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ABSTRACT
The rapid deployment of IoT systems on the public Internet is not
without concerns for the security and privacy of consumers. Secu-
rity in IoT systems is often poorly engineered and engineering for
privacy does not seem to be a concern for vendors at all. The combi-
nation of poor security hygiene and access to valuable knowledge
renders IoT systems a much-sought target for attacks.

IoT systems are not only Internet-accessible but also play the
role of servers according to the established client-server commu-
nication model and are thus configured with static and/or easily
predictable IPv6 addresses, rendering them an easy target for at-
tacks.

We present 6HOP, a novel addressing scheme for IoT devices.
Our proposal is lightweight in operation, requires minimal admin-
istration overhead, and defends against reconnaissance attacks, ad-
dress based correlation as well as denial-of-service attacks. 6HOP
therefore exploits the ample address space available in IPv6 net-
works and provides effective protection this way.
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1 INTRODUCTION
The Internet ofThings (IoT) is the most recent evolutionary step of
the Internet and brings billions of physical, formerly stand-alone
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devices online. IoT devices come in a great variety of size and
functionality but show also great diversity with respect to their
computing capabilities.

IoT systems aim to provide an increased level of comfort, safety,
and efficiency: Smart watches can monitor the heart rate, allow
sending short messages, and play music, all by means of a single
small wrist device. Smart thermostats can learn habits and prefer-
ences of their owner, can control the heating system accordingly,
and allow to turn on the air condition remotely while commuting
to home or office. At the same time, more and more connected ve-
hicles are driving along the roads – it is assumed that by the year
2020 there will be a quarter billion of such cars [6].

The rapid deployment of IoT systems on the public Internet is
notwithout concerns for the security and privacy of the consumers.
More often than not, IoT systems appear to be poorly engineered
regarding their security, posing additional threats to the operation
of the Internet. This was clearly demonstrated in the recent case
of Mirai, the first IoT DDoS botnet1: CCTV cameras and DVR’s
around the world were compromised and formed a botnet eventu-
ally launching denial-of-service attacks against popular websites.

Security being an afterthought, privacy does not seem to be a
concern for IoT system vendors at all. However, all these devices
sense and interact with our surroundings. They continuously col-
lect, process, and transmit detailed information about our lives to
cloud infrastructures in remote locations, i. e., sensitive data un-
protectedly travels the public Internet. The combination of poor
security hygiene and access to valuable knowledge render IoT sys-
tems a first-class target for privacy attacks [25].

IPv6 and IoT go hand-in-hand today: for the IoT to realize its
full potential, IPv6 provides enough addresses for the billions of
devices to be connected and involved in human-to-machine and
machine-to-machine (M2M) interactions. This is not feasible with
IPv4: the address space is not big enough [13]. As of March 2017,
IPv6 adoption surpassed the 16% mark among the Google users2.
Despite the rising adoption trend, most of the available IPv6 ad-
dresses will still go unused for all current and envisioned IoT us-
age scenarios. Hence, the question arises: how can we utilize the
address space offered by IPv6 to improve security and privacy in
an IoT world? As an address has to be assigned in order to con-
nect with the Internet anyway, secure and privacy-aware address
configuration represents a lightweight mechanism for protection.

In this paper, we propose IPv6-Hopping (6HOP), a lightweight
IPv6 addressing mechanism that is suitable for IoT scenarios. In

1https://www.incapsula.com/blog/malware-analysis-mirai-ddos-botnet.html
2https://www.google.com/intl/en/ipv6/statistics.html
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6HOP, addresses are generated in a deterministic way by commu-
nication partners, but they appear random to third parties. This
way, the partners are able to reconnect to each other whenever
desired; but others are not able to pinpoint current endpoint infor-
mation as addresses expire in a regular fashion.

Overall, our 6HOPproposal provides network-levelmechanisms
for:

• Proactive security: 6HOP does not disclose smart-home-
specific IoT addresses for future attacks. Hence, any IPv6
scanning activity during a reconnaissance phase cannot
be utilized to launch targeted attacks at a later stage.

• Network-layer anonymity: 6HOP does not disclose the net-
work topology, the network size, or the identity of the in-
dividual IoT-connected devices.

• Privacy: 6HOP does not allow client device tracking inside
the same network or across different networks.

The remainder of the paper is organized as follows: Section 2
outlines our IoT usage scenario and the associated threat model.
Section 3 introduces the design of IPv6-Hopping (6HOP) and de-
tails the system variants and protocol operations. Section 4 and 5
provide the privacy and security evaluation for 6HOP. Section 6
discusses existing IPv6 addressingmechanismswith respect to their
capability of protection as well as related approaches from the IPv4
world and compares them with 6HOP. Finally, Section 7 concludes
the paper and lays down future directions of work.

2 MOTIVATION
In the established client-server communication model of the Inter-
net, IoT systems are not only Internet-accessible but also act as
servers. This is necessary for automated M2M interactions as well
as remote control and configuration by their operators or owners.
It is quite common that IoT systems are configured with a prac-
tically static IPv6 address to better serve their role. At the same
time, a large class of IoT systems are resource-limited devices and
cannot employ advanced network security protections. This com-
bination makes IoT systems an easy target for attacks, i.e., sitting
ducks.

Server addresses on the Internet are intended to be static, either
manually assigned or following the Modified EUI-Format. Such ad-
dresses allow to find servers easily. The IoT challenges this as-
sumption as IoT servers are intended to be used solely by a lim-
ited number of people, e.g., the residents of a smart home. Neither
should these servers be found nor accessed by anybody else on the
Internet.

IP-level addresses are valuable metadata that can be used by a
malicious actor to launch attacks against these systems and the pri-
vacy of their users. Existing IPv6 addressing schemes do not cope
sufficiently with these issues for servers, as they produce static
or predictable address patterns. Even when randomization is em-
ployed, it relies on link-layer information (e.g., MAC addresses)
that exhibit strong patterns [16].

2.1 Smart home usage scenario
We consider a smart home IoT usage and attack scenario as de-
picted in Figure 1. We assume two stakeholders, namely Alice and

Public WiFi
Alice's
Home Network

Alice

Eve

Figure 1: Threat model with a client on a public wireless net-
work connecting back to a device at home

Eve. Alice lives in a smart home environment and operates multi-
ple IoT devices in her residence, e.g., a smart fridge, some security
cameras, a thermostat, and smart lightbulbs. For reasons of conve-
nience, these devices allow remote control and maintenance over
the Internet; Alice accesses the devices by means of her mobile
device’s Internet browser or a vendor-provided smartphone app.

We assume full-IPv6 deployment in the public wireless network
and Alice’s home network. Thus, all smart devices have individual,
globally-routable IPv6 addresses and are reachable from all over
the Internet.

2.2 Attack scenarios
Eve has malicious intentions and wishes to violate the security of
Alice and invade her privacy for nefarious purposes.

Eve aims to perform active attacks and strike the respective IoT
device on the application layer, e.g., by exploiting poor authen-
tication or other software vulnerabilities. Many IoT devices lack
sophisticated security and are indeed highly vulnerable3.

Launching an attack, however, requires prior reconnaissance,
i.e., Eve must find the vulnerable devices in first place. As IoT
devices are typically not announced in the Domain Name System
(DNS), Eve rather has to actively scan addresses – a tedious but
not entirely infeasible task with IPv6 [5, 7, 11, 21] – or, alterna-
tively, extract addresses from captured network traffic. Hence, a
first goal for our design is to increase the reconnaissance effort of
the attacker. Ideally, by achieving this goal, we will prevent the at-
tacker from reaching the (potentially vulnerable) application layer.

Eve also aims to perform passive attacks and inspect traffic in
order to gain more information about Alice. Alice would connect
to the same address whenever accessing a certain IoT device in her
home as servers are intended to have a stable IPv6 address. In turn,
Eve is able to attribute all these connection efforts to Alice by sim-
ply comparing target addresses. This line of action is commonly
referred to as address-based correlation. It is especially outstand-
ing among different types of traffic correlation as addresses are
essential for packet delivery. They can neither be removed from
packets nor encrypted.

Address-based correlation using server addresses is a consequence
of the IoT device serving solely a limited number of clients in com-
parison to publicly accessible non-IoT servers. The IPv6 Privacy

3http://www.csoonline.com/article/3119765/security/
hackers-found-47-new-vulnerabilities-in-23-iot-devices-at-def-con.html

http://www.csoonline.com/article/3119765/security/hackers-found-47-new-vulnerabilities-in-23-iot-devices-at-def-con.html
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Extension [19] considers it sufficient to scramble source (client) ad-
dresses. The rationale for this is that when connecting to non-IoT
servers which serve a high number of different clients, the indi-
vidual gets lost in the masses. Hence, a second goal for our de-
sign is to hinder address-based correlation by attackers exploiting
server addresses. The attackers should not be able to identify com-
munication endpoints based solely on the source and destination
addresses of the latter.

We present in the next Section a dynamic IPv6 address shuffling
scheme for the server side of the IoT that defends against the afore-
mentioned attacks.

3 DESIGN OF 6HOP
6HOP specifies an algorithm deriving ephemeral addresses, ports
and key information for both endpoints, i.e., Alice’s smart phone
and her domestic IoT server. Based on an initially exchanged se-
cret all subsequent IPv6 addressing information is derived. The
following scenario highlights the use of 6HOP.

In an initialization procedure, Alice’s smart phone and the IoT
server exchange a secret seed over the residential wireless network.
As the wireless network is protected adequately, we consider this
channel as secure and the exchanged secret as only known by the
smart phone and the server.

The IoT server then calculates its address and transport layer
port according to the deterministic algorithm specified by 6HOP,
assigns itself the address, and listens for incoming requests at the
transport layer port. 6HOP is a dynamic address format; the IoT
server thus changes its address and port at a regular time inter-
val, e.g., 24 hours, for purposes of protection, again following the
6HOP algorithm. Whenever Alice wishes to remotely access the
IoT server, her smart phone follows the 6HOP algorithm including
the initially exchanged secret as well into calculation. This way, it
is able to infer the current destination address and port in order to
reach the server.

Beyond, 6HOP includes further strategies for protection. First,
the 6HOP algorithm allows not only to infer server addresses and
ports, but also source addresses and ports. The smart phone has
to use the latter in its connection attempts in order to authenticate
itself as a legitimate client; requests from other source addresses
and ports would be denied by the server upon receipt. The source
address and port change in the same interval as the server address
and port. Second, the 6HOP algorithm allows to infer secret keys
to transmit authenticated and encrypted traffic which further in-
creases the level of protection.

The remainder of this section describes the 6HOP algorithm for
address derivation, describes how to move from one address to the
next over time and introduces an overlapping address window for
reasons of robustness.

3.1 Deriving address and key data
The core aspect of 6HOP is to derive addressing and authentication
information from a shared ephemeral secret e ∈ E on every round
of the protocol. In the first round of the protocol an initial secret
seed s0 is exchanged in a secure way. This initial seed is assumed
to be chosen uniformly at random from S and is never used to de-
rive addressing information directly. In the following paragraphs,

sn Bits Length
(Bits) Param.

0-111 112 server IPv6 address suffix4

112-223 112 client IPv6 address suffix

224-239 16 server port

240-255 16 client port

256-383 128 key used for AE by A

384-511 128 key used for AE by B

Table 1: Partition of the 512-bit shared secret en into IPv6
address suffixes, ports, and keys used for authenticated en-
cryption.

we specify an algorithm that allows to infer IPv6 addresses and
transport layer ports for both client and server as well as secret
keys for encryption, thereby we model H as a random oracle.

State sn represents the intermediary value of a hash chain up to
point n (see Equation 1).

s1 = H(s0)

s2 = H
(
H(s0)

)
. . .

sn = Hn(s0)

(1)

The ephemeral secret en can be calculated at both endpoints in-
dependently by applying a hash chain construction to s0 or using
the intermediate states sn and sn−1 directly (see Equation 2).

e1 = H
(
s1 ⊕ s0

)
e2 = H

(
s2 ⊕ s1

)
. . .

en = H
(
sn ⊕ sn−1

) (2)

These subsequent shared values e1, e2, . . . are used to derive ephemeral
IPv6 addresses, ports, and keys for authenticated encryption (AE) on
both endpoints of the 6HOP session.

Avoiding information leakage while keeping forward secrecy,
the system distinguishes between ephemeral secrets e0, e1, ..., en ∈
E and states s0, s1, ..., sn ∈ S. The advantage of this construction
is twofold. First, depending on the size of a sufficiently large look-
back windoww , all {e0, . . . , en−w } and {s0, . . . , sn−(w+1)} values
do not have to be maintained in storage. Since previous states
are not necessary for computing upcoming ones, storing solely the
last sn−(w+1) hash states provides forward secrecy for the system.
Second, decoupling the hash chain state s from the actual shared
ephemeral secret e that is used to derive addressing and authentica-
tion information, avoids that bits of the current state of the system,
i.e., the current hash in the hash chain, are leaked to the outside
over the used addresses and ports.

All shared ephemeral secrets e ∈ E are assumed to be of the
same size and at least 512 bits. Since |E | = |S| the size of each of
these sets has to be at least 2512. The derived shared ephemeral se-
cret e is partitioned according to Table 1 in order to infer addresses,
ports and encryption keys.
4IPv6 addresses are of 128 bits length; however, a node is usually not able to choose all
bits independently. Network prefixes are typically determined by the Internet service
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The method to initiate an update of the (hash chain) state, i. e.,
forwarding to the next address, needs to be synchronized among
both endpoints. Otherwise, they would not be able to connect to
each other. The following Section describes the synchronization
requirements of this scheme in greater detail.

3.2 Forwarding to the next address
The idea of time-based hopping are addresses that change in a reg-
ular interval at both endpoints, i. e., the smart phone and the IoT
server. For synchronization among the communication partners
in agreeing to advance to the next IPv6 address the same point in
time, we used a similar algorithm as defined for the time-based
one-time password (TOTP) [18] as a baseline for our design. How-
ever, we do not include the time-based variable into the calculation
of the ephemeral secret en , but only use it as a trigger mechanism
to update the (hash chain) state sn and eventually forward to the
next address.

The update of the state is therefore triggered by a change of the
time-based tick T . The tick T works as a counter and denotes the
number of time steps of size X between the start time T0 and the
current time Tnow . All these variables are measured in seconds.
The included variables as well as the particular algorithm are de-
scribed in the following paragraphs.

• Current timeTnow : The current time as delivered by a real-
time-clock.

• Time step X : The duration of one tick in seconds. The
shorter the time step, the shorter ephemeral information
like IPv6 addresses, ports and keys are valid. For example,
the akin IPv6 Privacy Extension uses a life span of 86, 400
seconds (24 hours).

• Time reference T0: The Unix time stamp of the initial con-
nection. Having defined a time step X in the range of
hours, it is not critical if the value of T0 on the client dif-
fers from the value of T0 on the server, since the renewal
interval is a few hours anyway. Therefore it is not neces-
sary to transmit T0 explicitly. It can be deduced from the
server when the initial connection is made.

The time tick T indicates when to update the local (hash chain)
state. Therefore each implementation has to store at least the cur-
rent value of T as well as T0, X , and the current state sn for every
6HOP session. From these values all future values can be derived.
If a client for example wants to initiate a new TCP connection, it
first computes T according to Equation 3.

T = ⌊(Tnow −T0
X

)⌋ (3)

Then the client checks the computed valueT against the stored
value Tstored . If Tstored < T , it sets Tstored ← T and computes
sn+1 and en+1 to derive the appropriate addressing information to
initiate the connection. If Tstored is equal to T , it uses the current
addresses from sn and en to initiate the connection.

provider (ISP) and announced by routers. Depending on the ISP, a domestic Internet
connection receives a network prefix with a typical length between 48 and 64 bits;
the latter are fixed, while the remaining bits can be chosen freely. In consequence,
it remains sufficient to reserve 112 bits of the ephemeral secret per IPv6 address. A
6HOP node then takes the announced prefix, and fills the remaining bits with those
from the ephemeral secret in order to form its 6HOP address.

3.3 Synchronization and overlapping window
Ideally, both endpoints hop to the next address, i.e., state, at the
same point in time. However, due to network delays, clock dis-
crepancies, and deviations in T0, one of the following two cases
might occur:

(1) The client’s clock is too fast (i.e., the server clock is too
slow) and the client tries to connect via an address that
the server has not generated yet.

(2) The client’s clock is too slow (i.e., the server clock is too
fast). Then the client tries to connect to an already depre-
cated address.

To increase the resilience against such clock drifts, we propose
a tolerance window of size w . This means that the ephemeral in-
formation, like IPv6 endpoint addresses, ports and keys, of the last
w ticks will be kept active and reachable. This ensures connec-
tivity and a smooth transition between consecutive IPv6 endpoint
addresses. We assume that the clocks of both endpoints are syn-
chronized to a degree that allows them to stay connected.

We suggest setting the overlapping windoww and the time step
X according to the security requirements of the respective 6HOP
session but advise a minimum of w = 1. This means that there
are always two valid IP addresses per 6HOP session, except for the
very first interval. Minor clock drifts within the size of X should
therefore not be an issue for 6HOP5. Thereby, a smooth transition
for new TCP connections is ensured, while currently active TCP
connections will not be reset but kept under the old IPv6 address
until they close.

The time step X can also be configured in a way that the ac-
tual addresses appear like the IPv6 Privacy Extension, i.e., address
generation in an interval of 24 hours. If the addresses should be
changed every 24 hours, the tight synchronization of the clocks is
less of an issue since an endpoint address would remain valid for
48 hours withw = 1.

Alternatively,X can also be reduced to increase the security. On
the one hand, the shorter the time step, the less time an adversary
has to strike a victim after identifying an endpoint address. On the
other hand, a short time step requires tighter clock synchroniza-
tion. To avoid problems originating from clock desynchronization,
we propose a look-ahead window of minimum one time tick for
6HOP. This look-ahead window can also be used to reduce clock
drift by readjusting on new connections within the next window.

4 SECURITY OF THE SHARED SECRET
INFORMATION DERIVATION

Afirst attempt to break the security and privacy offered by 6HOP is
to launch an attack against the secret information derivation func-
tion of 6HOP. If such an attack was successful, an attacker would
know all future addresses, ports, and keys, effectively breaking the
6HOP mechanisms. We consider such attacks in the remainder of
this section and infer an attacker’s effort to do so. We also calcu-
late the probabilities for address collisions, i.e., two nodes residing
within the same subnetwork and assigning themselves the same
addresses at the same point in time.
5The IPv6 privacy extension provides something similar: After its “preferred” lifetime
of typically 24 hours, an address is kept for another “valid” lifetime in order to serve
on-going transactions, but it is not used for new outgoing connections anymore.
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4.1 Attack Design
Once knowing an internal hash state at an arbitrary point in time,
an adversary is able to infer a victim’s future 6HOP addresses,
ports and keys. Indeed, these pieces of information are clips of
the ephemeral secret en , as described in Table 1, which in turn
are inferred from the hash state sn and sn−1. An adversary might
be interested in gaining this hash state. The hash state might be
leaked, e.g., by compromising one of the communication partners.
Alternatively, a passive adversary is able to synchronize to the in-
ternal hash state by observing a number of successive identifiers,
i.e., IPv6 addresses and/or ports6, without actively compromising
any of the communication partners.

Synchronization to the hash state is performed as follows. The
adversary probes all possible values for sn−1, and calculates sn ac-
cording to

sn = H(sn−1). (4)
Then, she calculates the ephemeral secret en according to

en = H(sn ⊕ sn−1), (5)

and compares as many bits as possible. If the adversary is aware
of both ports, and the interface identifiers, she is able to compare
160 bits. If she solely has the interface identifiers, she is able to
compare only 128 bits.

The adversary excludes all inappropriate candidates; their secret
keys do not correspondwith the observed addresses and ports. The
remainder are kept as suitable candidates, and their related hash
states sn are stored in a candidate set for the next iteration. The
adversary reiterates with this reduced candidate set following the
just described algorithm, and further reduces the candidate set by
comparing with the addresses and ports that have been observed
on the following day. She proceeds until the candidate set is re-
duced to a single hash state, this is the internal hash state of the
algorithm. With this knowledge, the adversary is able to calculate
all future addresses, ports, and keys.

In the remainder of this section, we discuss how many consec-
utive ephemeral addresses and ports have to be observed by an
adversary in a row. In a second step, we quantify the effort for
hashing.

4.2 Number of Observations
The adversary has to shrink the candidate set down to a single
candidate. As she has to probe all possible values for s0 having a
length of 512 bits, the very first candidate setC0 is of size 2512. As
the adversary is just able to compare the observed addresses and/or
port numbers with the resulting ephemeral secrets e0, more than
a single candidate remains after the first iteration. Assuming a
uniform distribution of hashes, the size of candidate set C1 is

|C1 | = 2512 · 2−b (6)
with b being the number of bits that the adversary is able to com-
pare. The adversary is able to shrink the candidate set with every
iteration. Its size in iteration n is calculated according to

6Observing successive identifier is a non-trivial task as an adversary cannot correlate
identifiers by solely investigating these identifiers; but she might use some other form
of metadata to do so. For example, in [23] the MAC address is used.

b Tmin

64 8 interface identifier of one communication
partner

128 4 interface identifiers of both communication
partners

80 7 interface identifier and port of one
communication partner

160 4 interface identifier and port of both
communication partners

Table 2: Minimal number of observations and probability of
address collision in relation to observed attributes

|Cn | = 2512 · 2−b ·n (7)
The adversary proceeds until a single candidate remains, i.e.,

|CTmin | = 2512 · (2−b ·Tmin) = 1 (8)
In consequence, the number of consecutive addresses/ports that

have to be observed by the adversary is

Tmin = ⌈512
b
⌉ (9)

Table 2 shows Tmin for different scenarios. If the adversary is
solely aware of the interface identifier of one communication part-
ner, it takes eight observations. If she is aware of both interface
identifiers, it reduces down to four observations; knowing inter-
face identifiers and ports of both results in only four iterations.

4.3 Hashing Effort
Each iteration requires a substantial effort of hash computations.
In particular, the adversary has to perform two hashes per candi-
date – one hash for calculating the next hash state sn (cf. Equa-
tion 4), the other for calculating the ephemeral key en (cf. Equa-
tion 5). Thus, |Hn |, the number of hashes required for iteration n
is

|Hn | = 2 · |Cn | = 2 · 2512 · 2−b ·n = 2513 · 2−b ·n (10)
Summing up the number of hashes for all iterations leads to the

following equation

|H | =
Tmin∑
i=0

|Hn | = 2513
Tmin∑
i=0

2−b ·i (11)

Assuming 2−l ·i < 1, the total amount of hashes is

|H | = 2513
2−b ·Tmin − 1
2−b − 1

(12)

and finally leads to the total time expenditure for brute forcing
TBrute assuming a hash rate r

TBrute =
2513

r

2−b ·Tmin − 1
2−l − 1

(13)

We measured 395 · 106 hashes per second on an AMD Radeon
R9 290X GPU for SHA-512. Assuming the use of eight such GPUs
in parallel leads to 3.2 · 109 hashes per second in total. In con-
sequence, the described attack remains practically infeasible with
today’s commodity hardware.
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Concluding, this attack does not appear economical from an ad-
versary’s point of view. For reconnaissance aims, it appears to be
less effort to brute-force the IPv6 address space of 2128. If the ad-
versary aims to gain the encryption keys used for the authenticated
encryption, it remains also less effort to brute-force the encryption
directly.

4.4 Address Collisions
Address collisions refer to a situation where multiple nodes in a
subnetwork assign the same IPv6 address. As multiple nodes lis-
ten to the same address, packet delivery becomes a mess; in con-
sequence, address collisions have to be prevented in order to guar-
antee correct data transmission.

We consider two scenarios; the first considers the prevalence of
two nodes A and B using 6HOP within a subnetwork, the second
generalizes the previous result for an arbitrary number of nodes
within a subnetwork. An address collision requires that addresses
are equal in all of their bits; while the first bits of the network
prefix are equal anyway when residing in the same subnetwork,
the remainder x bits of the address are defined by 6HOP.

Scenario 1: Two nodes residing in a subnetwork use 6HOP. As-
suming randomness of the hash function, the probability of both
nodes assigning the same address at the same point in time calcu-
lates according to

P = 2−x (14)

with x describing the number of address bits that are calculated by
means of 6HOP per node. Rearranging Equation 14 leads to the
following expression

P = 1 − 2x · (2x − 1)
2x ·2

. (15)

Scenario 2: An arbitrary number of nodes reside in a subnet-
work, and use 6HOP in order to generate their addresses. Assum-
ing again randomness of the hash function, we are able to general-
ize Equation 15 to describe the probability of two nodes assigning
the same address as follows

P = 1 − 2x · (2x − 1) · · · · · (2x − (N − 1))
2x ·N

(16)

with N being the total number of nodes within the respective
subnetwork.

In conclusion, address collisions are highly improbable. How-
ever, in the rare case that a node observes such an address colli-
sion by using Duplicate Address Detection [17], we advise to au-
tomatically forward to the next address as defined by the 6HOP
algorithm. The overlapping window parameter w , as defined in
Section 3.3, successfully handles such a situation.

5 THREAT ANALYSIS
In this section, we discuss different kind of attacks and how the
6HOPmechanisms protects against these attacks. Thereby, we rely
on the scenario defined in Section 2, and assume that the secret

Public WiFi
Alice's
Home Network

Alice

? ?

Eve

Figure 2: 6HOP prevents address-based correlation exploit-
ing client addresses and correlation exploiting server ad-
dresses.

seed s0 has been exchanged over a secure channel. In our anal-
ysis below, we model threats according to the STRIDE methodol-
ogy [2, 20]. Therefore, we consider spoofing, tampering, repudia-
tion, information disclosure, denial-of-service and elevation of privi-
lege threats.

Further, we differentiate the attacks with regard to Eve’s capa-
bilities: (1) Eve is able to position herself en-route, i. e., on the traffic
path between Alice’s smart phone and her server as shown in Fig-
ure 2. Subsections 5.2 - 5.6 discuss attacks in this setting. (2) Eve is
not able to place herself en-route; in consequence, she is only able
to perform active probing as described in Subsection 5.1.

5.1 Active probing
Eve is not able to position herself en-route, i. e., on the traffic path
between Alice and the server. Hence, she needs to perform active
scanning in order to find potential victims like the IoT server. Scan-
ning IPv6 addresses is a tedious but not entirely impossible task;
currently known techniques of scanning mostly rely on implicit
address patterns in order to reduce the search space [5, 7, 11, 21].
In consequence, it is rather unlikely that Eve finds a 6HOP address
as they do not include any pattern, and rather appear random to
third parties.

But even in the unlikely event that Eve finds a currently valid
combination of an 6HOP address and transport layer port, her pos-
sibilities are limited. 6HOP requires the traffic to be authenticated
and encrypted using one-time key pads. As Eve does not know
the key, neither the ephemeral secret in order to infer the key, she
is not able to initiate a new 6HOP session, or inject arbitrary data
into the traffic flow. Moreover, the server is able to use source
addresses as a form of authentication, and drop every packet not
originating from a currently valid 6HOP source addresses. The lat-
ter further reduces Eve’s probing capabilities.

5.2 Traffic inspection
If Eve is able to position herself within the traffic path between Al-
ice’s smart phone and the servers, she has attack capabilities that
are more subtle than active probing. In a traffic inspection attack,
Eve aims to read the exchanged data in order to gain sensitive infor-
mation. Traffic inspection is encountered by 6HOP as the traffic is
encrypted by the encryption keys that are derived from the current
ephemeral key. Eve is not able to calculate the ephemeral key as
she is lacking the secret seed that has been previously exchanged
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over a secure channel, e. g., an adequately secured domestic wire-
less network.

5.3 Modify traffic
Eve may aim to perform a man-in-the-middle attack and modify
the traffic between Alice’s smart phone and the IoT server. How-
ever, 6HOP counters this attack as all traffic of an established 6HOP
session is authenticated and encrypted using one-time keys that
are inferred from the ephemeral secret. In consequence, Eve is un-
able to modify messages without being noticed and has no window
of opportunity to launch man-in-the-middle attacks.

In case Eve wanted to exploit her power in order to deny com-
munication between Alice’s smart phone and the IoT server, she
has to block all traffic involving the respective IPv6 network pre-
fixes. The reason therefore lies in the changing endpoint addresses:
Eve cannot selectively drop packets to a single endpoint, e. g., the
IoT server, as the latter’s address continuously changes and Eve is
unable to identify successive addresses. Rather, she has to drop all
packets going to or coming from these subnetworks. Denying any
communication on the network level to a certain network prefix,
e. g., by cutting the wire, cannot be prevent by 6HOP and is outside
our threat model; however, it remains unlikely that such a coarse
attacks remains unnoticed.

5.4 Replay traffic
Eve may record traffic of the 6HOP endpoints, and replay it at a
latter point in time. As the addresses change over time, Eve is
solely able to replay traffic in both direction as long as the included
addresses, ports and keys remain valid. If 6HOP forwards to the
next addresses, this capability of Eve is denied.

Nevertheless, she is able to reply traffic as long as the time-tick
is not incremented. 6HOP does not protect higher application layer
in all cases from the consequences of injection and replay attacks.
The window of attack can be reduced by also decreasing the time-
tick interval as well as the overlapping window sizew , the applica-
tion layer however remains responsible of detecting replay attacks,
e.g., by the introduction of a counter.

5.5 Denial-of-service (DoS) attacks
Eve may aim to perform a denial-of-service attack against the IoT
server by sending an increased amount of traffic. Our focus are
denial-of-service attacks of increased traffic or targeted probing ac-
tivity that can be handled by a consumer-grade home router (e.g.,
at the range of 100 Mbps) but will exhaust the resources of a home
IoT device. We do not consider large scale distributed denial-of-
service (DDoS) attacks producing several hundred Gbps of traffic
as these kinds of attacks would paralyze domestic connections any-
way.

In this scenario, we assume the current address of the IoT server
has been recorded by Eve, e. g., by sniffing the traffic. Eve then
launches a denial-of-service attack against this address. If a 6HOP
endpoint is under a network-level denial-of-service attack, connec-
tivity is automatically regained with the next time interval Tn+1,
i. e., when hopping to the next address occurs. The struck address
can effectively be blocked or redirected at upstream routers. There-
fore, performing long-lasting, targeted probing or denial-of-service

attacks is difficult as the adversary has to find successive addresses
of a 6HOP session.

5.6 Traffic metadata analysis
Evemight aim to attribute Internet activities toAlice’s smart phone
and the IoT server by analyzing IPv6 addresses and transport laer
ports. 6HOP protects against such address- and port-based traffic
correlation attacks. Eve can deduce that two network prefixes are
talking to each other, but she does not know for certain which
devices are involved in the communication by solely looking at
the used IPv6 addresses and ports.

The protection against address-based correlation offered by 6HOP
is based on certain assumptions. If there is only a single device us-
ing 6HOP in an IPv6 subnet, all traffic coming from or going to
this subnet can be attributed to this device i.e., the privacy set is
too small to offer any protection. In other words, the protection
against address-based correlation offered by 6HOP increases, the
more clients/servers in the respective networks are using 6HOP or
other formats of dynamic addressing. However, other dynamic ad-
dressing schemes, e.g., the IPv6 Privacy Extension suffer from the
same limitation.

While address- and port-based correlation is mitigated by 6HOP,
endpoints might still be fingerprinted by means of metadata analy-
sis targeting network stack specific communication patterns. Dif-
ferent hosts might be identified, for example via their uptime de-
duced from TCP timestamps [14] or the frequency and time span
over which different operating systems receive their updates. Such
traffic artifacts can also be used by 6HOP peers to lay false traps
and disguise themselves as other devices. The mitigation of such
attacks and other techniques of traffic obfuscation are beyond the
scope of this paper.

6 RELATEDWORK
Shuffling addresses per se is not a novel idea for IPv6. Our re-
search is based on two foundations: On the one hand, 6HOP is
considered as a new address generation scheme for IPv6. Thus,
we discuss existing approaches with respect to their quality of pro-
tection against denial-of-service and reconnaissance. On the other
hand, alternatives for protection against these threats are available
beyond IPv6; we also consider such approaches.

Many schemes for IPv6 address generation are available; with
respect to stability over time, we distinguish three flavors of IPv6
addresses: (1) static addresses, (2) semi-static addresses, and (3) dy-
namic addresses. As all of them were designed with other goals in
mind, it is not suprising that they are at most of limited benefit for
protection against such attacks.

6.1 Static addresses
Static addresses remain effective over a long period of time, typ-
ically for a host’s full lifetime. In today’s IPv6 environment, two
types of static addresses are prevalent. Manually-assigned addresses
are mainly used at servers. Such addresses are individually con-
figured by the operators. In contrast, addresses in Modified EUI-
Format are inferred from the announced network prefix, the glob-
ally unique MAC address, and a fixed pattern [12].



ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy Judmayer et al.

Manually-assigned addresses frequently include patterns like
port numbers of provided services or the respective IPv4 address [9],
as a consequence of human intervention.

Modified EUI-Format addresses bear inherent patterns due to
inclusion of the MAC address. These patterns allow to reduce the
IPv6 address space for active probing [22]. They are rather an en-
abler for reconnaissance than a means of protection, and have be-
came replaced as default identifiers recently [10].

Once an adversary gains a static address, she is able to perform a
denial-of-service attack against the respective host. The attack traf-
fic reaches the victim over the full attack period due to addresses
stability. In consequence, static addresses can neither be consid-
ered to be a protection against reconnaissance nor against denial-
of-service attacks.

6.2 Semi-static addresses
We consider addresses as semi-static in case the specification calls
for changes in certain circumstances but these changes occur rarely
in practice and are eventually of only limited benefit for protection
against reconnaissance or denial-of-service attacks.

Cryptographically Generated Addresses [1] and Semantically Opaque
Identifiers [8] include the network prefix into their deterministic
algorithms for interface identifier generation. Both schemes in-
clude hash functions for calculation making the prevalence of ad-
dress patterns unlikely. In consequence, they can be considered
as protection against reconnaissance. However, they do not form
an adequate means of protection against denial-of-service attacks.
Addresses change only when moving to another network prefix.
Hence, a viable protection would only be feasible through perma-
nent (physical) movement.

6.3 Dynamic addresses
Dynamic addresses change at regular intervals. They are in prin-
ciple the most promising for our scenario. First, they are typically
generated in an automatic way and do not contain any patterns.
Second, an addresses that is struck by a denial-of-service attack
runs out automatically and a new one is generated. The adversary
would have to find the respective host over and over again. As the
addresses appear unrelated to each other, this remains a tedious
task.

Known approaches of dynamic addresses are obviously the clos-
est to our method. However, they are designed for different pur-
poses. We discuss the cases of IPv6 Privacy Extension, MT6D, and
non-IPv6 approaches in more detail in the next subsections.

6.4 IPv6 Privacy Extension
The IPv6 Privacy Extension creates addresses in a 24-hour interval
to prevent traffic correlation of stationary and mobile clients [19].
Clients initiate outgoing connections but typically do not await in-
coming connections from others. At best, they choose the respec-
tive parts of the address in a random manner7. However, these un-
related addresses appear useless for our scenario. When applied

7Linux and Mac operating systems presumably do so; tough, the official algorithm
appears flawed [23]. This fact however does not oppose the baseline of the Privacy
Extension’s intention.
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Figure 3: The Privacy Extension prevents address-based cor-
relation exploiting client addresses, but not correlation ex-
ploiting server addresses.

to an IoT server, the latter would not be discovered by the legiti-
mate clients either. 6HOP introduces a shared secret that allows
the client to calculate the server’s current address and reconnect.

In addition, the Privacy Extension is intended for clients; in con-
sequence, transactions on the Internet cannot be attributed to the
same client. Nevertheless, it remains possible to pinpoint all trans-
actions to a certain server as it listens on a single static address.
In our scenario, Eve would still be able to identify all connections
attempts to the IoT devices by Alice by checking for the server ad-
dress as a consequence of the limited amount of users accessing the
IoT server. If the involved IoT devices use static addresses based
on the Modified EUI-Format, it would even be possible to deduce
what kind of device handled the respective connection based on
the included MAC address [16].

6.5 MT6D
MT6D exploits permanently changing addresses as ameans ofmov-
ing target defense against denial-of-service attacks [4]. Such an ap-
proach would also protect against reconnaissance attacks. MT6D
achieves this by tunneling IPv6 packets inside MT6D packets. This
introduces an overhead of 62 bytes per IPv6 packet sent. The net-
work performance (transfer speed and retransmissions) of MT6D
is thus not satisfactory for modern applications [4].

MT6D is aimed towards connection-oriented upper layer proto-
cols, like TCP.The sender (client) pre-calculates a receiver’s (server)
address every ten seconds based on an out-of-band negotiated se-
cret in order to insert the then-valid address into the packet header.
In this sense, tight time synchronization is crucial for the operation
of MT6D.

Even though MT6D shuffles both server and client addresses,
the client is able to infer the server address following a determin-
istic algorithm that includes a secret key. This addressing scheme
bears however disadvantages. MT6D piggybacks the original com-
munication into another layer of IPv6 in order to support connection-
oriented protocols like TCP. This causes extra overhead and slow
transfer rates. Also, the additional MT6D protocol headers foster
traffic metadata analysis. Also, MT6D requires tight time synchro-
nization which might be a barrier for resource constrained IoT de-
vices.

Table 3 provides a summary of IPv6 address generation schemes.
Address Dynamics refers to their lifetime; we distinguish static,



Lightweight Address Hopping for Defending the IPv6 IoT ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy

Modified
EUI-Format [12]

Semantically Opaque
Addresses [8]

Cryto-graphically-
Generated

Addresses [1]

Privacy
Extension [19] MT6D [3] 6HOP

Address Dynamics static semi-static semi-static dynamic dynamic dynamic

Port Randomization - - - - ✓ ✓
Reconnectivity ✓ ✓ ✓ - ✓ ✓
Embeddedness ✓ ✓ ✓ ✓ - ✓

Independence from Time
Synchronization ✓ ✓ ✓ ✓ - ✓

Table 3: Comparison of IPv6 addressing schemes

semi-static, and dynamic addresses as mentioned above. Port Ran-
domization refers to the fact whether the address generation for-
mats allows to randomize ports of the transport layer protocols,
like UDP and TCP, in addition to the IPv6 addresses. Reconnectiv-
ity means that a host is able to reconnect to a certain host at a later
point in time, i.e., the former can infer the address of the latter at
this point in time. Embeddedness implies that the respective ad-
dress generation schemes uses native IPv6, without any additional
protocol headers. Finally, we highlight whether fine-grained time
synchronization is needed.

6.6 Non-IPv6 approaches
An IPv4-based address shuffling defense for denial-of-service at-
tacks is proposed in [15]. This approach requires multiple edge
routers spanning multiple network segments of possibly different
administrative domains. The sender decides the correct destina-
tion address according to a deterministic function. The respective
router then checks for consistency and forwards the traffic to the
apparent receiver.

In contrast to 6HOP, a rather small number of addresses is used
due to the reliance on the available IPv4 address space. Further-
more, the proposal requires one edge router per protected address.
Both these hinder the deployability in a consumer-grade IoT sce-
nario. Smart homes will neither be assigned multiple public IPv4
addresses, given the IPv4 address scarcity, nor will they afford to
install and maintain multiple edge routers.

Defenses that go beyond addressing are described in [24]. Ac-
cording to this classification, our proposal, 6HOP, is a destination-
based approach of protection. Similar approaches are considered
easy to deploy and comparably cheap. However, in the presence
of an attack, the victim’s resources are utilized (to a certain extent).
In addition, the entity deploying the protection mechanism bene-
fits from its deployment.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we presented 6HOP, a lightweight address hopping
scheme for defending IPv6-enabled IoT devices. Our proposal uti-
lizes the ample IPv6 address space and defends against awide range
of attacks. It also integrates natively with the IPv6 protocol suite.
Thus, 6HOP offers superior security characteristics and easier de-
ployment, especially for smart homes and similar environments
with a small (compared to open Internet) number of IoT servers.

Future directions of work include real-world studies on the ef-
fectiveness and the performance of 6HOP in IoT systems with dif-
ferent resource constraints regarding processing and storage ca-
pabilities. This includes studying scalability issues for serving a
larger number of servers concurrently and alternative hopping tech-
niques. Another interesting direction is to study the applicability
of 6HOP in other usage scenarios like for example peer-to-peer
systems.
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