proposed framework in the context of
selected security analysis tools. Therefore, we first identify a set of security
analysis tools (step 1) by following a generic approach for tool selection ac-
cording to [Poston and Sexton (1992), and then evaluate selected tools in the
context of the proposed approach based on identified requirements (step 2).
Figure [7] illustrates the basic steps of the evaluation process, its inputs, and
outputs.

Selected Security
Analysis Tools

Need for Security
Analysis Tools
Security Analysis
Requirements

Security Analysis Security Analysis
Tool Selection Tool Evaluation
(Section 5.1) > (Section 5.2)

Security
Analysis
Framework

Tool Evaluation Evaluation Evaluation
Process Benchmark Criteria

Evaluation
Results

Figure 7: The overall evaluation process.

The Security Analysis Tool Selection Process step (cf. Section takes
as inputs (i) the need for tool support, and (ii) security analysis require-
ments. We use a generic tool selection process proposed by |Poston and
Sexton| (1992) for testing tool evaluation, which also has been successfully
adapted and applied in the context of business process modeling tool eval-
uation in (Winkler et al., 2014)). The output of this process step is a set of
available and promising security analysis tools.

The Security Analysis Tool Evaluation Process step (cf. Section takes
as inputs (i) the set of selected security analysis tools, and (ii) the novel
approach, proposed in this article as a security analysis framework. Fur-
thermore, evaluation criteria and benchmarks have been used to provide a
common foundation for the evaluation. The output represents evaluation
results (cf. Section in terms of a comparison of selected security analysis
tools and frameworks.

5.1. Security Analysis Tool Selection

A wide range of security analysis tools and frameworks are available in
industry and academia. Due to the different focus of individual candidate

30

tool solutions, there is a need for selecting the most promising security anal-
ysis tools in the context of this research. To enable traceable and repeatable
results, we follow a generic tool evaluation approach, proposed by [Poston
and Sexton| (1992)). Although this approach focuses on evaluating testing
tools, the basic process steps are applicable for selecting security analysis
tools as well. These basic tool selection process steps include: (i) Require-
ments Identification with a focus on requirements that need to be supported
by candidate tools, (ii) Selection Criteria Identification and Prioritization to
pre-select promising candidate tools (e.g., based on critical requirements) and
to evaluate the remaining set of candidate tools, (iii) Identification of a Set
of Available Tools that represent the input for pre-selection and evaluation,
and (iv) Tool Evaluation that is based on the needs and requirements for
performing security analyses to identify the most suitable approaches. How-
ever, an adaptation of this basic process approach is needed to (i) address
individual aspects in the context of conducting security analyses, and (ii) to
provide a step-by-step approach for traceable tool selections.

Figure [§| presents the basic process steps for systematically selecting suit-
able security analysis tools.

la @

O . . -) Prioritize
Identify Required >
Tool Capabilities

@ Identify

Available Security
Analysis Tools

Tool Selection
Criteria

: v s
3 (aa) (a)
Q Scenario | -) Definition of JEvamation i
Development —T‘>: Evaluation > Selection
: | Framework (Results)
I
I

Figure 8: The tool selection process based on (Poston and Sexton, |1992)) and adapted in
(Winkler et al., |2014]).

Step 1a: Identify Required Tool Capabilities. Based on related work and
workshops as well as discussions with industry partners, we derived a set
of requirements and needed tool capabilities. Note that we followed the
Easy-Win-Win (EWW) Process approach (Gruenbacher, [2000) to collect and
classify collected requirements. The output of this process step is a list of

31

agreed and categorized requirements. In particular, we obtained the follow-
ing categories: (i) basic requirements (e.g., modeling of DFDs), (ii) modeling
(e.g., modeling of assets, consequences), (iii) integration (e.g., report gener-
ation, API access), (iv) risk assessment (e.g., quantitative risk assessment,
risk matrix), and (v) additional features (e.g., built-in threat library, attack
simulation). In total, 31 requirements were collected.

Step 1b: Prioritize Requirements and Tool Selection Criteria. In this process
step, experts from industry and academia prioritize the identified require-
ments in the EWW workshop according to expected benefits from individual
viewpoints. The outcome is a list of critical, important, less important, and
nice-to-have requirements. Note that critical requirements are mandatory for
candidate tools. Tools that do not provide solutions for critical requirements
will be excluded without further evaluation. Furthermore, for evaluation
purposes, we used a four-level scale to weight the priorities accordingly (i.e.,
critical: 10, important: 5, less important: 2.5, and nice-to-have: 1).

Step 2: Identify Available Security Analysis Tools. This process step focuses
on collecting available candidate solutions. In the context of this article,
we execute an informal web search complemented by recommendations from
security experts of our working group and industry experts. It is worth
mentioning that we searched for tools that are being advertised as threat
modeling or security risk assessment solutions, as we deem tools of both cat-
egories relevant to our evaluation context. Table [§|shows the list of candidate
security analysis tools.

Step 3: Scenario Development. Application scenarios represent typical se-
quences of tasks that need to be executed (and supported) by tools. There-
fore, we developed a set of typical application scenarios as input for the tool
evaluation. Note that these scenarios were reviewed by security experts to
ensure correctness and completeness of derived scenarios.

Step 4a: Definition of the Fvaluation Framework. Similar to (Winkler et al.
2014)), we developed an evaluation framework as a spreadsheet solution that
holds categorized, classified, and prioritized requirements (y-axis) and pre-
selected candidate tool (x-axis). Note that out of the bunch of available tools
(step 2), critical requirements (derived in step 1b) have been used to exclude
less promising tools from the evaluation.

32

Name Version Free URL

CORAS 1.4 ® https://sourceforge.net/projects/coras/

IriusRisk 02/2019 https://continuumsecurity.net/
threat-modeling-tool/

Isograph AttackTree 4.0 https://www.isograph.com/software/
attacktree/

Microsoft Threat Modeling 2016 (] https://www.microsoft.com/en-us/

Tool (TMT) download/details.aspx?id=49168

OWASP Threat Dragon 0.1.26 [) https://threatdragon.org/

SeaSponge 0.2.0 https://mozilla.github.io/seasponge/

SecuriCAD 1.4.7 https://wuw.foreseeti.com/

SecurTree 4.7 https://wuw.amenaza.com/

ThreatModeler 02/2019 https://threatmodeler.com/

Tutamen Beta http://www.tutamantic.com/

Legend: @ applicable, © free version with reduced feature set.

Table 8: The security analysis tools considered in the tool selection process.

Step 4b: Evaluation and Selection (Results). The last step of the tool evalu-
ation focuses on the evaluation of selected tools with respect to the require-
ments (and priorities) by applying the identified application scenarios. Two
researchers executed the scenarios and rated the compliance to the derived
requirements on a scale ranging from 0 (requirement is not met) to 5 (re-
quirement is met). Disagreements were discussed to come to a consensus.
Based on the agreed ratings and weighted requirements, a common score for
each tool was calculated, which describes the tool’s capability with respect
to the given requirements in the evaluation context. Finally, the one with
the highest overall score represents the security analysis tool that fits best
to the set of identified requirements. As can be seen from Table [9, Securi-
CAD achieves the highest weighted score and will, therefore, be selected for
conducting the tool evaluation. In addition to SecuriCAD, we selected the
Microsoft Threat Modeling Tool (TMT) for the tool evaluation, even though
it achieved only a moderate score. However, since it is free to use and given
its apparent popularity, it will be considered for the evaluation.

5.2. Security Analysis Tool Evaluation

To perform the actual evaluation, we model a realistic software testing
setup with all tools selected in the previous subsection in order to deter-

33

https://sourceforge.net/projects/coras/
https://continuumsecurity.net/threat-modeling-tool/
https://continuumsecurity.net/threat-modeling-tool/
https://www.isograph.com/software/attacktree/
https://www.isograph.com/software/attacktree/
https://www.microsoft.com/en-us/download/details.aspx?id=49168
https://www.microsoft.com/en-us/download/details.aspx?id=49168
https://threatdragon.org/
https://mozilla.github.io/seasponge/
https://www.foreseeti.com/
https://www.amenaza.com/
https://threatmodeler.com/
http://www.tutamantic.com/

8 N
NS . X o
(3 S A <
> kY & o
fb:%\o ‘x@& be}\ eéoébj F @%& 6&0\3@% Total
Tool D @o‘? & & QY < RS
¥] Score Weighted ~ Weighted (%)
CORAS 7% 67% 0% 17% 4% 39 190 42%
IriusRisk 100% 68% 75% 7% 63% 105 362 80%
Isograph Attack- 82% 45% 52% 83% 10% 66 238 52%
Tree
Microsoft TMT 94% 36% 43% 17% 43% 59 265 58%
OWASP Threat 91% 24% 26% 0% 29% 52 218 48%
Dragon
SeaSponge 83% 6% 9% 0% 6% 28 153 34%
SecuriCAD 100% 94% 74% 100% 76% 126 405 89%
SecurITree 62% 18% 26% 1% 6% 39 161 35%
ThreatModeler 100% 94% 100% 63% 69% 130 402 88%
Tutamen 94% 2% 65% 0% 37% 47 237 52%
Maximum: 155 455

Table 9: The results of the tool selection.

mine their effectiveness in supporting security analyses of software testing
processes. The underlying testing process of the input models for the tools
is based on the generic process discussed in Section [3] albeit it misses certain
steps that have been omitted on purpose. As already mentioned, we ob-
served that the generic software testing process for automation applications,
as depicted in Figure 3] may not be rigorously followed on the supervisory or
control level; thus, evaluating with a subset of the activities corresponding
to the generic process model seemed reasonable. In particular, the testing
process considered for the evaluation (i) misses certain organizational activi-
ties related to test management (e.g., designing a test strategy), (ii) does not
require the generation of test data, and (iii) lacks a dedicated test automa-
tion engineer. Moreover, note that the input models of the selected security
tools have to contain technical details to varying degrees. Thus, we selected
representative, off-the-shelf tools as well as necessary software and hardware
components to obtain a plausible, realistic architecture of the software testing
setup. For instance, we selected Jiraﬁ as the test management tool, which
is hosted on a server that satisfies the respective system requirements for

4Jira: https://www.atlassian.com/software/jira.

34

https://www.atlassian.com/software/jira

running this software.

After modeling the testing setup with each tool, we compare them with
each other and determine how their characteristics may facilitate security
analyses of software testing processes. The evaluation criteria used for the
tool comparison, which are based on (Lemaire et al. 2()17)EL can be di-
vided into the categories (i) input (e.g., system model, attacker model), and
(ii) output (e.g., threat generation, risk matrix). In essence, assessing the
tools” modeling capabilities, the results they yield and how they are special-
ized gives some indication of the assistance that users can expect when using
these tools for analyzing the security of their software testing setup.

Besides comparing the functional characteristics, we evaluate how well the
tools support the steps of the procedural method defined in the VDI/VDE
2182-1 (2011) guideline (cf. Figure {f). The criteria used for this qualita-
tive evaluation are the effectiveness in terms of accomplishing the procedural
method’s activities and the manual effort required to perform security anal-
yses by using the tools. A five-point Likert scale is applied to rate the degree
to which the tools meet the criteria specified. Due to the fact that the na-
ture of outputs of the tools selected for the evaluation varies significantly,
we abstain from performing a quantitative comparison (e.g., the number of
generated threats).

5.5. Buvaluation Results

The results of the security analysis tool evaluation are summarized in
Tables [10] and [T1} In the following, we present the main findings of this
evaluation.

Microsoft Threat Modeling Tool (MS TMT). As can be seen in Table |10} the
input model of the MS TMT comprises a system model in the form of a DFD.
Furthermore, a variety of manifestations of DFD elements are built-in (e.g.,
OS process as a child of the process DFD element) and can be further ex-
tended or customized by creating templates. Since the focus of the MS TMT
is on DFDs, the tool adopts a software-centric modeling approach (Shostack,
2014). Thus, the tool’s modeling approach neither gives priority to assets
nor attackers. Owing to this software-centric nature of the tool, essentially

°In their paper, [Lemaire et al. (2017) evaluate five security analysis tools for CPSs.
The therein presented tool comparison is organized by the tools’ input model and the
feedback that they provide.

35

MS TMT SecuriCAD Our Approach

DFD ° ° °
Built-in DFD Elements (] (]
System Model Custom DFD Elements [] [] [J
*é Assets © °
| Testing Process Model L]
Attack Steps (]
Attacker Model Capabilities L4
Consequence °
Security Expertise Required 0
Threat Generation (] (] ©
'é Risk Matrix []
g Quantitative Analysis (]
Effectiveness of Countermeasures °

Legend: @ applicable, © partially applicable.

Table 10: The comparison of security analysis tools based on key characteristics.

little to no security expertise is required for creating the input model. Based
on the modeled target of inspection, threats can be automatically generated.
The output that MS TMT provides is a list of threats, which are categorized
according to the STRIDE model and include a brief explanation describing
the attack vector as well as options for mitigation. Table 11| shows that the
MS TMT is of minimal value to users who seek to analyze the security of their
software testing setup systematically. Assets are only considered in terms of
the modeled DFD elements, such as a web application or SQL database. It
is evident that the MS TMT has its strengths in analyzing threats, as it has
been designed for that specific purpose. However, support for subsequent
steps, apart from determining relevant security objectives, is entirely lacking
and therefore needs to be manually performed.

SecurtCAD. This tool relies on an accurate model of the IT infrastructure
that conceptually resembles a DFD. Similar to the MS TMT, SecuriCAD
provides a set of components that can be used to build the system model,
albeit a more comprehensive one. SecuriCAD also allows the creation of
new components, in case certain modeling elements are missing or need to
be customized. The assets are implicitly modeled when sketching out the

36

Effectiveness Effort

Step
MS TMT SecuriCAD Our Appr. MS TMT SecuriCAD Our Appr.

Structure Analysis —+ ++ - O - O
Identify Assets — O + —— @) +
Analyze Threats + + + ++ +
Determine Relevant + O + + O ++
Security Objectives
Analyze & Assess —— ++ + —— ++ +
Risks
Identify Measures & —— + + —_ + +
Assess Effectiveness
Select Countermea- —— + O —— + +
sures

Legend: ++ very good, 4+ good, O average, — weak, —— very weak.

Table 11: The results of the tool evaluation.

IT environment (e.g., keystore). In contrast to the MS TMT, the input
model in SecuriCAD also considers the steps attackers can take and the
associated costs as well as consequences. However, the focus of SecuriCAD is
not on the attacker but system model, meaning that a detailed understanding
of the target of inspection suffices. As Table shows, among the tools
evaluated, SecuriCAD stands out in terms of the feedback it provides to
users. In particular, SecuriCAD allows running automated attack simulations
in order to obtain sequences of potential attack steps and corresponding
quantitative risk measurements (e.g., time-to-compromise). In this way, the
tool aims to reveal the most critical weak spots in the infrastructure and
provides suggestions for mitigation. Due to its rich feature set, SecuriCAD
is well suited for supporting the steps of the procedural method defined
in the VDI/VDE 2182-1] (2011) guideline (cf. Table [L1). However, since
users need to input a detailed model of their I'T environment, performing the
structure analysis by means of the tool requires considerable manual effort.
Thus, offering default models of reference architectures would be a valuable
addition in order to enable users to generate meaningful results more quickly.

Our Security Analysis Framework. The herein presented framework is based
on two ontologies that are used to represent knowledge about the target of
inspection on the one hand, and the attacker on the other (cf. Section .
While the system model consists of a typical DFD, the attacker model is
composed of threat trees. The beauty of the adopted ontological modeling

37

approach is that it provides flexibility and scalability, allowing users to mod-
ify, extend and integrate the models as needed. In line with this rationale,
the framework offers a model that reflects the DFD of the software test-
ing process depicted in Figure |5/ and a model that includes threat scenarios
specific to testing automation software, which both can be used out of the
box or adapted as needed. Furthermore, it is apparent from Table [10] that
our framework fuses the system- and attacker-centric modeling approach.
Thus, extending the provided attacker model or creating one from scratch
requires security expertise. Output-wise, our framework achieves a moderate
level of decision support. Owing to the developed prototype ADT Generator,
ADTrees can be automatically created from the knowledge base. This way
of generating threats is fundamentally different from that of MS TMT and
SecuriCAD. In our framework, STRIDE is used to link the roots, i.e., goals of
threat trees to specific security threats (e.g., information disclosure of a data
store) and the child nodes detail how these threats can manifest. Based on
this, complex threat scenarios, which are represented as ADTrees and may
comprise multiple threat trees, can be created. After the threats have been
generated, the output of ADTGenerator can be imported into ADTool (Ko-
rdy et al., 2013a) for subsequent analysis. Since ADTool provides multiple
attribute domains (Kordy et al., 2013b), the ADTrees can be utilized for
quantitative risk assessments. Regarding the effectiveness in supporting the
security analysis, our framework was found to be less valuable for performing
the structure analysis but achieved good results for subsequent steps (cf. Ta-
ble . The reason for the weak support of the structure analysis is that
users have to draw on ontology visualization tools for sketching the target
of inspection and that the DFD ontology lacks technical depth. The latter,
in turn, leads to the fact that attack and defense nodes of ADTrees mod-
eled with the ADT ontology apply to the basic types of DFD elements and
therefore do not consider specific components of the infrastructure from a
technological perspective. On the contrary, this also means that generally
less modeling effort is required for constructing ADTrees that can be used as
a basis for the security analysis. Finally, it is worth noting that the frame-
work in its current state does not provide a seamless workflow for conducting
the security analysis, as the tools used (i.e., ontology editor, ADTGenerator,
ADTool) are not tightly integrated.

38

6. Related Work

Existing work that is related to the article at hand can be categorized into
(i) threat modeling for cyber-physical systems (CPSs), (ii) automated threat
modeling, and (iii) information security ontologies. The following subsections
discuss selected representatives of these categories and explain how this work
is connected to them.

6.1. Threat Modeling for C'PSs

Numerous works have investigated how threat modeling can be applied
in the CPS domain in order to identify potential security issues, which ulti-
mately also affect the safety of these systems.

In (Khan et al., 2017), the authors propose a five-step threat modeling
methodology for CPSs, which is based on STRIDE. Their work is motivated
by the lack of studies that demonstrate how threats to CPSs can be sys-
tematically identified, using a real-world example. Thus, Khan et al.| (2017)
show step by step how their proposed methodology can be applied to dis-
cover threats pertaining to a real synchrophasor-based system. The article at
hand adopts a threat modeling approach that is similar to the methodology
proposed in (Khan et al., 2017) since we also use a data flow diagram (DFD)
to represent how data is transmitted within the target of inspection and
subsequently apply STRIDE to identify threats. However, while the work
conducted by Khan et al. (2017) focuses only on the modeling of threats,
we present a more comprehensive security analysis, including the analysis
of threats as a single step of the adopted procedure described in VDI/VDE
2182-1 (2011)). On top of that, our methodology attempts to semi-automate
threat modeling activities.

Martins et al. (2015) present a tool that supports modeling threats to
CPSs in a systematic manner. This tool leverages the Generic Modeling
Environment (GME) (Ledeczi et al., 2001)) to design a metamodel, which is
used for modeling the components of CPSs, optionally also in the form of
DFDs. Moreover, the tool utilizes GME interpreters to perform systematic
model analyses that may yield potential security weaknesses. The authors of
(Martins et al [2015) also present a case study in which they demonstrate
how their tool can be applied to discover vulnerabilities in a wireless tem-
perature monitoring system. Although our semi-automatic threat modeling
approach is conceptually similar to the one proposed by Martins et al.| (2015])

39

(i.e., modeling the target of inspection and leveraging tool support for ana-
lyzing threats), there are two important distinctions. First, in addition to the
analysis of threats, our proposed method also facilitates other steps of the
conducted security analysis (e.g., identifying roles authorized to use assets,
determining violated security objectives, performing a risk analysis based on
generated ADTrees). Second, instead of using an UML-based modeling lan-
guage, we model the target of inspection with OWL and can therefore take
advantage of semantic reasoners.

The authors of (Schlegel et al., 2015) attempt to bridge the gap between
existing threat modeling tools that follow either a specific or generic model-
ing approach, and by implication suffer either from being too restrictive or
from the lack of structure. In essence, the rationale of their work is to leave
the level of detail of the threat model to the user’s discretion. |Schlegel et al.
(2015) propose a methodology that attempts to fulfill this requirement. In
a nutshell, their methodology is based on (i) a data model, which consists
of objects of type component, threat, impact or security control, and (ii) re-
lationships between objects. |Schlegel et al. (2015) have also implemented
a web-based tool and created a threat model for a substation automation
system in order to validate their methodology. While Schlegel et al. (2015)
highlight the well-balanced nature between generality and specificity of their
approach, we argue that by combining DFDs, STRIDE, and ADTrees, this
feature can be achieved similarly. In fact, we believe that leveraging these
concepts can ease adoption, as they are already well established in the com-
munity.

Several works such as (Byres et al| 2004; [Ten et al., [2007; Xie et al.
2013) utilize attack trees (Schneier} |1999)) to analyze the security of CPSs.
While the applicability of attack trees certainly goes beyond mere threat
modelingﬂ we adopt a variant thereof — supplementary to STRIDE — in
order to support threat modeling activities. In particular, our proposed tool
generates ADTrees (Kordy et al., 2011)) for selected threat scenarios based
on the threat trees defined in (Shostack, 2014), which we modeled with our
ADT ontology. Users can then import the generated ADTrees into ADTool
(Kordy et al., 2013a) and use them as a basis for threat models or proceed

6See (Kordy et al. [2014a)) for a comprehensive survey on attack and defense modeling
techniques based on directed acyclic graphs, including a brief discussion on the use cases
of attack trees.

40

with subsequent steps of the security analysis. While the idea of generating
ADTrees or attack trees is not new (cf., for instance, (Depamelaere et al.,
2018; |Lemaire et al. 2018;|Vigo et al., 2014; |[Paul, 2014; Ivanova et al., 2015)),
the novelty of our work lies in using an ontological approach for deriving
ADTrees based on the modeled DFD. The derived knowledge can then also
be reused for ongoing steps in the security analysis.

It is also worth mentioning that several tools have been developed to
analyze the security of CPSs. In (Lemaire et al., [2017)), the authors pro-
vide a comprehensive comparison of five relevant tools, viz., CSETE]7 Cy-
SeMoL (Sommestad et al., [2013; [Holm et al |[2013), ADVISE (LeMay et al.,
2011)), FAST-CPS (Lemaire et al., |2014, |2015), and CyberSAGE (Vu et al.
2014)). Their evaluation reveals that the considered tools vary to a great ex-
tent in terms of the input they require and the results they provide. However,
since none of the tools stood out from the rest, Lemaire et al. (2017)) suggest
using the tools and underlying modeling methodologies in combination.

On a final note, although our work does not specifically investigate po-
tential vulnerabilities in CPSs, we still consider previous research in the area
of threat modeling for CPSs related to the article at hand, as the conducted
security analysis falls within this context (i.e., discovered threats may affect
the PSE process and CPSs likewise).

6.2. Automated Threat Modeling

Over the past few years, researchers have proposed various methods to
automate the enumeration and analysis of threats.

For example, in 2010, [Yee et al. (2010) proposed an automated approach
for identifying threats based on UML diagrams. Their approach makes use
of an expert system that relies on a knowledge base consisting of security-
relevant information extracted from UML diagrams (facts) and threat sce-
narios (rules). To demonstrate the viability of the proposed method, the
authors of (Yee et al., 2010) apply their implemented prototype to analyze a
web service. |Yee et al.|(2010) also point out a few issues they have discovered
related to the use of UML. In particular, the authors indicate that UML may
not be an ideal candidate for automated threat identification, as it permits a
certain degree of ambiguity and vagueness. The article at hand circumvents
this issue, as the knowledge base is composed of explicit security-relevant

"CSET: https://cset.inl.gov/.

41

https://cset.inl.gov/

information, modeled with the developed ontologies. On the other hand, the
benefit of the approach discussed in (Yee et al.; 2010)) is that the UML mod-
els that have been created during the development of systems can be directly
used for automatically identifying threats.

Berger et al.| (2016) introduce the concept of extended data flow dia-
grams (EDFDs), which expand DFDs by an EDFD schema that provides
additional semantics to model (i) Elements (i.e., the entities Data Store,
Process, Interactor), (ii) Channels (i.e., data flows with relationships, such
as one-to-many), (iii) Trust Areas, and (iv) Data (i.e., types of data, such as
credentials). In this way, additional knowledge can be represented, e.g., de-
fensive measures that are already in place. Furthermore, Berger et al.| (2016)
state that this makes security-relevant know-how represented in DFDs more
explicit; thus, facilitating an automated threat analysis. The automated
analysis proposed by [Berger et al. (2016) works as follows: First, security
experts create a knowledge base that is composed of rules about security
flaws. Furthermore, they provide a pattern catalog that allows to model
characteristics of systems (e.g., type of a database). Users, which may not
necessarily have a background in information security, can then create an
EDFD with the introduces EDFD schema and the pattern catalog. For the
automated threat modeling, a rule checker can be run, which transforms the
EDFD into a graph and attempts to detect the rules defined in the knowledge
base. The beauty of this approach is that the authors of (Berger et al.l |2016)
used the Common Weakness Enumeration (CWE)®|and the Common Attack
Pattern Enumeration and Classification (CAPEC)’| as a basis for the knowl-
edge base. Incorporating the CWE and CAPEC into the knowledge base of
the herein presented framework may constitute a valuable extension of our
work. However, we believe that the use of ADTrees for automating threat
modeling is indispensable, as they also serve as a foundation for quantitative
risk analysis.

The Automated Architecture for Threat Modeling and Risk Assessment
for Cloud Computing, named Nemesis, presented in (Kamongi et al., 2014)
has two similarities with our proposed framework. First, Kamongi et al.
(2014)) also use an ontological modeling approach. Second, STRIDE serves
as one of the main pillars of Nemesis. However, the architecture of Neme-

8CWE: https://cwe.mitre.org/.
9CAPEC: https://capec.mitre.org/.

42

https://cwe.mitre.org/
https://capec.mitre.org/

sis differs fundamentally from the one of our proposed framework. Nemesis
integrates security ontology bases from the VULCAN framework (Kamongi
et al., 2013) to retrieve vulnerabilities, attacks, and defenses for specific cloud
configurations. Furthermore, STRIDE is applied to automatically classify
discovered vulnerabilities. The identified threats serve then as an input for
the threat probability estimator (Fenz, [2011) in order to obtain an aggre-
gated risk indicator. In contrast to (Kamongi et al., 2014)), our work aims to
provide support for threat modeling activities by automating certain steps
(e.g., constructing ADTrees), rather than computing a risk indicator. Al-
though Nemesis can also output other information, such as severity ranks,
we believe that our framework represents a precious tool to ease the process
of discovering particularly unknown weaknesses.

6.3. Information Security Ontologies

As already mentioned, we chose an ontological approach to model the nec-
essary background knowledge, which the presented security analysis frame-
work is based on. Ontologies provide a formal specification of the concepts
and relationships within a domain and facilitate data linking as well as in-
tegration. The main advantages in our context are (i) a highly flexible and
extensible knowledge base that can be easily extended by interested readers
and domain experts, (ii) that reasoners can infer new knowledge and thus
contribute to compact queries and consistent data, (iii) that knowledge can
be freely navigated and integrated into applications, and (iv) the data can
be easily shared by interested parties and hence, has the potential to form a
community-based reference.

Existing knowledge and standards that we included in the DFD and ADT
ontologies have been outlined in Sections 2] and [4, While multiple ontologies
to represent information security knowledge have been proposed in the past,
including, inter alia, (Fenz and Ekelhart, 2009; Oltramari et al., 2014; Herzog
et al,|2007)), some approaches specifically address risk analysis, e.g., (Ahmed
et al., 2007; Ekelhart et al., [2007a, 2009a, 2007b, 2009b). However, the do-
main of software testing according to the [VDI/VDE 2182-1 (2011)) guideline
combined with ADTrees has not yet been covered. The defined models are
less extensive than the previously mentioned works but are instead tailored to
the presented framework. Still, they share concepts from existing ontologies
but are not explicitly aligned yet, which is reserved for future work. Other
security ontologies, such as (Zareen Syed and Joshi, 2016; Gao et al., [2013)

43

focused on technical vulnerabilities, which could also be integrated in the
future in order to model specific security weaknesses of test environments.

7. Conclusions

In this paper, we have presented a novel framework for semi-automatically
conducting a security analysis of the testing process for industrial automa-
tion software. This framework is based on the procedural method described
in the VDI/VDE 2182-1| (2011)) guideline and uses an ontological model-
ing approach to represent knowledge relevant to the security analysis. In
particular, we argue that analyzing the security of a software testing pro-
cess can be semi-automated. Furthermore, we introduce a prototype named
ADTGenerator, which allows to automatically generate ADTrees for threat
scenarios that apply to the modeled testing setup. These ADTrees can then
be imported into ADTool (Kordy et al., [2013a) to perform further threat
modeling activities with the graphical representation of the ADTrees or con-
duct a quantitative risk assessment (Kordy et al., [2013b)). To demonstrate
the viability of the proposed framework, we show how querying the knowl-
edge base and leveraging the generated ADTrees can reduce manual effort
and, in further consequence, facilitate the security analysis.

In future work, we want to further automate the security analysis by ex-
tending the knowledge base. On the one hand, the framework lacks simula-
tion approaches that would allow running attack simulations for the purpose
of exploring threat scenarios, e.g., as presented by (Ekelhart et al., [2015;
Kiesling et al., 2014)). On the other hand, we could extend the ontologies
to represent knowledge about vulnerabilities and technical details regarding
the specific test setup (e.g., software versions, network setup). Furthermore,
SAND attack trees, i.e., attack trees with sequential conjunction (Jhawar et al.|
2015)), are not yet supported by the ADT ontology. Besides extending the
knowledge base, we also plan to improve the developed prototype so that the
attribute domains for ADTrees (Kordy et al., [2013b) used in the course of
quantitative risk assessments can be automatically transferred between the
knowledge base and ADTool.

Finally, it is worth highlighting that leveraging security-relevant knowl-
edge, which has been modeled with ontologies, represents a powerful ap-
proach for the purpose of automating security analyses. We will further
explore how we can apply this method to other phases of the production

44

systems engineering (PSE) process as well as to specific types of CPSs, such
as cyber-physical production systems (CPPSs).

Acknowledgements

The financial support by the Christian Doppler Research Association, the
Austrian Federal Ministry for Digital and Economic Affairs and the National
Foundation for Research, Technology and Development, and COMET K1,
FFG - Austrian Research Promotion Agency is gratefully acknowledged.

References

Ahmed, M., Anjomshoaa, A., Nguyen, T. M., Tjoa, A. M., 2007. Towards an
ontology-based risk assessment in collaborative environment using the se-
manticlife. In: Proceedings of the The Second International Conference on
Availability, Reliability and Security. ARES '07. IEEE Computer Society,
Washington, DC, USA, pp. 400-407.

Baheti, R., Gill, H., 2011. Cyber-physical systems. The impact of control
technology 12, 161-166.

Berger, B. J., Sohr, K., Koschke, R., 2016. Automatically extracting threats
from extended data flow diagrams. In: Caballero, J., Bodden, E., Athana-
sopoulos, E. (Eds.), Engineering Secure Software and Systems. Springer
International Publishing, Cham, pp. 56-71.

Biffl, S., Gerhard, D., Liider, A., 2017. Introduction to the Multi-Disciplinary
Engineering for Cyber-Physical Production Systems. Springer Interna-
tional Publishing, Cham, pp. 1-24.

Bojanc, R., Jerman-Blazic¢, B., 2008. An economic modelling approach to in-
formation security risk management. International Journal of Information
Management 28 (5), 413 — 422.

Byres, E. J., Franz, M., Miller, D., 2004. The use of attack trees in assessing
vulnerabilities in scada systems. In: in IEEE Conf. International Infras-
tructure Survivability Workshop (IISW ’04). Institute for Electrical and
Electronics Engineers.

45

de Sa, A. O., d. C. Carmo, L. F. R., Machado, R. C. S., Aug 2017. Covert
attacks in cyber-physical control systems. IEEE Transactions on Industrial
Informatics 13 (4), 1641-1651.

Depamelaere, W., Lemaire, L., Vossaert, J., Naessens, V., 2018. Cps security
assessment using automatically generated attack trees. In: Proceedings
of the 5th International Symposium for ICS & SCADA Cyber Security
Research 2018. British Computer Society (BCS).

Dubey, A., July 2011. Evaluating software engineering methods in the context
of automation applications. In: 2011 9th IEEE International Conference
on Industrial Informatics. pp. 585—-590.

Ekelhart, A., Fenz, S., Klemen, M., Weippl, E., Jan 2007a. Security on-
tologies: Improving quantitative risk analysis. In: System Sciences, 2007.
HICSS 2007. 40th Annual Hawaii International Conference on. pp. 156a—
156a.

Ekelhart, A., Fenz, S., Neubauer, T., 1 2009a. Aurum: A framework for
information security risk management. In: Proceedings of the 42nd Hawaii
International Conference on System Sciences (HICSS2009). pp. 1-10.

Ekelhart, A., Fenz, S., Neubauer, T., Weippl, E.; 1 2007b. Formal threat
descriptions for enhancing governmental risk assessment. In: 1st Inter-
national Conference on Theory and Practice of Electronic Governance.

ICEGOV '07. ACM, New York, NY, USA, pp. 40-43.

Ekelhart, A., Kiesling, E., Grill, B., Strauss, C., Stummer, C., 2015. Inte-
grating attacker behavior in it security analysis: a discrete-event simulation
approach. Information Technology and Management, 1-13.

Ekelhart, A., Neubauer, T., Fenz, S., April 2009b. Automated risk and utility
management. In: 6th International Conference on Information Technology:
New Generations (ITNG 2009). IEEE Computer Society, pp. 393-398.

Falliere, N., Murchu, L. O., Chien, E., 2011. W32. stuxnet dossier. White
paper, Symantec Corp., Security Response 5 (6).

Fenz, S., 2011. An ontology- and bayesian-based approach for determining
threat probabilities. In: Proceedings of the 6th ACM Symposium on In-
formation, Computer and Communications Security. ASTACCS ’11. ACM,
New York, NY, USA, pp. 344-354.

46

Fenz, S., Ekelhart, A., 2009. Formalizing information security knowledge. In:
Proceedings of the 4th International Symposium on Information, Com-
puter, and Communications Security. ASIACCS ’09. ACM, New York, NY,
USA, pp. 183-194.

Gao, J.-b., Zhang, B.-w.; Chen, X.-h., Luo, Z., Oct 2013. Ontology-based
model of network and computer attacks for security assessment. Journal
of Shanghai Jiaotong University (Science) 18 (5), 554-562.

Gausemeier, J., 2010. Zuverlassigere mechatronik — forschungsergebnisse
kompakt: Transfer von forschungsergebnissen aus 11 verbundprojekten zur
steigerung der zuverlassigkeit mechatronischer systeme. Tech. rep., Heinz
Nixdorf Institut.

Graham, D., Van Veenendaal, E., Evans, 1., 2008. Foundations of software
testing: ISTQB certification. Cengage Learning EMEA.

Gruenbacher, P., 2000. Collaborative requirements negotiation with easy-
winwin. In: Proceedings 11th International Workshop on Database and
Expert Systems Applications. IEEE, pp. 954-958.

Herzog, A., Shahmehri, N., Duma, C., October 2007. An Ontology of Infor-
mation Security. International Journal of Information Security and Privacy

(1JISP) 1 (4), 1-23.

Hevner, A. R., March, S. T., Park, J., Ram, S., Mar. 2004. Design science in
information systems research. MIS Q. 28 (1), 75-105.

Holm, H., Sommestad, T., Ekstedt, M., Nordstrém, L., June 2013. Cysemol:
A tool for cyber security analysis of enterprises. In: 22nd International
Conference and Exhibition on Electricity Distribution (CIRED 2013). pp.
1-4.

ISO/IEC/IEEE 29119-2, 2013. Software and systems engineering — software
testing — part 2: Test processes.

ISO/IEC/IEEE 29119-3, 2013. Software and systems engineering — software
testing — part 3: Test documentation.

Ivanova, M. G., Probst, C. W., Hansen, R. R., Kammiiller, F., 2015. At-
tack tree generation by policy invalidation. In: Akram, R. N., Jajodia, S.

47

(Eds.), Information Security Theory and Practice. Springer International
Publishing, Cham, pp. 249-259.

Jhawar, R., Kordy, B., Mauw, S., Radomirovi¢, S., Trujillo-Rasua, R., 2015.
Attack trees with sequential conjunction. In: Federrath, H., Gollmann, D.

(Eds.), ICT Systems Security and Privacy Protection. Springer Interna-
tional Publishing, Cham, pp. 339-353.

Kagermann, H., Helbig, J., Hellinger, A., Wahlster, W.,; Apr. 2013. Rec-
ommendations for implementing the strategic initiative industrie 4.0 — se-
curing the future of german manufacturing industry. Final report of the
industrie 4.0 working group, acatech — National Academy of Science and
Engineering, Miinchen.

Kamongi, P., Gomathisankaran, M., Kavi, K., 2014. Nemesis: Automated
architecture for threat modeling and risk assessment for cloud comput-

ing. In: Proceedings of the 6th ASE International Conference on Privacy,
Security, Risk and Trust (PASSAT). pp. 1-10.

Kamongi, P., Kotikela, S., Kavi, K., Gomathisankaran, M., Singhal, A., June
2013. Vulcan: Vulnerability assessment framework for cloud computing.
In: 2013 IEEE 7th International Conference on Software Security and
Reliability. pp. 218-226.

Khan, R., McLaughlin, K., Laverty, D., Sezer, S., Sept 2017. Stride-based
threat modeling for cyber-physical systems. In: 2017 IEEE PES Innovative
Smart Grid Technologies Conference Europe (ISGT-Europe). pp. 1-6.

Kieseberg, P., Weippl, E., 2018. Security challenges in cyber-physical pro-
duction systems. In: Winkler, D.; Biffl, S., Bergsmann, J. (Eds.), Software
Quality: Methods and Tools for Better Software and Systems. Springer
International Publishing, Cham, pp. 3—-16.

Kiesling, E., Ekelhart, A., Grill, B., Stummer, C., Strauss, C., 1 2014. Evolv-
ing secure information systems through attack simulation. In: 47th Hawaii
International Conference on System Sciences (HICSS 2014). pp. 4868-4877.

Knowles, W., Prince, D., Hutchison, D., Disso, J. F. P., Jones, K., 2015. A
survey of cyber security management in industrial control systems. Inter-
national Journal of Critical Infrastructure Protection 9, 52 — 80.

48

Kordy, B., Kordy, P., Mauw, S., Schweitzer, P., 2013a. Adtool: Security
analysis with attack—defense trees. In: Joshi, K., Siegle, M., Stoelinga,
M., D’Argenio, P. R. (Eds.), Quantitative Evaluation of Systems. Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 173-176.

Kordy, B., Mauw, S., Radomirovi¢, S., Schweitzer, P., 2011. Foundations
of attack—defense trees. In: Degano, P., Etalle, S., Guttman, J. (Eds.),
Formal Aspects of Security and Trust. Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 80-95.

Kordy, B., Mauw, S., Schweitzer, P., 2013b. Quantitative questions on
attack—defense trees. In: Kwon, T., Lee, M.-K., Kwon, D. (Eds.), Informa-
tion Security and Cryptology — ICISC 2012. Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 49-64.

Kordy, B., Pietre-Cambacédes, L., Schweitzer, P., 2014a. Dag-based attack
and defense modeling: Don’t miss the forest for the attack trees. Computer
Science Review 13-14, 1 — 38.

Kordy, B., Pouly, M., Schweitzer, P., 2014b. A probabilistic framework
for security scenarios with dependent actions. In: Albert, E., Sekerinski,
E. (Eds.), Integrated Formal Methods. Springer International Publishing,
Cham, pp. 256-271.

Langner, R., 2013. To kill a centrifuge: A technical analysis of what stuxnet’s
creators tried to achieve.

Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason, C.,
Nordstrom, G., Sprinkle, J., Volgyesi, P., 2001. The generic modeling en-
vironment. In: Workshop on Intelligent Signal Processing.

Lee, R. M., Assante, M. J., Conway, T., 2014. German steel mill cyber attack.
Industrial Control Systems 30.

Lemaire, L., Lapon, J., De Decker, B., Naessens, V., 2014. A sysml extension
for security analysis of industrial control systems. In: Proceedings of the
2Nd International Symposium on ICS & SCADA Cyber Security Research
2014. ICS-CSR 2014. BCS, UK, pp. 1-9.

Lemaire, L., Vossaert, J., De Decker, B., Naessens, V., 2017. An assessment
of security analysis tools for cyber-physical systems. In: Grofimann, J.,

49

Felderer, M., Seehusen, F. (Eds.), Risk Assessment and Risk-Driven Qual-
ity Assurance. Springer International Publishing, Cham, pp. 66-81.

Lemaire, L., Vossaert, J., De Decker, B., Naessens, V., 2018. Security evalua-
tion of cyber-physical systems using automatically generated attack trees.
In: D’Agostino, G., Scala, A. (Eds.), Critical Information Infrastructures
Security. Springer International Publishing, Cham, pp. 225-228.

Lemaire, L., Vossaert, J., Jansen, J., Naessens, V., 2015. Extracting vulner-
abilities in industrial control systems using a knowledge-based system. In:
Proceedings of the 3rd International Symposium for ICS & SCADA Cy-
ber Security Research. ICS-CSR ’15. BCS Learning & Development Ltd.,
Swindon, UK, pp. 1-10.

LeMay, E., Ford, M. D., Keefe, K., Sanders, W. H., Muehrcke, C., Sep.
2011. Model-based security metrics using adversary view security evalua-
tion (ADVISE). In: 2011 Eighth International Conference on Quantitative
Evaluation of SysTems. pp. 191-200.

Lewis, W. E., 2008. Software Testing and Continuous Quality Improvement,
Third Edition, 2nd Edition. Auerbach Publications, Boston, MA, USA.

Martins, G., Bhatia, S., Koutsoukos, X., Stouffer, K., Tang, C., Candell,
R., Aug 2015. Towards a systematic threat modeling approach for cyber-
physical systems. In: 2015 Resilience Week (RWS). pp. 1-6.

Mauw, S., Oostdijk, M., 2006. Foundations of attack trees. In: Won,
D. H., Kim, S. (Eds.), Information Security and Cryptology - ICISC 2005.
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 186-198.

McLaughlin, S., Konstantinou, C., Wang, X., Davi, L., Sadeghi, A. R., Mani-
atakos, M., Karri, R., May 2016. The cybersecurity landscape in industrial
control systems. Proceedings of the IEEE 104 (5), 1039-1057.

Miller, B., Rowe, D., 2012. A survey of scada and critical infrastructure
incidents. In: Proceedings of the 1st Annual Conference on Research in
Information Technology. RIIT ’12. ACM, New York, NY, USA, pp. 51-56.

Noy, N. F., Sintek, M., Decker, S., Crubezy, M., Fergerson, R. W., Musen,
M. A., March 2001. Creating semantic web contents with protege-2000.
IEEE Intelligent Systems 16 (2), 60-71.

50

Oltramari, A., Cranor, L., Walls, R., McDaniel, P., 01 2014. Building an
ontology of cyber security. CEUR Workshop Proceedings 1304, 54-61.

OMG, Jan. 2011. Business Process Model and Notation (BPMN), Version
2.0. [Online; accessed 2018-05-12].
URL http://www.omg.org/spec/BPMN/2.0/

Paul, S., 2014. Towards automating the construction & maintenance of at-
tack trees: a feasibility study. In: Kordy, B., Mauw, S., Pieters, W. (Eds.),
Proceedings First International Workshop on Graphical Models for Secu-
rity. Vol. 148 of Electronic Proceedings in Theoretical Computer Science.
Open Publishing Association, pp. 31-46.

Pearl, J., 1988. Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA.

Poston, R. M., Sexton, M. P., May 1992. Evaluating and selecting testing
tools. IEEE Software 9 (3), 33-42.

Schlegel, R., Obermeier, S., Schneider, J., July 2015. Structured system
threat modeling and mitigation analysis for industrial automation systems.
In: 2015 IEEE 13th International Conference on Industrial Informatics
(INDIN). pp. 197-203.

Schneier, B., 1999. Attack trees. Dr. Dobb’s Journal: Software Tools for the
Professional Programmer 24 (12), 21-29.

Shostack, A., 2014. Threat Modeling: Designing for Security, 1st Edition.
Wiley Publishing.

Slay, J., Miller, M., 2008. Lessons learned from the maroochy water breach.
In: Goetz, E., Shenoi, S. (Eds.), Critical Infrastructure Protection.
Springer US, Boston, MA, pp. 73-82.

Sommestad, T., Ekstedt, M., Holm, H., Sept 2013. The cyber security mod-
eling language: A tool for assessing the vulnerability of enterprise system
architectures. IEEE Systems Journal 7 (3), 363-373.

Spillner, A., Linz, T., Schaefer, H., 2011. Software Testing Foundations: A
Study Guide for the Certified Tester Exam, 3rd Edition. Rocky Nook.

51

http://www.omg.org/spec/BPMN/2.0/

Stouffer, K., Pillitteri, V., Lightman, S., Abrams, M., Hahn, A., Jun 2015.
Guide to industrial control systems (ics) security. NIST special publication
800 (82r2).

Ten, C., Liu, C., Govindarasu, M., June 2007. Vulnerability assessment of
cybersecurity for scada systems using attack trees. In: 2007 IEEE Power
Engineering Society General Meeting. pp. 1-8.

VDI/VDE 2182-1, 2011. Sheet 1: It-security for industrial automation - gen-
eral model.

Vigo, R., Nielson, F., Nielson, H. R., July 2014. Automated generation of
attack trees. In: 2014 IEEE 27th Computer Security Foundations Sympo-
sium (CSF). Vol. 00. pp. 337-350.

Vu, A. H., Tippenhauer, N. O., Chen, B., Nicol, D. M., Kalbarczyk, Z., 2014.
Cybersage: A tool for automatic security assessment of cyber-physical
systems. In: Norman, G., Sanders, W. (Eds.), Quantitative Evaluation of
Systems. Springer International Publishing, Cham, pp. 384-387.

Vyatkin, V., Aug 2013. Software engineering in industrial automation: State-
of-the-art review. IEEE Transactions on Industrial Informatics 9 (3), 1234
1249.

Weippl, E., Kieseberg, P., Sept 2017. Security in cyber-physical production
systems: A roadmap to improving it-security in the production system
lifecycle. In: 2017 AEIT International Annual Conference. pp. 1-6.

Winkler, D., Meixner, K., Biffl, S., Sept 2018. Towards flexible and auto-
mated testing in production systems engineering projects. In: 2018 IEEE
23rd International Conference on Emerging Technologies and Factory Au-
tomation (ETFA). Vol. 1. pp. 169-176.

Winkler, D., Schonbauer, M., Biffl, S., 2014. Towards automated process
and workflow management: A feasibility study on tool-supported and
automated engineering process modeling approaches. In: 2014 40th EU-
ROMICRO Conference on Software Engineering and Advanced Applica-
tions. IEEE, pp. 102-110.

52

Xie, F., Lu, T., Guo, X., Liu, J., Peng, Y., Gao, Y., Oct 2013. Security
analysis on cyber-physical system using attack tree. In: 2013 Ninth In-
ternational Conference on Intelligent Information Hiding and Multimedia
Signal Processing. pp. 429-432.

Yee, G., Xie, X., Majumdar, S., July 2010. Automated threat identification
for uml. In: 2010 International Conference on Security and Cryptography
(SECRYPT). pp. 1-7.

Zareen Syed, Ankur Padia, M. L. M. T. F., Joshi, A., February 2016. UCO: A
Unified Cybersecurity Ontology. In: Proceedings of the AAAI Workshop
on Artificial Intelligence for Cyber Security. AAAI Press.

53

	Introduction
	Methodology
	Generic Software Testing Process for Automation Applications
	Security Analysis Framework
	Knowledge Representation
	Security Analysis Steps
	Structure Analysis
	Asset Identification
	Threat Analysis
	Security Objectives
	Risk Assessment
	Countermeasures

	Evaluation
	Security Analysis Tool Selection
	Security Analysis Tool Evaluation
	Evaluation Results

	Related Work
	Threat Modeling for CPSs
	Automated Threat Modeling
	Information Security Ontologies

	Conclusions

